
FORTRAN Session

Chairman: JAN Lee
Speaker: John Backus
Discussant: George Ryckman

PAPER: THE HISTORY OF FORTRAN I, II, AND III

John Backus
IBM Corporation
Research Division

1. Early Background and Environment

1.1. Attitudes about Automatic Programming in the 1950s
Before 1954 almost all programming was done in machine language or assembly lan-

guage. Programmers rightly regarded their work as a complex, creative art that required
human inventiveness to produce an efficient program. Much of their effort was devoted to
overcoming the difficulties created by the computers of that era: the lack of index regis-
ters, the lack of built-in floating point operations, restricted instruction sets (which might
have AND but not OR, for example), and primitive input-output arrangements. Given the
nature of computers, the services which "automatic programming" performed for the pro-
grammer were concerned with overcoming the machine's shortcomings. Thus the primary
concern of some "automatic programming" systems was to allow the use of symbolic ad-
dresses and decimal numbers (e.g., the MIDAC Input Translation Program, Brown and
Carr, 1954).

But most of the larger "automatic programming" systems [with the exception of Laning
and Zierler's algebraic system (Laning and Zierler, 1954) and the A-2 compiler (Remington
Rand, 1953; Moser, 1954)] simply provided a synthetic "computer" with an order code
different from that of the real machine. This synthetic computer usually had floating point
instructions and index registers and had improved input-output commands; it was there-
fore much easier to program than its real counterpart.

The A-2 compiler also came to be a synthetic computer sometime after early 1954. But
in early 1954 its input had a much cruder form; instead of "pseudo-instructions" its input

HISTORY OF PROGRAMMING LANGUAGES
Copyright © 1981 by the Association for Computing Machinery, Inc.
Permission for reproduction in any form must be obtained from Academic Press, Inc.
ISBN 0-12-745040-8

25

John Backus

was then a complex sequence of "compiling instructions" that could take a variety of
forms ranging from machine code itself to lengthy groups of words constituting rather
clumsy calling sequences for the desired floating point subroutine, to "abbreviated form"
instructions that were converted by a "Translator" into ordinary "compiling instruc-
tions" (Moser, 1954).

After May 1954 the A-2 compiler acquired a "pseudo-code" which was similar to the
order codes for many floating point interpretative systems that were already in operation
in 1953: e.g., the Los Alamos systems, DUAL and SHACO (Bouricius, 1953; Schlesinger,
1953), the MIT "Summer Session Computer" (Adams and Laning, 1954), a system for the
ILLIAC designed by D. J. Wheeler (Muller, 1954), and the Speedcoding system for the
IBM 701 (Backus, 1954a).

The Laning and Zierler system was quite a different story: it was the world's first
operating algebraic compiler, a rather elegant but simple one. Knuth and Trabb (1977) as-
sign this honor to Alick Glennie's AUTOCODE, but I, for one, am unable to recognize
the sample AUTOCODE program they give as "algebraic", especially when it is com-
pared to the corresponding Laning and Zierler program.

All of the early "automatic programming" systems were costly to use, since they
slowed the machine down by a factor of five or ten. The most common reason for the
slowdown was that these systems were spending most of their time in floating point sub-
routines. Simulated indexing and other "housekeeping" operations could be done with
simple inefficient techniques, since, slow as they were, they took far less time than the
floating point work.

Experience with slow "automatic programming" systems, plus their own experience
with the problems of organizing loops and address modification, had convinced program-
mers that efficient programming was something that could not be automated. Another rea-
son that "automatic programming" was not taken seriously by the computing community
came from the energetic public relations efforts of some visionaries to spread the word
that their "automatic programming" systems had almost human abilities to understand
the language and needs of the user; whereas closer inspection of these same systems
would often reveal a complex, exception-ridden performer of clerical tasks which was
both difficult to use and inefficient. Whatever the reasons, it is difficult to convey to a
reader in the late seventies the strength of the skepticism about "automatic programming"
in general and about its ability to produce efficient programs in particular, as it existed in
1954.

[In the above discussion of attitudes about "automatic programming" in 1954 I have
mentioned only those actual systems of which my colleagues and I were aware at the time.
For a comprehensive treatment of early programming systems and languages I recom-
mend the article by Knuth and Trabb (1977) and Sammet (1969).]

1.2. The Economics of Programming

Another factor which influenced the development of FORTRAN was the economics of
programming in 1954. The cost of programmers associated with a computer center was
usually at least as great as the cost of the computer itself. (This fact follows from the aver-
age salary-plus-overhead and number of programmers at each center and from the com-
puter rental figures.) In addition, from one-quarter to one-half of the computer's time was
spent in debugging. Thus programming and debugging accounted for as much as three-

26 Part II

Paper: The History of FORTRAN I, II, and III

quarters of the cost of operating a computer; and obviously, as computers got cheaper,
this situation would get worse.

This economic factor was one of the prime motivations which led me to propose the
FORTRAN project in a letter to my boss, Cuthbert Hurd, in late 1953 (the exact date is not
known but other facts suggest December 1953 as a likely date). I believe that the economic
need for a system like FORTRAN was one reason why IBM and my successive bosses,
Hurd, Charles DeCarlo, and John McPherson, provided for our constantly expanding
needs over the next five years without ever asking us to project or justify those needs in a
formal budget.

1.3. Programming Systems in 1954
It is difficult for a programmer of today to comprehend what "automat ic programming"

meant to programmers in 1954. To many it then meant simply providing mnemonic opera-
tion codes and symbolic addresses, to others it meant the simple process of obtaining sub-
routines from a library and inserting the addresses of operands into each subroutine. Most
"automat ic programming" systems were either assembly programs, or subroutine-fixing
programs, or, most popularly, interpretive systems to provide floating point and indexing
operations. My friends and I were aware of a number of assembly programs and interpre-
tive systems, some of which have been mentioned above; besides these there were pri-
marily two other systems of significance: the A-2 compiler (Remington-Rand, 1953;
Moser, 1954) and the Laning and Zierler (1954) algebraic compiler at MIT. As noted
above, the A-2 compiler was at that time largely a subroutine-fixer (its other principal task
was to provide for "over l ays") ; but from the standpoint of its input "p rog rams" it pro-
vided fewer conveniences than most of the then current interpretive systems mentioned
earlier; it later adopted a "pseudo-code" as input which was similar to the input codes of
these interpretive systems.

The Laning and Zierler system accepted as input an elegant but rather simple algebraic
language. It permitted single-letter variables (identifiers) which could have a single con-
stant or variable subscript. The repertoire of functions one could use were denoted by
" F " with an integer superscript to indicate the "catalog number" of the desired function.
Algebraic expressions were compiled into closed subroutines and placed on a magnetic
drum for subsequent use. The system was originally designed for the Whirlwind computer
when it had 1024 storage cells, with the result that it caused a slowdown in execution
speed by a factor of about ten (Adams and Laning, 1954).

The effect of the Laning and Zierler system on the development of FORTRAN is a ques-
tion which has been muddled by many misstatements on my part. For many years I be-
lieved that we had gotten the idea for using algebraic notation in FORTRAN from seeing a
demonstration of the Laning and Zierler system at MIT. In preparing a paper (Backus,
1980) for the International Research Conference on the History of Computing at Los
Alamos (June 10-15, 1976), I reviewed the matter with Irving Ziller and obtained a copy of
a 1954 letter (Backus, 1954b) (which Dr. Laning kindly sent to me). As a result the facts of
the matter have become clear. The letter in question is one I sent to Dr. Laning asking for
a demonstration of his system. It makes clear that we had learned of his work at the Office
of Naval Research Symposium on Automatic Programming for Digital Computers , May
13-14, 1954, and that the demonstration took place on June 2, 1954. The letter also makes
clear that the FORTRAN project was well under way when the letter was sent (May 21,

FORTRAN Session 27

John Backus

1954) and inc luded Har l an H e r r i c k , R o b e r t A. N e l s o n , and I rv ing Zi l le r as wel l as myse l f .
F u r t h e r m o r e , an ar t ic le in the p r o c e e d i n g s o f tha t s ame O N R S y m p o s i u m by H e r r i c k and
m y s e l f (Backus and H e r r i c k , 1954) s h o w s c l ea r ly tha t we were a l r e a d y c o n s i d e r i n g input
e x p r e s s i o n s l ike " Z a~'b~k'" and " X + Y". W e wen t on to ra ise the q u e s t i o n " . . . c an a
mach ine t r ans l a t e a suff ic ient ly r ich m a t h e m a t i c a l l anguage into a suff ic ient ly e c o n o m i c a l
p r o g r a m at a suff ic ient ly low cos t to m a k e the w h o l e af fa i r f e a s i b l e ? "

T h e s e and o t h e r r e m a r k s in o u r p a p e r p r e s e n t e d at the S y m p o s i u m in M a y 1954 m a k e it
c l ea r tha t we were a l r e a d y c o n s i d e r i n g a lgeb ra i c inpu t c o n s i d e r a b l y m o r e s o p h i s t i c a t e d
than tha t o f Lan ing and Z i e r l e r ' s s y s t e m w h e n we first h e a r d o f the i r p i o n e e r i n g w o r k .
Thus , a l though Lan ing and Z ie r l e r had a l r e a d y p r o d u c e d the w o r l d ' s first a lgeb ra i c c o m -
p i le r , o u r bas i c ideas for F O R T R A N had been d e v e l o p e d i n d e p e n d e n t l y ; thus it is diff icult
to k n o w wha t , if any , n e w ideas we got f rom see ing the d e m o n s t r a t i o n o f the i r
s y s t e m . ?

O u r O N R S y m p o s i u m ar t ic le (B a c k u s and H e r r i c k , 1954) a lso m a k e s c l ea r tha t the
F O R T R A N group was a l r e a d y a w a r e tha t it f a c e d a new k ind o f p r o b l e m in a u t o m a t i c p ro -
g r amming . The v iab i l i ty o f mos t c o m p i l e r s and i n t e r p r e t e r s p r io r to F O R T R A N had r e s t e d
on the fact that mos t sou rce l anguage o p e r a t i o n s we re not ma c h ine o p e r a t i o n s . Thus even
large ineff ic iencies in pe r fo rmin g bo th l o o p i n g / t e s t i n g o p e r a t i o n s and c o m p u t i n g ad-
d r e s s e s we re m a s k e d by mos t o p e r a t i n g t ime be ing spen t in f loat ing po in t sub rou t i ne s . But
the a d v e n t o f the 704 wi th bui l t in f loat ing po in t and index ing r ad ica l ly a l t e r e d the s i tua-
t ion. The 704 p r e s e n t e d a doub le cha l l enge to t h o s e w h o w a n t e d to s impl i fy p r o g r a m m i n g ;
f irst , it r e m o v e d the r a i son d ' e t r e o f ea r l i e r s y s t e m s by p r o v i d i n g in h a r d w a r e the o p e r a -
t ions they ex i s t ed to p r o v i d e ; s e c o n d , it i n c r e a s e d the p r o b l e m o f ge ne ra t i ng eff ic ient p ro -
g r a m s by an o r d e r o f magn i tude by speed ing up f loat ing po in t o p e r a t i o n s by a f ac to r o f t en
and t h e r e b y l eav ing ineff ic iencies n o w h e r e to hide . In v i ew o f the w i d e s p r e a d s k e p t i c i s m
abou t the poss ib i l i t y o f p r o d u c i n g eff ic ient p r o g r a m s wi th an a u t o m a t i c p r o g r a m m i n g sys-
t em and the fact that ineff ic iencies cou ld no longe r be h idde n , we were c o n v i n c e d tha t the
k ind o f s y s t e m we had in mind w o u l d be w ide ly u sed on ly if we cou ld d e m o n s t r a t e tha t it
wou ld p r o d u c e p r o g r a m s a lmos t as eff ic ient as h a n d c o d e d ones and do so on v i r tua l ly
e v e r y j ob .

It was ou r be l i e f that if F O R T R A N , dur ing its first m o n t h s , we re to t r ans l a t e any r ea son -
able " s c i e n t i f i c " source p r o g r a m into an o b j e c t p r o g r a m on ly ha l f as fas t as i ts h a n d c o d e d

t In response to suggestions of the Program Committee, let me try to deal explicitly with the question of what
work might have influenced our early ideas for FORTRAN, although it is mostly a matter of listing work of which
we were then unaware. I have already discussed the work of Laning and Zierler and the A-2 compiler. The work
of Heinz Rutishauser (1952) is discussed later on. Like most of the world [except perhaps Rutishauser and Cor-
rado B6hm--who was the first to describe a compiler in its own language (B6hm, 1954)] we were entirely un-
aware of the work of Konrad Zuse (1959, 1972). Zuse's "PlankalkiW', which he completed in 1945, was, in some
ways, a more elegant and advanced programming language than those that appeared 10 and 15 years later.

We were also unaware of the work of Mauchly et al. ("Short Code," 1950), Burks ("Intermediate PL," 1950),
B6hm (1951), Glennie ("AUTOCODE," 1952) as discussed in Knuth and Trabb (1977). We were aware of but
not influenced by the automatic programming efforts which simulated a synthetic computer (e.g., MIT "Summer
Session Computer", SHACO, DUAL, SPEEDCODING, and the ILLIAC system), since their languages and
systems were so different from those of FORTRAN. Nor were we influenced by algebraic systems which were
designed after our "Preliminary Report" (1954) but which began operation before FORTRAN (e.g., BACAIC,
Grems and Porter, 1956; IT, Perlis et al., 1957; MATH-MATIC, Ash et al., 1957). Although PACT I (Baker,
1956) was not an algebraic compiler, it deserves mention as a significant development designed after the FOR-
TRAN language but in operation before FORTRAN, which also did not influence our work.

28 Part II

Paper: The History of FORTRAN I, II, and III

counterpart, then acceptance of our system would be in serious danger. This belief caused
us to regard the design of the translator as the real challenge, not the simple task of design-
ing the language. Our belief in the simplicity of language design was partly confirmed by
the relative ease with which similar languages had been independently developed by Rutis-
hauser (1952), Laning and Zierler (1954), and ourselves; whereas we were alone in seek-
ing to produce really efficient object programs,

To this day I believe that our emphasis on object program efficiency rather than on lan-
guage design was basically correct. I believe that had we failed to produce efficient pro-
grams, the widespread use of languages like FORTRAN would have been seriously de-
layed. In fact, I believe that we are in a similar, but unrecognized, situation today: in spite
of all the fuss that has been made over myriad language details, current conventional lan-
guages are still very weak programming aids, and far more powerful languages would be in
use today if anyone had found a way to make them run with adequate efficiency. In other
words, the next revolution in programming will take place only when both of the following
requirements have been met: (a) a new kind of programming language, far more powerful
than those of today, has been developed; and (b) a technique has been found for executing
its programs at not much greater cost than that of today's programs.

Because of our 1954 view that success in producing efficient programs was more impor-
tant than the design of the FORTRAN language, I consider the history of the compiler
construction and the work of its inventors an intergral part of the history of the FOR-
TRAN language; therefore a later section deals with that subject.

2. The Early Stages of the FORTRAN Project
After Cuthbert Hurd approved my proposal to develop a practical automatic program-

ming system for the 704 in December 1953 or January 1954, Irving Ziller was assigned to
the project. We started work in one of the many small offices the project was to occupy in
the vicinity of IBM headquarters at 590 Madison Avenue in New York; the first of these
was in the Jay Thorpe Building on Fifth Avenue. By May 1954 we had been joined by
Harlan Herrick and then by a new employee who had been hired to do technical typing,
Robert A. Nelson (with ZiUer, he soon began designing one of the most sophisticated sec-
tions of the compiler; he is now an IBM Fellow). By about May we had moved to the 19th
floor of the annex of 590 Madison Avenue, next to the elevator machinery; the ground
floor of this building housed the 701 installation on which customers tested their programs
before the arrival of their own machines. It was here that most of the FORTRAN language
was designed, mostly by Herrick, Ziller, and myself, except that most of the input-output
language and facilities were designed by Roy Nutt, an employee of United Aircraft Corp.
who was soon to become a member of the FORTRAN project.

After we had finished designing most of the language we heard about Rutishauser's pro-
posals for a similar language (Ruthishauser, 1952). It was characteristic of the unscholarly
attitude of most programmers then, and of ourselves in particular, that we did not bother
to carefully review the sketchy translation of his proposals that we finally obtained, since
from their symbolic content they did not appear to add anything new to our proposed lan-
guage. Rutishauser's language had a FOR statement and one-dimensional arrays, but no
IF, GOTO, nor I/O statements. Subscript variables could not be used as ordinary vari-
ables and operator precedence was ignored. His 1952 article described two compilers for
this language (for more details, see Knuth and Trabb, 1977).

FORTRAN Session 29

John Backus

As far as we were aware, we simply made up the language as we went along. We did not
regard language design as a difficult problem, merely a simple prelude to the real problem:
designing a compiler which could produce efficient programs. Of course one of our goals
was to design a language which would make it possible for engineers and scientists to write
programs themselves for the 704. We also wanted to eliminate a lot of the bookkeeping
and detailed, repetitive planning which hand coding involved. Very early in our work we
had in mind the notions of assignment statements, subscribed variables, and the DO state-
ment (which I believe was proposed by Herrick). We felt that these provided a good basis
for achieving our goals for the language, and whatever else was needed emerged as we
tried to build a way of programming on these basic ideas.

We certainly had no idea that languages almost identical to the one we were working on
would be used for more than one IBM computer , not to mention those of other manufac-
turers. (After all, there were very few computers around then.) But we did expect our
system to have a big impact, in the sense that it would make programming for the 704 very
much faster, cheaper, more reliable. We also expected that, if we were successful in meet-
ing our goals, other groups and manufacturers would follow our example in reducing the
cost of programming by providing similar systems with different but similar languages
(Preliminary Report, 1954).

By the fall of 1954 we had become the "Programming Research Group" and I had be-
come its "manage r" . By November of that year we had produced a paper: "Prel iminary
Report, Specifications for the IBM Mathematical FORmula TRANslating System, FOR-
T R A N " (Preliminary Report, 1954) dated November 10. In its introduction we noted that
" sys tems which have sought to reduce the job of coding and debugging problems have
offered the choice of easy coding and slow execution or laborious coding and fast execu-
t ion." On the basis more of faith than of knowledge, we suggested that programs "will be
executed in about the same time that would be required had the problem been laboriously
hand coded . " In what turned out to be a true statement, we said that " F O R T R A N may
apply complex, lengthy techniques in coding a problem which the human coder would
have neither the time nor inclination to derive or apply ."

The language described in the "Prel iminary Repor t" had variables of one or two charac-
ters in length, function names of three or more characters, recursively defined "expres-
s ions" , subscripted variables with up to three subscripts, "ar i thmetic formulas" (which
turn out to be assignment statements), and "DO-formulas" . These latter formulas could
specify both the first and last statements to be controlled, thus permitting a DO to control
a distant sequence of statements, as well as specifying a third statement to which control
would pass following the end of the iteration. If only one statement was specified, the
" r a n g e " of the DO was the sequence of statements following the DO down to the specified
statement.

Expressions in "ari thmetic formulas" could be " m i x e d " : involve both "f ixed poin t"
(integer) and "floating point" quantities. The arithmetic used (all integer or all floating
point) to evaluate a mixed expression was determined by the type of the variable on the
left of the " = " sign. " IF- formulas" employed an equality or inequality sign (" = " o r " > "
or " > = ") between two (restricted) expressions, followed by two statement numbers, one
for the " t r u e " case, the other for the " fa l se" case.

A "Relabel formula" was designed to make it easy to rotate, say, the indices of the rows
of a matrix so that the same computat ion would apply, after relabeling, even though a new
row had been read in and the next computation was now to take place on a different, ro-

30 Part II

Paper: The History of FORTRAN I, II, and III

tated set of rows. Thus, for example, i fb is a 4 by 4 matrix, after RELABEL b(3,1), a
reference to b(1,j) has the same meaning as b(3,j) before relabeling; b(2,j) after = b(4,j)
before; b(3,j) after = b(1,j) before; and b(4,j) after = b(2,j) before relabeling.

The input-output statements provided included the basic notion of specifying the se-
quence in which data was to be read in or out, but did not include any "FORMAT" state-
ments.

The Report also lists four kinds of "specification sentences": (1) "dimension sen-
tences" for giving the dimensions of arrays; (2) "equivalence sentences" for assigning the
same storage locations to variables; (3) "frequency sentences" for indicating estimated
relative frequency of branch paths or loops to help the compiler optimize the object pro-
gram; and (4) "relative constant sentences" to indicate subscript variables which are ex-
pected to change their values very infrequently.

Toward the end of the Report (pp. 26-27) there is a section "Future additions to the
FORTRAN system". Its first item is: "a variety of new input-output formulas which
would enable the programmer to specify various formats for cards, printing, input tapes,
and output tapes". It is believed that this item is a result of our early consultations with
Roy Nutt. This section goes on to list other proposed facilities to be added: complex and
double precision arithematic, matrix arithmetic, sorting, solving simultaneous equations,
differential equations, and linear programming problems. It also describes function defini-
tion capabilities similar to those which later appeared in FORTRAN II; facilities for nu-
merical integration; a summation operator; and table lookup facilities.

The final section of the Report (pp. 28-29) discusses programming techniques to use to
help the system produce efficient programs. It discusses how to use parentheses to help
the system identify identical subexpressions within an expression and thereby eliminate
their duplicate calculation. These parentheses had to be supplied only when a recurring
subexpression occurred as part of a term [e.g., if a*b occured in several places, it would
be better to write the term a*b*c as (a*b)*c to avoid duplicate calculation]; otherwise the
system would identify duplicates without any assistance. It also observes that the system
would not produce optimal code for loops constructed without DO statements.

This final section of the Report also notes that "no special provisions have been in-
cluded in the FORTRAN system for locating errors in formulas". It suggests checking a
program "by independently recreating the specifications for a problem from its FOR-
TRAN formulation [!]". It says nothing about the system catching syntactic errors, but
notes that an error-finding program can be written after some experience with errors has
been accumulated.

Unfortunately we were hopelessly optimistic in 1954 about the problems of debugging
FORTRAN programs (thus we find on p. 2 of the Report: "Since FORTRAN should vir-
tually eliminate coding and debugging . . . [!]") and hence syntactic error checking facili-
ties in the first distribution of FORTRAN I were weak. Better facilities were added not
long after distribution and fairly good syntactic checking was provided in FORTRAN II.

The FORTRAN language described in the Programmer's Reference Manual dated Oc-
tober 15, 1956 (IBM, 1956) differed in a few respects from that of the Preliminary Report,
but, considering our ignorance in 1954 of the problems we would later encounter in pro-
ducing the compiler, there were remarkably few deletions (the Relabel and Relative Con-
stant statements), a few retreats, some fortunate, some not (simplification of DO state-
ments, dropping inequalities from IF statements--for lack of a " > " symbol, and
prohibiting most "mixed" expressions and subscripted subscripts), and the rectification of

FORTRAN Session 31

John Backus

a few omissions (addition of FORMAT, C O N T I N U E , computed and assigned GOTO
statements, increasing the length of variables to up to six characters, and general improve-
ment of input -ou tput statements).

Since our entire attitude about language design had always been a very casual one, the
changes which we felt to be desirable during the course of writing the compiler were made
equally casually. We never felt that any of them involved a real sacrifice in convenience or
power (with the possible exception of the Relabel statement, whose purpose was to coor-
dinate inpu t -ou tpu t with computations on arrays, but this was one facility which we felt
would have been really difficult to implement). I believe the simplification of the original
DO statement resulted from the realization that (a) it would be hard to describe precisely,
(b) it was awkward to compile, and (c) it provided little power beyond that of the final
version.

In our naive unawareness of language design p r o b l e m s - - o f course we knew nothing of
many issues which were later thought to be important, e.g., block structure, conditional
expressions, type dec la ra t ions- - i t seemed to us that once one had the notions of the as-
signment statement, the subscripted variable, and the DO statement in hand (and these
were among our earliest ideas), then the remaining problems of language design were triv-
ial: either their solution was thrust upon one by the need to provide some machine facility
such as reading input, or by some programming task which could not be done with existing
structures (e.g., skipping to the end of a DO loop without skipping the indexing instruc-
tions there: this gave rise to the C O N T I N U E statement).

One much-criticized design choice in FORTRAN concerns the use of spaces: blanks
were ignored, even blanks in the middle of an identifier. Roy Nutt reminds me that that
choice was partly in recognition of a problem widely known in SHARE, the 704 users '
association. There was a common problem with keypunchers not recognizing or properly
counting blanks in handwritten data, and this caused many errors. We also regarded ignor-
ing blanks as a device to enable programmers to arrange their programs in a more readable
form without altering their meaning or introducing complex rules for formatting state-
ments.

Another debatable design choice was to rule out " m i x e d " mode expressions involving
both integer and floating point quantities. Although our Preliminary Report had included
such expressions, and rules for evaluating them, we felt that if code for type conversion
were to be generated, the user should be aware of that, and the best way to insure that he
was aware was to ask him to specify them. I believe we were also doubtful of the useful-
ness of the rules in our Report for evaluating mixed expressions. In any case, the most
common sort of "mix tu re s" was allowed: integer exponents and function arguments were
allowed in a floating point expression.

In late 1954 and early 1955, after completing the Preliminary Report , Harlan Herrick,
Irving Ziller, and I gave perhaps five or six talks about our plans for FORTRAN to various
groups of IBM customers who had ordered a 704 (the 704 had been announced about May
1954). At these talks we covered the material in the Report and discussed our plans for the
compiler (which was to be completed within about six months [!]; this was to remain the
interval-to-completion until it actually was completed over two years later, in April 1957).
In addition to informing customers about our plans, another purpose of these talks was to
assemble a list of their objections and further requirements. In this we were disappointed;
our listeners were mostly skeptical; I believe they had heard too many glowing descrip-
tions of what turned out to be clumsy systems to take us seriously. In those days one was

32 Part II

Paper: The History of FORTRAN I, II, and III

accustomed to finding lots of peculiar but significant restrictions in a system when it finally
arrived that had not been mentioned in its original description. Most of all, our claims that
we would produce efficient object programs were disbelieved. Whatever the reasons, we
received almost no suggestions or feedback; our listeners had done almost no thinking
about the problems we faced and had almost no suggestions or criticisms. Thus we felt
that our trips to Washington (D.C.), Albuquerque, Pittsburgh, Los Angeles, and one or
two other places were not very helpful.

One trip to give our talk, probably in January 1955, had an excellent payoff. This talk, at
United Aircraft Corp., resulted in an agreement between our group and Walter Ramshaw
at United Aircraft that Roy Nutt would become a regular part of our effort (although re-
maining an employee of United Aircraft) to contribute his expertise on inpu t -ou tpu t and
assembly routines. With a few breaks due to his involvement in writing various SHARE
programs, he would thenceforth come to New York two or three times a week until early
1957.

It is difficult to assess the influence the early work of the FORTRAN group had on other
projects. Certainly the discussion of Laning and Zierler 's algebraic compiler at the ONR
Symposium in May 1954 would have been more likely to persuade someone to undertake a
similar line of effort than would the brief discussion of the merits of using " a fairly natural
mathematical language" that appeared there in the paper by Herrick and myself (Backus
and Herrick, 1954). But it was our impression that our discussions with various groups
after that time, their access to our Preliminary Report , and their awareness of the extent
and seriousness of our efforts, that these factors either gave the initial stimulus to some
other projects or at least caused them to be more active than they might have been other-
wise. It was our impression, for example, that the " I T " project [Perlis, Smith and Van
Zoeren 1957] at Purdue and later at Carnegie-Mel lon began shortly after the distribution
of our Preliminary Report, as did the " M A T H - M A T I C " project (Ash et al . , 1957) at
Sperry Rand.

It is not clear what influence, if any, our Los Angeles talk and earlier contacts with
members of their group had on the PACT I effort (Baker, 1956), which I believe was al-
ready in its formative stages when we got to Los Angeles. It is clear, whatever influence
the specifications for FORTRAN may have had on other projects in 1954-1956, that our
plans were well advanced and quite firm by the end of 1954 and before we had contact or
knowledge of those other projects. Our specifications were not affected by them in any
significant way as far as I am aware, even though some were operating before FORTRAN
was (since they were primarily interested in providing an input language rather than in
optimization, their task was considerably simpler than ours).

3. The Construction of the Compiler
The FORTRAN compiler (or " t rans la tor" as we called it then) was begun in early 1955,

although a lot of work on various schemes which would be used in it had been done in
1954; e.g., Herrick had done a lot of trial programming to test out our language and we had
worked out the basic sort of machine programs which we wanted the compiler to generate
for various source language phrases; Ziller and I had worked out a basic scheme for trans-
lating arithmetic expressions.

But the real work on the compiler got under way in our third location on the fifth floor of
15 East 56th Street. By the middle of February three separate efforts were underway. The

FORTRAN Session 33

John Backus

first two of these concerned sections 1 and 2 of the compiler, and the third concerned the
input, output, and assembly programs we were going to need (see below). We believed
then that these efforts would produce most of the compiler.

(The entire project was carried on by a loose cooperation between autonomous, sepa-
rate groups of one, two, or three people; each group was responsible for a " section" of the
compiler; each group gradually developed and agreed upon its own input and output speci-
fications with the groups for neighboring sections; each group invented and programmed
the necessary techniques for doing its assigned job.)

Section 1 was to read the entire source program, compile what instructions it could, and
file all the rest of the information from the source program in appropriate tables. Thus the
compiler was "one pass" in the sense that it " saw" the source program only once. Her-
rick was responsible for creating most of the tables, Peter Sheridan (who had recently
joined us) compiled all the arithmetic expressions, and Roy Nutt compiled and/or filed the
I/O statements. Herrick, Sheridan, and Nutt got some help later on from R. J. Beeber and
H. Stern, but they were the architects of section 1 and wrote most of its code. Sheridan
devised and implemented a number of optimizing transformations on expressions (Sheri-
dan, 1959) which sometimes radically altered them (of course without changing their
meaning). Nutt transformed the I/O "lists of quantities" into nests of DO statements
which were then treated by the regular mechanisms of the compiler. The rest of the I/O
information he filed for later treatment in section 6, the assembler section. (For further
details about how the various sections of the compiler worked, see Backus et al., 1957.)

Using the information that was filed in section 1, section 2 faced a completely new kind
of problem; it was required to analyze the entire structure of the program in order to gen-
erate optimal code from DO statements and references to subscripted variables. The sim-
plest way to effect a reference to A(I,J) is to evaluate an expression involving the address
of A(1,1), I, and K × J, where K is the length of a column (when A is stored columnwise).
But this calculation, with its multiplication, is much less efficient than the way most hand
coded programs effect a reference to A(I,J), namely, by adding an appropriate constant to
the address of the preceding reference to the array A whenever I and J are changing lin-
early. To employ this far more efficient method section 2 had to determine when the sur-
rounding program was changing I and J linearly.

Thus one problem was that of distinguishing between, on the one hand, references to an
array element which the translator might treat by incrementing the address used for a pre-
vious reference, and those array references, on the other hand, which would require an
address calculation starting from scratch with the current values of the subscripts.

It was decided that it was not practical to track down and identify linear changes in sub-
scripts resulting from assignment statements. Thus the sole criterion for linear changes,
and hence for efficient handling of array references, was to be that the subscripts involved
were being controlled by DO statements. Despite this simplifying assumption, the number
of cases that section 2 had to analyze in order to produce optimal or near-optimal code was
very large. (The number of such cases increased exponentially with the number of sub-
scripts; this was a prime factor in our decision to limit them to three; the fact that the 704
had only three index registers was not a factor.)

It is beyond the scope of this paper to go into the details of the analysis which section 2
carried out. It will suffice to say that it produced code of such efficiency that its output
would startle the programmers who studied it. It moved code out of loops where that was
possible; it took advantage of the differences between rowwise and columnwise scans; it

34 Part II

Paper: The History of FORTRAN I, II, and III

took note of special cases to optimize even the exits from loops. The degree of optimiza-
tion performed by section 2 in its treatment of indexing, array references, and loops was
not equalled again until optimizing compilers began to appear in the middle and late 1960s.

The architecture and all the techniques employed in section 2 were invented by Robert
A. Nelson and Irving Ziller. They planned and programmed the entire section. Originally
it was their intention to produce the complete code for their area, including the choice of
the index registers to be used (the 704 had three index registers). When they started look-
ing at that problem it rapidly became clear that it was not going to be easy to treat it opti-
mally. At that point I proposed that they should produce a program for a 704 with an un-
limited number of index registers, and that later sections would analyze the frequency of
execution of various parts of the program (by a Monte Carlo simulation of its execution)
and then make index register assignments so as to minimize the transfers of items between
the store and the index registers.

This proposal gave rise to two new sections of the compiler which we had not antici-
pated, sections 4 and 5 (section 3 was added still later to convert the output of sections 1
and 2 to the form required for sections 4, 5, and 6). In the fall of 1955 Lois Mitchell Haibt
joined our group to plan and program section 4, which was to analyze the flow of a pro-
gram produced by sections 1 and 2, divide it into "basic blocks" (which contained no
branching), do a Monte Carlo (statistical) analysis of the expected frequency of execution
of basic blocks--by simulating the behavior of the program and keeping counts of the use
of each block--using information from DO statements and FREQUENCY statements,
and collect information about index register usage. (for more details, see Backus et al.,
1957; Cocke and Schwartz, 1970, p. 511). Section 5 would then do the actual transforma-
tion of the program from one having an unlimited number of index registers to one having
only three. Again, the section was entirely planned and programmed by Haibt.

Section 5 was planned and programmed by Sheldon Best, who was loaned to our group
by agreement with his employer, Charles W. Adams, at the Digital Computer Laboratory
at MIT; during his stay with us Best was a temporary IBM employee. Starting in the early
fall of 1955, he designed what turned out to be, along with section 2, one of the most intri-
cate and complex sections of the compiler, one which had perhaps more influence on the
methods used in later compilers than any other part of the FORTRAN compiler. (For a
discussion of his techniques, see Cocke and Schwartz, 1970, pp. 510-515.) It is impossible
to describe his register allocation method here; it suffices to say that it was to become the
basis for much subsequent work and produced code which was very difficult to improve.

Although I believe that no provably optimal register allocation algorithm is known for
general programs with loops, etc., empirically Best's 1955-1956 procedure appeared to be
optimal. For straight-line code Best's replacement policy was the same as that used in
Belady's MIN algorithm, which Belady proved to be optimal (Belady, 1965). Although
Best did not publish a formal proof, he had convincing arguments for the optimality of his
policy in 1955.

Late in 1955 it was recognized that yet another section, section 3, was needed. This
section merged the outputs of the preceding sections into a single uniform 704 program
which could refer to any number of index registers. It was planned and programmed by
Richard Goldberg, a mathematician who joined us in November 1955. Also, late in 1956,
after Best had returned to MIT and during the debugging of the system, section 5 was
taken over by Goldberg and David Sayre (see below), who diagrammed it carefully and
took charge of its final debugging.

FORTRAN Session 35

John Backus

The final section of the compiler, section 6, assembled the final program into a relocat-
able binary program (it could also produce a symbolic program in SAP, the SHARE As-
sembly Program for the 704). It produced a storage map of the program and data that was a
compact summary of the FORTRAN output. Of course it also obtained the necessary li-
brary programs for inclusion in the object program, including those required to interpret
FORMAT statements and perform input-output operations. Taking advantage of the spe-
cial features of the programs it assembled, this assembler was about ten times faster than
SAP. It was designed and programmed by Roy Nutt, who also wrote all the I/O programs
and the relocating binary loader for loading object programs.

By the summer of 1956 large parts of the system were working. Sections 1, 2, and 3
could produce workable code provided no more than three index registers were needed. A
number of test programs were compiled and run at this time. Nutt took part of the system
to United Aircraft (sections 1, 2, and 3 and the part of section 6 which produced SAP out-
put). This part of the system was productive there from the summer of 1956 until the com-
plete system was available in early 1957.

From late spring of 1956 to early 1957 the pace of debugging was intense; often we
would rent rooms in the Langdon Hotel (which disappeared long ago) on 56th Street, sleep
there a little during the day and then stay up all night to get as much use of the computer
(in the headquarters annex on 57th Street) as possible.

It was an exciting period; when later on we began to get fragments of compiled pro-
grams out of the system, we were often astonished at the surprising transformations in the
indexing operations and in the arrangement of the computation which the compiler made,
changes which made the object program efficient but which we would not have thought to
make as programmers ourselves (even though, of course, Nelson or Ziller could figure out
how the indexing worked, Sheridan could explain how an expresssion had been optimized
beyond recognition, and Goldberg or Sayre could tell us how section 5 had generated addi-
tional indexing operations). Transfers of control appeared which corresponded to no
source statement, expressions were radically rearranged, and the same DO statement
might produce no instructions in the object program in one context, and in another it
would produce many instructions in different places in the program.

By the summer of 1956 what appeared to be the imminent completion of the project
started us worrying (for perhaps the first time) about documentation. David Sayre, a crys-
tallographer who had joined us in the spring (he had earlier consulted with Best on the
design of section 5 and had later begun serving as second-in-command of what was now
the "Programming Research Department") took up the task of writing the Programmer's
Reference Manual (IBM, 1956). It appeared in a glossy cover, handsomely printed, with
the date October 15, 1956. It stood for some time as a unique example of a manual for a
programming language (perhaps it still does): it had wide margins, yet was only 51 pages
long. Its description of the FORTRAN language, exclusive of input-output statements,
was 21 pages; the I/O description occupied another 11 pages; the rest of it was examples
and details about arithmetic, tables, etc. It gave an elegant recursive definition of expres-
sions (as given by Sheridan), and concise, clear descriptions, with examples, of each state-
ment type, of which there were 32, mostly machine dependent items like SENSE LIGHT,
IF DIVIDE CHECK, PUNCH, READ DRUM, and so on. (For examples of its style see
Figs. 1, 2, and 3.)

One feature of FORTRAN I is missing from the Programmer's Reference Manual, not
from an oversight of Sayre's, but because it was added to the system after the manual was

36 Part II

Subscrilm.

P a p e r : T h e H i s t o r y o f F O R T R A N I, II, a n d III

GENERAL FORM EXAMPLES

Let v represent any fixed point variable
and c (or c') any unsigned fixed point
co~,stant. Then a subscript is
an expression of one of the forms: V

C

v + c o r v - c

c * v

c * v.-.[- C' or C*V--C'

I

3
M U + 2
MU-2
5*J
5 " J + 2
5 *J-2

The symbo l • denotes mult ipl icat ion. The wtriablc v must not itself be sub-

scripted.

SubscrilJted Variables.

GENERAL FORM EXAMPLES

A fixed or floating poiut variable A(I)
followed by parentheses enclosing 1, 2, or 3 . K(3)
subscripts separated by commas. BETA(5*J-2, K+2,L)

For each ~,ariable that appears in subscripted form the size of the ar ray (i.e. the

maximum values which its subscripts can a t ta in) must be stated in a D I M E N -

SION statement (sec Chap te r 6) preceding the lirst appearance of the wlriable.

The mininlum wtlue which a subscr ipt may assume in the object program is + 1.

Arrangement o/ A rrays in Storage.

A 2-dimensional a r ray A will, in the object p rogram, be s iored sequential ly in

tile o rder A], , , Az,i, , Am.,, &,2, A=.2, • , Am.z, • , A,,, Thus
it is s tored " 'columnwise", with the tirst of its subscripts wlrying most rapidly,

and the last wlrying least rapidly. The same is true of 3-dimensional arrays.

l -d imension:d ar rays are of course simply stored sequentially. All ar rays are

s tored backwards in storage; i.e. the above sequence is in the order of decreas-

ing absolule location.
Fig. 1. Original FORTRAN Manual, p. 11. [Courtesy of International Business Machines Corporation.]

F O R T R A N S e s s i o n 37

A n y such rou t ine will be compi led into the objec t p rogram as a c losed sub rou -

tine. In the sect ion on Wr i t ing Subrou t ine s for the Mas te r T a p e in Chap te r 7

are given the speci l ica t ions which any such rout ine mus t meet.

Expressions A n express ion is any sequence of cons tan ts , w~riables (subsc r ip ted or no t sub-

sc r ip t ed) , and funct ions , separa ted by ope ra t i on symbols , c o m m a s , and pa ren -

theses st) as to form a mean ing fu l ma thema t i ca l express ion .

However , one special res tr ic t ion does exist. A Ft)RrRAN express ion may

be e i ther a tixed or a l loa t ing point express ion , but it mus t not be a mixed

express ion . Th i s does not m e a n that a l loat ing point quan t i t y can not appea r

in a tixed po in t express ion , or vice versa, but ra ther that a quan t i t y of one

mode can appea r in an express ion of the o ther mode only in cer ta in ways.

Brielly, a [loafing point quan t i ty can appea r in a fixed point express ion only

as an a r g u m e n t of a func t ion ; a tixed poin t quan t i t y can appea r in a t toat ing

poin t express ion only as an a r g u m e n t of a func t ion , or as a subscr ip t , or as

an ex p o n en t .

Formal Ruh's]or Forming Expressions. By repeated use of the fo l lowing

rt, les, all permiss ib le express ions may be derived.

1. Any fixed point (floating point) constant, variable, or subscripted variable
is an expression of tile same mode. Thus 3 and I tire tixed point expressions,
and A I . I q l A and A(I , J ,K) are floating point expressitms.

2 . If S O M E F is some function of i1 variahles, and if E, F H are a set
of n expressions of the correct modes for SOMEF, then S O M E F (E, F,
. . . . , H) is an expression of the same mode as SOMEF.

3 . If E is all expression, and if its lirst character is not -[or - , then t E and
- E are expressions of the same mode us E. ' [hus - A is an expression, but
t - - A is not.

4.. If E is an expression, Ihen (E) is an expression of the same mode as E.
Thus (A) , ((A)) , (((A))), etc. tire expressions.

5 . If E and F are expressions of the same mode, and it the first character of
F is not + o r - - , then

E + F
E - F
E * F
E / F

are expressions of the same mode. "Elms A-- t B and A/-~ B are not expres-
sions. The characters + , - , *, and / detlote addition, subtraction, multi-
plication, and division.

Fig. 2. Original FORTRAN Manual, p. 14. [Courtesy of International Business Machines Corporation.]

STOP
G E N E R A L F O R M E X A M P L E S

"STOP" or "STOP n" where n is an STOP
unsigned octal fixed point constant. STOP 77777

DO

This s ta tement causes the machine to H A L T in such a way that pressing the

S T A R T button has no effect. -Fhercfore, in contras t to the PAUSE, it is used

where a gc t -o l I - the-machine stop, rather than a t empora ry stop, is dcsired. The

octal number n is d isplayed on the 704 console in the address field of the

storage register. (I f n is not .s ta ted it is taken to be 0.)

G E N E R A L FORM E X A M P L E S

"DO n i = m~, m2" or "DO n i = m~, m2, m3" DO 30 I =], 10
where n is a statement number, i is a DO 30 I = 1, M, 3
non-subscripted fixed point variable, and
m,, m2, [% are each either an unsigned fixed point
constant or a non subscripted fixed point variable.
If m~ is not stated it is taken to be !

The DO s ta tement is a c o m m a n d to "DO the s ta tements which follow, to and

including tile s ta tement with s ta tement number n, rcpeatedly, the first t ime with

i -- m~ and with i increased by m:~ for each succeeding time; after they have

been done with i eqt, al to the highest ot this sequence of values which does not

exceed mz let control reach the s ta tement following the s ta tement with state-

mcut number n".

The range of a DO is the set of s ta tements which will be executed re-

peatedly; it is the sequence of consecutive s tatements immedia te ly following

the 1)O, to and including the s ta tement numbered n.

The imlex of a DO is the fixed point variable i, which is contro l led by the

DO in such a way that its wdue begins at m~ and is increased each time by

m:~ until it is about to exceed m~. Throughout the range it is avai lable for com-
putat ion, ei ther as an ord inary fixed point variable or as the variable of a

subscript. During the last execution of the range, the DO is said to be satisfied.

Suppose, for example , that control has reached s ta tement l0 of the

program
10 DO 11 I = 1 , 10

I I A(I) I,N(1)

12

Fig. 3. Original F O R T R A N Manual, p. 20. [Courtesy of International Business Machines Corporation.]

John Backus

written and before the system was distributed/. This feature was the ability to define a func-
tion by a "function statement." These statements had to precede the rest of the program.
They looked like assignment statements, with the defined function and dummy arguments
on the left and an expression involving those arguments on the right. They are described in
the addenda to the Programmer's Reference Manual (Addenda, 1957) which we sent on
February 8, 1957 to John Greenstadt, who was in charge of IBM's facility for distributing
information to SHARE. They are also described in all subsequent material on FOR-
TRAN I.

The next documentation task we set ourselves was to write a paper describing the FOR-
TRAN language and the translator program. The result was a paper entitled "The FOR-
TRAN automatic coding system" (Backus et al., 1957) which we presented at the Western
Joint Computer Conference in Los Angeles in February 1957. I have mentioned all of the
thirteen authors of that paper in the preceding narrative except one: Robert A. Hughes.
He was employed by the Livermore Radiation Laboratory; by arrangement with Sidney
Fernbach, he visited us for two or three months in the summer of 1956 to help us docu-
ment the system. (The authors of that paper were: J. W. Backus, R. J. Beeber, S. Best, R.
Goldberg, L. M. Haibt, H. L. Herrick, R. A. Hughes, R. A. Nelson, R. Nutt, D. Sayre, P.
B. Sheridan, H. Stern, I. Ziller.)

At about the time of the Western Joint Computer Conference we spent some time in Los
Angeles still frantically debugging the system. North American Aviation gave us time at
night on their 704 to help us in our mad rush to distribute the system. Up to this point there
had been relatively little interest from 704 installations (with the exception of Ramshaw's
United Aircraft shop, Harry Cantrell's GE installation in Schenectady, and Sidney Fern-
bach's Livermore operation), but now that the full system was beginning to generate ob-
ject programs, interest picked up in a number of places.

Sometime in early April 1957 we felt the system was sufficiently bug-free to distribute to
all 704 installations. Sayre and Grace Mitchell (see below) started to punch out the binary
decks of the system, each of about 2,000 cards, with the intention to make 30 or 40 decks
for distribution. This process was so error-prone that they had to give up after spending an
entire night in producing only one or two decks.

(Apparently one of those decks was sent, without any identification or directions, to the
Westinghouse Bettis installation, where a puzzled group headed by Herbert S. Bright, sus-
pecting that it might be the long-awaited FORTRAN deck, proceeded, entirely by guess-
work, to get it to compile a test program--after a diagnostic printout noting that a comma
was missing in a specific statement! This program then printed 28 pages of correct results
- -with a few FORMAT errors. The date: April 20, 1957. An amusing account of this inci-
dent by Bright is in Computers and Automation (Bright, 1971).)

After failing to produce binary decks, Sayre devised and programmed the simple editor
and loader that made it possible to distribute and update the system from magnetic tapes;
this arrangement served as the mechanism for creating new system tapes from a master
tape and the binary correction cards which our group would generate in large numbers
during the long field debugging and maintenance period which followed distribution

With the distribution of the system tapes went a Preliminary Operator's Manual (Op-
erator's Manual, 1957) dated April 8, 1957. It describes how to use the tape editor and how
to maintain the library of functions. Five pages of such general instructions are followed
by 32 pages of error stops; many of these say "source program error, get off machine,
correct formula in question and restart problem" and then, for example (stop 3624) "non-

40 Part II

Paper: The History of FORTRAN I, II, and III

zero level reduction due to insufficient or redundant parentheses in arithmetic or IF-type
formula". Shortly after the distribution of the system we distr ibuted--one copy per instal-
lat ion--what was fondly known as the "Tome" , the complete symbolic listing of the en-
tire compiler plus other system and diagnostic information, an 11" by 15" volume about
four or five inches thick.

The proprietors of the six sections were kept busy tracking down bugs elicited by our
customers' use of FORTRAN until the late summer of 1957. Hal Stern served as the coor-
dinator of the field debugging and maintenance effort; he received a stream of telegrams,
mail and phone calls from all over the country and distributed the incoming problems to
the appropriate members of our group to track down the errors and generate correction
cards, which he then distributed to every installation.

In the spring of 1957 Grace E. Mitchell joined our group to write the Programmer's
Primer (IBM, 1957) for FORTRAN. The Primer was divided into three sections; each de-
scribed successively larger subsets of the language accompanied by many example pro-
grams. The first edition of the Primer was issued in the late fall or winter of 1957; a slightly
revised edition appeared in March 1958. Mitchell planned and wrote the 64-page Primer
with some consultation with the rest of the group; she later programmed most of the exten-
sive changes in the system which resulted in FORTRAN II (see below).

The Primer had an important influence on the subsequent growth in the use of the sys-
tem. I believe it was the only available simplified instruction manual (other than reference
manuals) until the later appearance of books such as McCracken (1961), Organick (1963),
and many others.

A report on FORTRAN usage in November 1958 (Backus, 1958) says that "a survey in
April [1958] of twenty-six 704 installations indicates that over half of them use FORTRAN
[I] for more than half of their problems. Many use it for 80% or more of their
work . . . and almost all use it for some of their work." By the fall of 1958 there were
some 60 installations with about 66 704s, and " . . . more than half the machine instruc-
tions for these machines are being produced by FORTRAN. SHARE recently designated
FORTRAN as the second official medium for transmittal of programs [SAP was the
first] . . ."

4. F O R T R A N II
During the field debugging period some shortcomings of the system design, which we

had been aware of earlier but had no time to deal with, were constantly coming to our
attention. In the early fall of 1957 we started to plan ways of correcting these shortcom-
ings; a document dated September 25, 1957 (Proposed Specifications, 1957) characterizes
them as (a) a need for better diagnostics, clearer comments about the nature of source
program errors, and (b) the need for subroutine definition capabilities. (Although one
FORTRAN I diagnostic would pinpoint, in a printout, a missing comma in a particular
statement, others could be very cryptic.) This document is titled "Proposed Specifications
for FORTRAN II for the 704"; it sketches a more general diagnostic system and describes
the new "subroutine definition" and END statements, plus some others which were not
implemented. It describes how symbolic information is retained in the relocatable binary
form of a subroutine so that the "binary symbolic subroutine [BSS] loader" can imple-
ment references to separately compiled subroutines. It describes new prologues for these
subroutines and points out that mixtures of FORTRAN-coded and assembly-coded relo-

FORTRAN Session 41

John Backus

catable binary programs could be loaded and run together. It does not discuss the FUNC-
TION statement that was also available in FORTRAN II. FORTRAN II was designed
mostly by Nelson, Ziller, and myself. Mitchell programmed the majority of new code for
FORTRAN II (with the most unusual feature that she delivered it ahead of schedule). She
was aided in this by Bernyce Brady and LeRoy May. Sheridan planned and made the nec-
essary changes in his part of section 1; Nutt did the same for section 6. FORTRAN II was
distributed in the spring of 1958.

5. FORTRAN III
While FORTRAN II was being developed, Ziller was designing an even more advanced

system that he called FORTRAN III. It allowed one to write intermixed symbolic instruc-
tions and FORTRAN statements. The symbolic (704) instructions could have FORTRAN
variables (with or without subscripts) as "addresses". In addition to this machine depen-
dent feature (which assured the demise of FORTRAN III along with that of the 704), it
contained early versions of a number of improvements that were later to appear in FOR-
TRAN IV. It had "Boolean" expressions, function and subroutine names could be passed
as arguments, and it had facilities for handling alphanumeric data, including a new FOR-
MAT code " A " similar to codes " I " and " E " . This system was planned and programmed
by Ziller with some help from Nelson and Nutt. Ziller maintained it and made it available
to about 20 (mostly IBM) installations. It was never distributed generally. It was accompa-
nied by a brief descriptive document (Additions to FORTRAN II, 1958). It became avail-
able on this limited scale in the winter of 1958-1959 and was in operation until the early
1960s, in part on the 709 using the compatibility feature (which made the 709 order code
the same as that of the 704).

6. FORTRAN after 1958; Comments
By the end of 1958 or early 1959 the FORTRAN group (the Programming Research De-

partment), while still helping with an occasional debugging problem with FORTRAN II,
was primarily occupied with other research. Another IBM department had long since
taken responsibility for the FORTRAN system and was revising it in the course of produc-
ing a translator for the 709 which used the same procedures as the 704 FORTRAN II trans-
lator. Since my friends and I no longer had responsibility for FORTRAN and were busy
thinking about other things by the end of 1958, that seems like a good point to break off
this account. There remain only a few comments to be made about the subsequent devel-
opment of FORTRAN.

The most obvious defect in FORTRAN II for many of its users was the time spent in
compiling. Even though the facilities of FORTRAN II permitted separate compilation of
subroutines and hence eliminated the need to recompile an entire program at each step in
debugging it, nevertheless compile times were long and, during debugging, the consider-
able time spent in optimizing was wasted. I repeatedly suggested to those who were in
charge of FORTRAN that they should now develop a fast compiler and/or interpreter with-
out any optimizing at all for use during debugging and for short-run jobs. Unfortunately
the developers of FORTRAN IV thought they could have the best of both worlds in a
single compiler, one which was both fast and produced optimized code. I was unsuccess-
ful in convincing them that two compilers would have been far better than the compromise

42 Part II

Paper: The History of FORTRAN I, II, and III

which became the original FORTRAN IV compiler. The latter was not nearly as fast as
later compilers like WATFOR (Cress et al., 1970) nor did it produce as good code as FOR-
TRAN II. (For more discussion of later developments with FORTRAN, see Backus and
Heising, 1964.)

My own opinion as to the effect of FORTRAN on later languages and the collective
impact of such languages on programming generally is not a popular opinion. That view-
point is the subject of a long paper (Backus, 1978). I now regard all conventional languages
(e.g., the FORTRANs, the ALGOLs, their successors and derivatives) as increasingly
complex elaborations of the style of programming dictated by the von Neumann com-
puter. These "yon Neumann languages" create enormous, unnecessary intellectual road-
blocks in thinking about programs and in creating the higher level combining forms re-
quired in a really powerful programming methodology. Von Neumann languages
constantly keep our noses pressed in the dirt of address computation and the separate
computation of single words, whereas we should be focusing on the form and content of
the overall result we are trying to produce. We have come to regard the DO, FOR,
WHILE statements and the like as powerful tools, whereas they are in fact weak pallia-
tives that are necessary to make the primitive yon Neuman style of programming viable at
all.

By splitting programming into a world of expressions on the one hand and a world of
statements on the other, yon Neumann languages prevent the effective use of higher level
combining forms; the lack of the latter makes the definitional capabilities of yon Neumann
languages so weak that most of their important features cannot be defined--starting with a
small, elegant f ramework--but must be built into the framework of the language at the
outset. The gargantuan size of recent von Neumann languages is eloquent proof of their
inability to define new constructs: for no one would build in so many complex features if
they could be defined and would fit into the existing framework later on.

The world of expressions has some elegant and useful mathematical properties whereas
the world of statements is a disorderly one, without useful mathematical properties. Struc-
tured programming can be viewed as a modest effort to introduce a small amount of order
into the chaotic world of statements. The work of Hoare (1969), Dijkstra (1976), and
others to axiomatize the properties of the statement world can be viewed as a valiant and
effective effort to be precise about those properties, ungainly as they may be.

This is not the place for me to elaborate any further my views about "Jon Neumann lan-
guages. My point is this: while it was perhaps natural and inevitable that languages like
FORTRAN and its successors should have developed out of the concept of the yon Neu-
mann computer as they did, the fact that such languages have dominated our thinking for
twenty years is unfortunate. It is unfortunate because their long-standing familiarity will
make it hard for us to understand and adopt new programming styles which one day will
offer far greater intellectual and computational power.

ACKNOWLEDGMENTS
My greatest debt in connection with this paper is to my old friends and colleagues whose creativity, hard work,

and invention made F O R T R A N possible. It is a pleasure to acknowledge my gratitude to them for their contribu-
tions to the project, for making our work together so long ago such a congenial and memorable experience, and,
more recently, for providing me with a great amount o f information and helpful material in preparing this paper
and for their careful reviews of an earlier draft. For all this I thank all those who were associa ted with the FOR-
TRAN project but who are too numerous to list here. In paricular I want to thank those who were the principal

FORTRAN Session 43

John Backus

movers in making FORTRAN a reality: Sheldon Best, Richard Goldberg, Lois Haibt, Harlan Herrick, Grace
Mitchell, Robert Nelson, Roy Nutt, David Sayre, Peter Sheridan, and Irving Ziller.

I also wish to thank Bernard Galler, JAN Lee, and Henry Tropp for their amiable, extensive and invaluable
suggestions for improving the first draft of this paper. I am grateful, too, for all the work of the program com-
mittee in preparing helpful questions that suggested a number of topics in the paper.

REFERENCES

Most of the items listed below have dates in the 1950s; thus many that appeared in the open literature will be
obtainable only in the largest and oldest collections. The items with an asterisk were either not published or were
of such a nature as to make their availability even less likely than that of the other items.

Adams, Charles W., and Laning, J. H., Jr. (1954) May. The MIT systems of automatic coding: Comprehensive,
Summer Session, and Algebraic. In Proc. Syrup. on Automatic Programming for Digital Computers. Wash-
ington, D.C.: The Office of Naval Research.

*Addenda to the FORTRAN Programmer's Reference Manual (1957) February 8. Transmitted to Dr. John
Greenstadt, Special Programs Group, Applied Science Division, IBM, for distribution to SHARE members,
by letter from John W. Backus, Programming Research Dept. IBM. 5 pp.

*Additions to FORTRAN II (1958). Description of Source Language Additions to the FORTRAN H System.
New York: Programming Research, IBM Corp. (Distributed to users of FORTRAN III. 12 pp.)

*Ash, R., Broadwin, E., Della VaUe, V., Katz, C., Greene, M., Jenny, A., and Yu, L. (1957). Preliminary Man-
ual for MATH-MATIC and AR1TH-MATIC Systems (for Algebraic Translation and Compilation for UNI-
VAC 1 and I1). Philadelphia, Pennsylvania: Remington Rand Univac.

Backus, J. W. (1954a). The IBM 701 Speedcoding system. JACM 1(1): 4-6.
*Backus, John (1954b). Letter to J. H. Laning, Jr.
Backus, J. W. (1958) November. Automatic programming: properties and performance of FORTRAN systems I

and II. In Proc. Syrup. on the Mechanisation of Thought Processes. Teddington, Middlesex, England: The
National Physical Laboratory.

Backus, John (1978) August. Can programming be liberated from the yon Neumann style? A functional style
and its algebra of programs. CACM 21(8): 613-641.

Backus, Johfi (1980). larogramming in America in the nineteen fifties--some personal impressions. In A His-
tory of Computing in the Twentieth Century (Proc. lnternat. Conf. on the History of Computing, June 10-
15, 1976) (N. Metropolis et al., eds.), pp. 125-135. Academic Press, New York.

Backus, J. W., and Heising, W. P. (1964) August. FORTRAN. IEEE Transactions on Electronic Computers
EC-13(4): 382-385.

Backus, John W., and Herrick, Harlan (1954) May. IBM 701 Speedcoding and other automatic programming
systems. In Proe. Syrup. on Automatic Programming for Digital Computers. Washington, D.C.: The Office
of Naval Research.

Backus, J. W., Beeber, R. J., Best, S., Goldberg, R., Haibt, L. M., Herrick, H. L., Nelson, R. A., Sayre, D.,
Sheridan, P. B., Stern, H., Ziller, I., Hughes, R. A., and Nutt, R. (1957) February. The FORTRAN auto-
matic coding system. In Proc. Western Joint Computer Gonf., Los Angeles.

Baker, Charles L. (1956) October. The PACT I coding system, for the IBM Type 701. JACM 3(4): 272-278.
Belady, L. A. (1965) June 15. Measurements on Programs: One Level Store Simulation. Yorktown Heights,

New York: IBM Thomas J. Watson Research Center. Report RC 1420.
Brhm, Corrado (1954). Calculatrices digitales: Du drchiffrage de formules logico-mathrmatiques par la machine

mrme dans la conception du programme. Annali di Mathematiea Pura ed Applicata 37(4): 175-217.
Bouricius, Willard G. (1953) December. Operating experience with the Los Alamos 701. In Proc. Eastern Joint

Computer Conf., Washington~ D.C.~ pp. 45-47.
Bright, Herbert S. (1971) November. FORTRAN comes to Westinghouse-Bettis, 1957. Computers and Auto-

mation 20(11): 17-18.
Brown, J. H., and Carr, John W., III (1954) May. Automatic programming and its development on MIDAC. In

Proc. Symp. on Automatic Programming for Digital Computers. Washington, D.C.: The Office of Naval
Research.

Cocke, John, and Schwartz, J. T. (1970) April. Programming Languages and their Compilers (preliminary
Notes, Second Revised Version, April 1970). New York: New York University, The Courant Institute of
Mathematical Sciences.

44 Part II

Transcript of Presentation

Cress, Paul, Dirksen, Paul, and Graham, J. Wesley (1970). FORTRAN IV with WATFOR and WATFIV. Engle-
wood Cliffs, New Jersey: Prentice-Hall.

Dijkstra, Edsger W. (1976). A Discipline o f Programming. Englewood Cliffs, New Jersey: Prentice-Hall.
Grems, Mandalay, and Porter, R. E. (1956). A truly automatic programming system. In Proc. Western Joint

Computer Conf., San Francisco, pp. 10-21.
Hoare, C. A. R. (1969) October. An axiomatic basis for computer programming. CACM 12(10): 576-580, 583.

*IBM (1956) October 15. Programmer's Reference Manual, The FORTRAN Automatic Coding System for the
IBM 704 EDPM. New York: IBM Corp. [Applied Science Division and Programming Research Dept.,
Working Committee: J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, H. L. Herrick, R. A. Hughes
(Univ. of Calif. Radiation Lab., Livermore, Calif.), L. B. Mitchell, R. A. Nelson, R. Nutt (United Air-
craft Corp., East Hartford, Conn.), D. Sayre, P. B. Sheridan, H. Stern, and I. Ziller.]

*IBM (1957). Programmer's Primei" for FORTRAN Automatic Coding System for the IBM 704. New York: IBM
Corp. Form No. 32-0306.

Knuth, Donald E., and Trabb Pardo, Luis (1977). Early development of programming languages. In Encyclope-
dia o f Computer Science and Technology. Vol. 7, pp. 419-493. New York: Dekker.

*Laning, J. H., and Zierler, N. (1954) January. A Program for Translation o f Mathematical Equations for Whirl-
wind I. Cambridge, Massachusetts: MIT Instrumentation Lab. Engineering Memorandum E-364.

McCracken, Daniel D. (1961). A Guide to FORTRAN Programming. New York: Wiley.
Moser, Nora B. (1954) May. Compiler method of automatic programming. In Proc. Symp. on Automatic Pro-

gramming for Digital Computers. Washington, D.C.: The Office of Naval Research.
Muller, David E. (1954) May. Interpretive routines in the ILLIAC library. In Proc. Symp. on Automatic Pro-

grammingfor Digital Computers. Washington, D.C.: The Office of Naval Research.
*Operator's Manual (1957) April 8. Preliminary Operator's Manual for the FORTRAN Automatic Coding Sys-

tem for the IBM 704 EDPM. New York: IBM Corp. Programming Research Dept.
Organick, Elliot I. (1963). A FORTRAN Primer. Reading, Massachusetts: Addison-Wesley.

*Perlis, A. J., Smith, J. W., and Van Zoeren, H. R. (1957) March. Internal Translator (IT): A Compiler for the
650. Pittsburgh, Pennsylvania: Carnegie Institute of Tech.

*Preliminary Report (1954) November 10. Specifications for the IBM Mathematical FORmula TRANslating Sys-
tem, FORTRAN. New York: IBM Corp. (Report by Programming Research Group, Applied Science Divi-
sion, IBM. Distributed to prospective 704 customers and other interested parties. 29 pp.)

*proposed Specifications (1957) September 25. Proposed Specifications for FORTRAN I l l or the 704. (Unpub-
lished memorandum, Programming Research Dept. IBM.)

*Remington-Rand, Inc. (1953) November 15. The A-2 Compiler System Operations Manual. Prepared by Rich-
ard K. Ridgway and Margaret H. Harper under the direction of Grace M. Hopper.

Rutishauser, Heinz (1952). Automatische Rechenplanfertigung bei programmgesteuerten Rechenmaschinen. In
Mitteilungen aus dem Inst. fiir angew. Math. an der E. T. H. Ztirich. No. 3. Basel: Birkh~user.

Sammet, Jean E. (1969). Programming Languages: History and Fundamentals. Englewood Cliffs, New Jersey:
Prentice-Hall.

*Schlesinger, S. I. (1953) July. Dual Coding System. Los Alamos, New Mexico: Los Alamos Scientific Lab. Los
Alamos Report LA 1573.

Sheridan, Peter B. (1959) February. The arithmetic translator-compiler of the IBM FORTRAN automatic cod-
ing system. CACM 2(2): 9-21.

Zuse, K. (1959). Ober den Plankalkiil. Elektron. Rechenanl. 1: 68-71.
Zuse, K. (1972). Der Plankalkiil. Berichte der GesellschaJqftir Mathematik und Datenverarbeitung. 63, part 3.

(Manuscript prepared in 1945.)

TRANSCRIPT OF PRESENTATION

JAN LEE: Our second session this morning, and the first session dealing explicitly with a
language, is to be the paper by John Backus on the His tory of F O R T R A N I, II, and III .

I had an interesting occurrence just before I left my office this week. I had a letter from
Taiwan, believe it or not, saying, " I n 1959 you wrote a program, and I have a cus tomer

FORTRAN Session 45

