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1. Early Background and Environment 

1.1. Attitudes about Automatic Programming in the 1950s 
Before 1954 almost all programming was done in machine language or assembly lan- 

guage. Programmers rightly regarded their work as a complex, creative art that required 
human inventiveness to produce an efficient program. Much of their effort was devoted to 
overcoming the difficulties created by the computers of that era: the lack of index regis- 
ters, the lack of built-in floating point operations, restricted instruction sets (which might 
have AND but not OR, for example), and primitive input-output arrangements. Given the 
nature of computers, the services which "automatic programming" performed for the pro- 
grammer were concerned with overcoming the machine's shortcomings. Thus the primary 
concern of some "automatic programming" systems was to allow the use of symbolic ad- 
dresses and decimal numbers (e.g., the MIDAC Input Translation Program, Brown and 
Carr, 1954). 

But most of the larger "automatic programming" systems [with the exception of Laning 
and Zierler's algebraic system (Laning and Zierler, 1954) and the A-2 compiler (Remington 
Rand, 1953; Moser, 1954)] simply provided a synthetic "computer" with an order code 
different from that of the real machine. This synthetic computer usually had floating point 
instructions and index registers and had improved input-output commands; it was there- 
fore much easier to program than its real counterpart. 

The A-2 compiler also came to be a synthetic computer sometime after early 1954. But 
in early 1954 its input had a much cruder form; instead of "pseudo-instructions" its input 

HISTORY OF PROGRAMMING LANGUAGES 
Copyright © 1981 by the Association for Computing Machinery, Inc. 
Permission for reproduction in any form must be obtained from Academic Press, Inc. 
ISBN 0-12-745040-8 

25 



John Backus 

was then a complex sequence of "compiling instructions" that could take a variety of 
forms ranging from machine code itself to lengthy groups of words constituting rather 
clumsy calling sequences for the desired floating point subroutine, to "abbreviated form" 
instructions that were converted by a "Translator" into ordinary "compiling instruc- 
tions" (Moser, 1954). 

After May 1954 the A-2 compiler acquired a "pseudo-code" which was similar to the 
order codes for many floating point interpretative systems that were already in operation 
in 1953: e.g., the Los Alamos systems, DUAL and SHACO (Bouricius, 1953; Schlesinger, 
1953), the MIT "Summer Session Computer" (Adams and Laning, 1954), a system for the 
ILLIAC designed by D. J. Wheeler (Muller, 1954), and the Speedcoding system for the 
IBM 701 (Backus, 1954a). 

The Laning and Zierler system was quite a different story: it was the world's first 
operating algebraic compiler, a rather elegant but simple one. Knuth and Trabb (1977) as- 
sign this honor to Alick Glennie's AUTOCODE, but I, for one, am unable to recognize 
the sample AUTOCODE program they give as "algebraic", especially when it is com- 
pared to the corresponding Laning and Zierler program. 

All of the early "automatic programming" systems were costly to use, since they 
slowed the machine down by a factor of five or ten. The most common reason for the 
slowdown was that these systems were spending most of their time in floating point sub- 
routines. Simulated indexing and other "housekeeping" operations could be done with 
simple inefficient techniques, since, slow as they were, they took far less time than the 
floating point work. 

Experience with slow "automatic programming" systems, plus their own experience 
with the problems of organizing loops and address modification, had convinced program- 
mers that efficient programming was something that could not be automated. Another rea- 
son that "automatic programming" was not taken seriously by the computing community 
came from the energetic public relations efforts of some visionaries to spread the word 
that their "automatic programming" systems had almost human abilities to understand 
the language and needs of the user; whereas closer inspection of these same systems 
would often reveal a complex, exception-ridden performer of clerical tasks which was 
both difficult to use and inefficient. Whatever the reasons, it is difficult to convey to a 
reader in the late seventies the strength of the skepticism about "automatic programming" 
in general and about its ability to produce efficient programs in particular, as it existed in 
1954. 

[In the above discussion of attitudes about "automatic programming" in 1954 I have 
mentioned only those actual systems of which my colleagues and I were aware at the time. 
For a comprehensive treatment of early programming systems and languages I recom- 
mend the article by Knuth and Trabb (1977) and Sammet (1969).] 

1.2. The Economics of Programming 

Another factor which influenced the development of FORTRAN was the economics of 
programming in 1954. The cost of programmers associated with a computer center was 
usually at least as great as the cost of the computer itself. (This fact follows from the aver- 
age salary-plus-overhead and number of programmers at each center and from the com- 
puter rental figures.) In addition, from one-quarter to one-half of the computer's time was 
spent in debugging. Thus programming and debugging accounted for as much as three- 
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quarters of the cost of operating a computer;  and obviously, as computers  got cheaper,  
this situation would get worse. 

This economic factor was one of the prime motivations which led me to propose the 
FORTRAN project in a letter to my boss, Cuthbert  Hurd,  in late 1953 (the exact date is not 
known but other  facts suggest December  1953 as a likely date). I believe that the economic 
need for a system like FORTRAN was one reason why IBM and my successive bosses, 
Hurd, Charles DeCarlo, and John McPherson,  provided for our constantly expanding 
needs over  the next five years without ever asking us to project or justify those needs in a 
formal budget. 

1.3. Programming Systems in 1954 
It is difficult for a programmer of  today to comprehend what "automat ic  programming" 

meant to programmers in 1954. To many it then meant simply providing mnemonic opera- 
tion codes and symbolic addresses, to others it meant the simple process of  obtaining sub- 
routines from a library and inserting the addresses of  operands into each subroutine. Most 
"automat ic  programming" systems were either assembly programs, or subroutine-fixing 
programs, or, most popularly, interpretive systems to provide floating point and indexing 
operations. My friends and I were aware of a number of  assembly programs and interpre- 
tive systems, some of which have been mentioned above; besides these there were pri- 
marily two other systems of  significance: the A-2 compiler (Remington-Rand, 1953; 
Moser, 1954) and the Laning and Zierler (1954) algebraic compiler at MIT. As noted 
above, the A-2 compiler was at that time largely a subroutine-fixer (its other  principal task 
was to provide for "over l ays" ) ;  but from the standpoint of  its input "p rog rams"  it pro- 
vided fewer conveniences than most of  the then current interpretive systems mentioned 
earlier; it later adopted a "pseudo-code"  as input which was similar to the input codes of  
these interpretive systems. 

The Laning and Zierler system accepted as input an elegant but rather simple algebraic 
language. It permitted single-letter variables (identifiers) which could have a single con- 
stant or variable subscript. The repertoire of  functions one could use were denoted by 
" F "  with an integer superscript to indicate the "catalog number"  of  the desired function. 
Algebraic expressions were compiled into closed subroutines and placed on a magnetic 
drum for subsequent use. The system was originally designed for the Whirlwind computer  
when it had 1024 storage cells, with the result that it caused a slowdown in execution 
speed by a factor of  about ten (Adams and Laning, 1954). 

The effect of  the Laning and Zierler system on the development of  FORTRAN is a ques- 
tion which has been muddled by many misstatements on my part. For  many years I be- 
lieved that we had gotten the idea for using algebraic notation in FORTRAN from seeing a 
demonstration of the Laning and Zierler system at MIT. In preparing a paper (Backus, 
1980) for the International Research Conference on the History of  Computing at Los 
Alamos (June 10-15, 1976), I reviewed the matter with Irving Ziller and obtained a copy of 
a 1954 letter (Backus, 1954b) (which Dr. Laning kindly sent to me). As a result the facts of 
the matter have become clear. The letter in question is one I sent to Dr. Laning asking for 
a demonstration of his system. It makes clear that we had learned of  his work at the Office 
of  Naval Research Symposium on Automatic Programming for Digital Computers ,  May 
13-14, 1954, and that the demonstration took place on June 2, 1954. The letter also makes 
clear that the FORTRAN project was well under way when the letter was sent (May 21, 
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1954) and inc luded  Har l an  H e r r i c k ,  R o b e r t  A.  N e l s o n ,  and  I rv ing  Zi l le r  as  wel l  as  myse l f .  
F u r t h e r m o r e ,  an ar t ic le  in the  p r o c e e d i n g s  o f  tha t  s ame  O N R  S y m p o s i u m  by  H e r r i c k  and  
m y s e l f  (Backus  and H e r r i c k ,  1954) s h o w s  c l ea r ly  tha t  we were  a l r e a d y  c o n s i d e r i n g  input  
e x p r e s s i o n s  l ike " Z  a~'b~k'" and  " X  + Y". W e  wen t  on  to ra ise  the  q u e s t i o n  " . . .  c an  a 
mach ine  t r ans l a t e  a suff ic ient ly  r ich m a t h e m a t i c a l  l anguage  into a suff ic ient ly  e c o n o m i c a l  
p r o g r a m  at a suff ic ient ly  low cos t  to m a k e  the w h o l e  af fa i r  f e a s i b l e ? "  

T h e s e  and  o t h e r  r e m a r k s  in o u r  p a p e r  p r e s e n t e d  at  the  S y m p o s i u m  in M a y  1954 m a k e  it 
c l ea r  tha t  we  were  a l r e a d y  c o n s i d e r i n g  a lgeb ra i c  inpu t  c o n s i d e r a b l y  m o r e  s o p h i s t i c a t e d  
than  tha t  o f  Lan ing  and Z i e r l e r ' s  s y s t e m  w h e n  we  first  h e a r d  o f  the i r  p i o n e e r i n g  w o r k .  
Thus ,  a l though  Lan ing  and  Z ie r l e r  had  a l r e a d y  p r o d u c e d  the w o r l d ' s  first  a lgeb ra i c  c o m -  
p i le r ,  o u r  bas i c  ideas  for  F O R T R A N  had  been  d e v e l o p e d  i n d e p e n d e n t l y ;  thus  it is diff icult  
to  k n o w  wha t ,  if  any ,  n e w  ideas  we  got  f rom see ing  the  d e m o n s t r a t i o n  o f  the i r  
s y s t e m . ?  

O u r  O N R  S y m p o s i u m  ar t ic le  ( B a c k u s  and H e r r i c k ,  1954) a lso  m a k e s  c l ea r  tha t  the  
F O R T R A N  group  was  a l r e a d y  a w a r e  tha t  it  f a c e d  a new k ind  o f  p r o b l e m  in a u t o m a t i c  p ro -  
g r amming .  The  v iab i l i ty  o f  mos t  c o m p i l e r s  and  i n t e r p r e t e r s  p r io r  to F O R T R A N  had  r e s t e d  
on the fact  that  mos t  sou rce  l anguage  o p e r a t i o n s  we re  not  ma c h ine  o p e r a t i o n s .  Thus  even  
large ineff ic iencies  in pe r fo rmin g  bo th  l o o p i n g / t e s t i n g  o p e r a t i o n s  and  c o m p u t i n g  ad-  
d r e s s e s  we re  m a s k e d  by mos t  o p e r a t i n g  t ime  be ing  spen t  in f loat ing po in t  sub rou t i ne s .  But  
the  a d v e n t  o f  the  704 wi th  bui l t  in f loat ing po in t  and  index ing  r ad ica l ly  a l t e r e d  the  s i tua-  
t ion.  The  704 p r e s e n t e d  a doub le  cha l l enge  to t h o s e  w h o  w a n t e d  to s impl i fy  p r o g r a m m i n g ;  
f irst ,  it r e m o v e d  the  r a i son  d ' e t r e  o f  ea r l i e r  s y s t e m s  by  p r o v i d i n g  in h a r d w a r e  the  o p e r a -  
t ions  they  ex i s t ed  to p r o v i d e ;  s e c o n d ,  it i n c r e a s e d  the p r o b l e m  o f  ge ne ra t i ng  eff ic ient  p ro -  
g r a m s  by  an o r d e r  o f  magn i tude  by  speed ing  up f loat ing po in t  o p e r a t i o n s  by  a f ac to r  o f  t en  
and t h e r e b y  l eav ing  ineff ic iencies  n o w h e r e  to  hide .  In  v i ew o f  the  w i d e s p r e a d  s k e p t i c i s m  
abou t  the  poss ib i l i t y  o f  p r o d u c i n g  eff ic ient  p r o g r a m s  wi th  an a u t o m a t i c  p r o g r a m m i n g  sys-  
t em and the fact  that  ineff ic iencies  cou ld  no longe r  be h idde n ,  we  were  c o n v i n c e d  tha t  the  
k ind  o f  s y s t e m  we  had  in mind  w o u l d  be  w ide ly  u sed  on ly  if  we  cou ld  d e m o n s t r a t e  tha t  it 
wou ld  p r o d u c e  p r o g r a m s  a lmos t  as  eff ic ient  as  h a n d  c o d e d  ones  and  do  so on v i r tua l ly  
e v e r y  j ob .  

It was  ou r  be l i e f  that  if F O R T R A N ,  dur ing  its first  m o n t h s ,  we re  to t r ans l a t e  any  r ea son -  
able  " s c i e n t i f i c "  source  p r o g r a m  into  an o b j e c t  p r o g r a m  on ly  ha l f  as  fas t  as  i ts h a n d  c o d e d  

t In response to suggestions of the Program Committee, let me try to deal explicitly with the question of what 
work might have influenced our early ideas for FORTRAN, although it is mostly a matter of listing work of which 
we were then unaware. I have already discussed the work of Laning and Zierler and the A-2 compiler. The work 
of Heinz Rutishauser (1952) is discussed later on. Like most of the world [except perhaps Rutishauser and Cor- 
rado B6hm--who was the first to describe a compiler in its own language (B6hm, 1954)] we were entirely un- 
aware of the work of Konrad Zuse (1959, 1972). Zuse's "PlankalkiW', which he completed in 1945, was, in some 
ways, a more elegant and advanced programming language than those that appeared 10 and 15 years later. 

We were also unaware of the work of Mauchly et al. ("Short Code," 1950), Burks ("Intermediate PL," 1950), 
B6hm (1951), Glennie ("AUTOCODE," 1952) as discussed in Knuth and Trabb (1977). We were aware of but 
not influenced by the automatic programming efforts which simulated a synthetic computer (e.g., MIT "Summer 
Session Computer", SHACO, DUAL, SPEEDCODING, and the ILLIAC system), since their languages and 
systems were so different from those of FORTRAN. Nor were we influenced by algebraic systems which were 
designed after our "Preliminary Report" (1954) but which began operation before FORTRAN (e.g., BACAIC, 
Grems and Porter, 1956; IT, Perlis et al., 1957; MATH-MATIC, Ash et al., 1957). Although PACT I (Baker, 
1956) was not an algebraic compiler, it deserves mention as a significant development designed after the FOR- 
TRAN language but in operation before FORTRAN, which also did not influence our work. 
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counterpart, then acceptance of our system would be in serious danger. This belief caused 
us to regard the design of the translator as the real challenge, not the simple task of design- 
ing the language. Our belief in the simplicity of language design was partly confirmed by 
the relative ease with which similar languages had been independently developed by Rutis- 
hauser (1952), Laning and Zierler (1954), and ourselves; whereas we were alone in seek- 
ing to produce really efficient object programs, 

To this day I believe that our emphasis on object program efficiency rather than on lan- 
guage design was basically correct. I believe that had we failed to produce efficient pro- 
grams, the widespread use of languages like FORTRAN would have been seriously de- 
layed. In fact, I believe that we are in a similar, but unrecognized, situation today: in spite 
of all the fuss that has been made over myriad language details, current conventional lan- 
guages are still very weak programming aids, and far more powerful languages would be in 
use today if anyone had found a way to make them run with adequate efficiency. In other 
words, the next revolution in programming will take place only when both of the following 
requirements have been met: (a) a new kind of programming language, far more powerful 
than those of today, has been developed; and (b) a technique has been found for executing 
its programs at not much greater cost than that of today's programs. 

Because of our 1954 view that success in producing efficient programs was more impor- 
tant than the design of the FORTRAN language, I consider the history of the compiler 
construction and the work of its inventors an intergral part of the history of the FOR- 
TRAN language; therefore a later section deals with that subject. 

2. The Early Stages of the FORTRAN Project 
After Cuthbert Hurd approved my proposal to develop a practical automatic program- 

ming system for the 704 in December 1953 or January 1954, Irving Ziller was assigned to 
the project. We started work in one of the many small offices the project was to occupy in 
the vicinity of IBM headquarters at 590 Madison Avenue in New York; the first of these 
was in the Jay Thorpe Building on Fifth Avenue. By May 1954 we had been joined by 
Harlan Herrick and then by a new employee who had been hired to do technical typing, 
Robert A. Nelson (with ZiUer, he soon began designing one of the most sophisticated sec- 
tions of the compiler; he is now an IBM Fellow). By about May we had moved to the 19th 
floor of the annex of 590 Madison Avenue, next to the elevator machinery; the ground 
floor of this building housed the 701 installation on which customers tested their programs 
before the arrival of their own machines. It was here that most of the FORTRAN language 
was designed, mostly by Herrick, Ziller, and myself, except that most of the input-output 
language and facilities were designed by Roy Nutt, an employee of United Aircraft Corp. 
who was soon to become a member of the FORTRAN project. 

After we had finished designing most of the language we heard about Rutishauser's pro- 
posals for a similar language (Ruthishauser, 1952). It was characteristic of the unscholarly 
attitude of most programmers then, and of ourselves in particular, that we did not bother 
to carefully review the sketchy translation of his proposals that we finally obtained, since 
from their symbolic content they did not appear to add anything new to our proposed lan- 
guage. Rutishauser's language had a FOR statement and one-dimensional arrays, but no 
IF, GOTO, nor I/O statements. Subscript variables could not be used as ordinary vari- 
ables and operator precedence was ignored. His 1952 article described two compilers for 
this language (for more details, see Knuth and Trabb, 1977). 
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As far as we were aware, we simply made up the language as we went along. We did not 
regard language design as a difficult problem, merely a simple prelude to the real problem: 
designing a compiler which could produce efficient programs. Of course one of  our goals 
was to design a language which would make it possible for engineers and scientists to write 
programs themselves for the 704. We also wanted to eliminate a lot of the bookkeeping 
and detailed, repetitive planning which hand coding involved. Very early in our  work we 
had in mind the notions of  assignment statements, subscribed variables, and the DO state- 
ment (which I believe was proposed by Herrick). We felt that these provided a good basis 
for achieving our  goals for the language, and whatever  else was needed emerged as we 
tried to build a way of programming on these basic ideas. 

We certainly had no idea that languages almost identical to the one we were working on 
would be used for more than one IBM computer ,  not to mention those of other  manufac- 
turers. (After all, there were very few computers around then.) But we did expect  our  
system to have a big impact, in the sense that it would make programming for the 704 very 
much faster, cheaper,  more reliable. We also expected that, if we were successful in meet- 
ing our goals, other groups and manufacturers would follow our example in reducing the 
cost of programming by providing similar systems with different but similar languages 
(Preliminary Report,  1954). 

By the fall of  1954 we had become the "Programming Research Group"  and I had be- 
come its "manage r" .  By November  of  that year  we had produced a paper: "Prel iminary 
Report,  Specifications for the IBM Mathematical FORmula TRANslating System, FOR- 
T R A N "  (Preliminary Report,  1954) dated November  10. In its introduction we noted that 
" sys tems  which have sought to reduce the job of  coding and debugging problems have 
offered the choice of  easy coding and slow execution or laborious coding and fast execu- 
t ion."  On the basis more of  faith than of  knowledge, we suggested that programs "will be 
executed in about the same time that would be required had the problem been laboriously 
hand coded . "  In what turned out to be a true statement,  we said that " F O R T R A N  may 
apply complex,  lengthy techniques in coding a problem which the human coder  would 
have neither the time nor inclination to derive or apply ."  

The language described in the "Prel iminary Repor t"  had variables of  one or two charac- 
ters in length, function names of  three or more characters,  recursively defined "expres-  
s ions" ,  subscripted variables with up to three subscripts, "ar i thmetic  formulas"  (which 
turn out to be assignment statements),  and "DO-formulas" .  These latter formulas could 
specify both the first and last statements to be controlled, thus permitting a DO to control  
a distant sequence of statements,  as well as specifying a third statement to which control 
would pass following the end of  the iteration. If only one statement was specified, the 
" r a n g e "  of the DO was the sequence of statements following the DO down to the specified 
statement. 

Expressions in "ari thmetic formulas"  could be " m i x e d " :  involve both "f ixed poin t"  
(integer) and "floating point"  quantities. The arithmetic used (all integer or all floating 
point) to evaluate a mixed expression was determined by the type of  the variable on the 
left of  the " = "  sign. " IF- formulas"  employed an equality or inequality sign ( " = "  o r " > "  
or " > = " )  between two (restricted) expressions,  followed by two statement numbers,  one 
for the " t r u e "  case, the other for the " fa l se"  case. 

A "Relabel  formula"  was designed to make it easy to rotate, say, the indices of  the rows 
of a matrix so that the same computat ion would apply, after relabeling, even though a new 
row had been read in and the next  computation was now to take place on a different, ro- 
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tated set of rows. Thus, for example, i fb is a 4 by 4 matrix, after RELABEL b(3,1), a 
reference to b(1,j) has the same meaning as b(3,j) before relabeling; b(2,j) after = b(4,j) 
before; b(3,j) after = b(1,j) before; and b(4,j) after = b(2,j) before relabeling. 

The input-output statements provided included the basic notion of specifying the se- 
quence in which data was to be read in or out, but did not include any "FORMAT" state- 
ments. 

The Report also lists four kinds of "specification sentences": (1) "dimension sen- 
tences" for giving the dimensions of arrays; (2) "equivalence sentences" for assigning the 
same storage locations to variables; (3) "frequency sentences" for indicating estimated 
relative frequency of branch paths or loops to help the compiler optimize the object pro- 
gram; and (4) "relative constant sentences" to indicate subscript variables which are ex- 
pected to change their values very infrequently. 

Toward the end of the Report (pp. 26-27) there is a section "Future additions to the 
FORTRAN system". Its first item is: "a  variety of new input-output formulas which 
would enable the programmer to specify various formats for cards, printing, input tapes, 
and output tapes". It is believed that this item is a result of our early consultations with 
Roy Nutt. This section goes on to list other proposed facilities to be added: complex and 
double precision arithematic, matrix arithmetic, sorting, solving simultaneous equations, 
differential equations, and linear programming problems. It also describes function defini- 
tion capabilities similar to those which later appeared in FORTRAN II; facilities for nu- 
merical integration; a summation operator; and table lookup facilities. 

The final section of the Report (pp. 28-29) discusses programming techniques to use to 
help the system produce efficient programs. It discusses how to use parentheses to help 
the system identify identical subexpressions within an expression and thereby eliminate 
their duplicate calculation. These parentheses had to be supplied only when a recurring 
subexpression occurred as part of a term [e.g., if a*b occured in several places, it would 
be better to write the term a*b*c as (a*b)*c to avoid duplicate calculation]; otherwise the 
system would identify duplicates without any assistance. It also observes that the system 
would not produce optimal code for loops constructed without DO statements. 

This final section of the Report also notes that "no special provisions have been in- 
cluded in the FORTRAN system for locating errors in formulas". It suggests checking a 
program "by independently recreating the specifications for a problem from its FOR- 
TRAN formulation [!]". It says nothing about the system catching syntactic errors, but 
notes that an error-finding program can be written after some experience with errors has 
been accumulated. 

Unfortunately we were hopelessly optimistic in 1954 about the problems of debugging 
FORTRAN programs (thus we find on p. 2 of the Report: "Since FORTRAN should vir- 
tually eliminate coding and debugging . . . [!]") and hence syntactic error checking facili- 
ties in the first distribution of FORTRAN I were weak. Better facilities were added not 
long after distribution and fairly good syntactic checking was provided in FORTRAN II. 

The FORTRAN language described in the Programmer's Reference Manual dated Oc- 
tober 15, 1956 (IBM, 1956) differed in a few respects from that of the Preliminary Report, 
but, considering our ignorance in 1954 of the problems we would later encounter in pro- 
ducing the compiler, there were remarkably few deletions (the Relabel and Relative Con- 
stant statements), a few retreats, some fortunate, some not (simplification of DO state- 
ments, dropping inequalities from IF statements--for lack of a " > "  symbol, and 
prohibiting most "mixed" expressions and subscripted subscripts), and the rectification of 
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a few omissions (addition of FORMAT,  C O N T I N U E ,  computed and assigned GOTO 
statements, increasing the length of  variables to up to six characters,  and general improve- 
ment of  input -ou tput  statements). 

Since our entire attitude about language design had always been a very casual one, the 
changes which we felt to be desirable during the course of  writing the compiler were made 
equally casually. We never  felt that any of  them involved a real sacrifice in convenience or 
power (with the possible exception of  the Relabel statement,  whose purpose was to coor- 
dinate inpu t -ou tpu t  with computations on arrays, but this was one facility which we felt 
would have been really difficult to implement). I believe the simplification of  the original 
DO statement resulted from the realization that (a) it would be hard to describe precisely,  
(b) it was awkward to compile,  and (c) it provided little power beyond that of  the final 
version. 

In our naive unawareness of  language design p r o b l e m s - - o f  course we knew nothing of  
many issues which were later thought to be important,  e.g., block structure,  conditional 
expressions,  type dec la ra t ions- - i t  seemed to us that once one had the notions of  the as- 
signment statement,  the subscripted variable, and the DO statement in hand (and these 
were among our  earliest ideas), then the remaining problems of  language design were triv- 
ial: either their solution was thrust upon one by the need to provide some machine facility 
such as reading input, or by some programming task which could not be done with existing 
structures (e.g., skipping to the end of a DO loop without skipping the indexing instruc- 
tions there: this gave rise to the C O N T I N U E  statement). 

One much-criticized design choice in FORTRAN concerns the use of spaces: blanks 
were ignored, even blanks in the middle of  an identifier. Roy Nutt  reminds me that that 
choice was partly in recognition of  a problem widely known in SHARE,  the 704 users '  
association. There was a common problem with keypunchers  not recognizing or properly 
counting blanks in handwritten data, and this caused many errors. We also regarded ignor- 
ing blanks as a device to enable programmers to arrange their programs in a more readable 
form without altering their meaning or introducing complex rules for formatting state- 
ments. 

Another  debatable design choice was to rule out " m i x e d "  mode expressions involving 
both integer and floating point quantities. Although our  Preliminary Report  had included 
such expressions,  and rules for evaluating them, we felt that if code for type conversion 
were to be generated, the user should be aware of that, and the best way to insure that he 
was aware was to ask him to specify them. I believe we were also doubtful of  the useful- 
ness of  the rules in our Report  for  evaluating mixed expressions. In any case, the most 
common sort of "mix tu re s"  was allowed: integer exponents  and function arguments were 
allowed in a floating point expression. 

In late 1954 and early 1955, after completing the Preliminary Report ,  Harlan Herrick,  
Irving Ziller, and I gave perhaps five or six talks about our  plans for FORTRAN to various 
groups of IBM customers who had ordered a 704 (the 704 had been announced about May 
1954). At these talks we covered the material in the Report  and discussed our  plans for the 
compiler (which was to be completed within about six months [!]; this was to remain the 
interval-to-completion until it actually was completed over  two years later, in April 1957). 
In addition to informing customers about our plans, another  purpose of these talks was to 
assemble a list of  their objections and further requirements.  In this we were disappointed; 
our listeners were mostly skeptical; I believe they had heard too many glowing descrip- 
tions of  what turned out to be clumsy systems to take us seriously. In those days one was 
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accustomed to finding lots of peculiar but significant restrictions in a system when it finally 
arrived that had not been mentioned in its original description. Most of  all, our  claims that 
we would produce efficient object programs were disbelieved. Whatever  the reasons, we 
received almost no suggestions or feedback; our  listeners had done almost no thinking 
about the problems we faced and had almost no suggestions or criticisms. Thus we felt 
that our trips to Washington (D.C.), Albuquerque, Pittsburgh, Los Angeles, and one or 
two other places were not very helpful. 

One trip to give our  talk, probably in January 1955, had an excellent payoff.  This talk, at 
United Aircraft Corp., resulted in an agreement between our  group and Walter Ramshaw 
at United Aircraft that Roy Nutt  would become a regular part of  our effort (although re- 
maining an employee of  United Aircraft) to contribute his expertise on inpu t -ou tpu t  and 
assembly routines. With a few breaks due to his involvement in writing various SHARE 
programs, he would thenceforth come to New York two or three times a week until early 
1957. 

It is difficult to assess the influence the early work of  the FORTRAN group had on other  
projects. Certainly the discussion of  Laning and Zierler 's  algebraic compiler at the ONR 
Symposium in May 1954 would have been more likely to persuade someone to undertake a 
similar line of  effort than would the brief  discussion of  the merits of  using " a  fairly natural 
mathematical language" that appeared there in the paper  by Herrick and myself  (Backus 
and Herrick, 1954). But it was our  impression that our  discussions with various groups 
after that time, their access to our  Preliminary Report ,  and their awareness of  the extent  
and seriousness of  our efforts, that these factors either gave the initial stimulus to some 
other projects or at least caused them to be more active than they might have been other- 
wise. It was our  impression, for example, that the " I T "  project [Perlis, Smith and Van 
Zoeren 1957] at Purdue and later at Carnegie-Mel lon began shortly after the distribution 
of  our Preliminary Report,  as did the " M A T H - M A T I C "  project (Ash et  al . ,  1957) at 
Sperry Rand. 

It is not clear what influence, if any, our  Los Angeles talk and earlier contacts with 
members of  their group had on the PACT I effort (Baker, 1956), which I believe was al- 
ready in its formative stages when we got to Los Angeles. It is clear, whatever  influence 
the specifications for FORTRAN may have had on other  projects in 1954-1956, that our  
plans were well advanced and quite firm by the end of  1954 and before we had contact  or 
knowledge of  those other projects. Our specifications were not affected by them in any 
significant way as far as I am aware,  even though some were operating before FORTRAN 
was (since they were primarily interested in providing an input language rather than in 
optimization, their task was considerably simpler than ours). 

3. The Construction of the Compiler 
The FORTRAN compiler (or " t rans la tor"  as we called it then) was begun in early 1955, 

although a lot of  work on various schemes which would be used in it had been done in 
1954; e.g., Herrick had done a lot of  trial programming to test out our language and we had 
worked out the basic sort of  machine programs which we wanted the compiler to generate 
for various source language phrases; Ziller and I had worked out a basic scheme for trans- 
lating arithmetic expressions. 

But the real work on the compiler got under way in our  third location on the fifth floor of 
15 East 56th Street. By the middle of  February three separate efforts were underway. The 
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first two of these concerned sections 1 and 2 of the compiler, and the third concerned the 
input, output, and assembly programs we were going to need (see below). We believed 
then that these efforts would produce most of the compiler. 

(The entire project was carried on by a loose cooperation between autonomous, sepa- 
rate groups of one, two, or three people; each group was responsible for a "  section" of the 
compiler; each group gradually developed and agreed upon its own input and output speci- 
fications with the groups for neighboring sections; each group invented and programmed 
the necessary techniques for doing its assigned job.) 

Section 1 was to read the entire source program, compile what instructions it could, and 
file all the rest of the information from the source program in appropriate tables. Thus the 
compiler was "one pass" in the sense that it " saw"  the source program only once. Her- 
rick was responsible for creating most of the tables, Peter Sheridan (who had recently 
joined us) compiled all the arithmetic expressions, and Roy Nutt compiled and/or filed the 
I/O statements. Herrick, Sheridan, and Nutt got some help later on from R. J. Beeber and 
H. Stern, but they were the architects of section 1 and wrote most of its code. Sheridan 
devised and implemented a number of optimizing transformations on expressions (Sheri- 
dan, 1959) which sometimes radically altered them (of course without changing their 
meaning). Nutt transformed the I/O "lists of quantities" into nests of DO statements 
which were then treated by the regular mechanisms of the compiler. The rest of the I/O 
information he filed for later treatment in section 6, the assembler section. (For further 
details about how the various sections of the compiler worked, see Backus et al., 1957.) 

Using the information that was filed in section 1, section 2 faced a completely new kind 
of problem; it was required to analyze the entire structure of the program in order to gen- 
erate optimal code from DO statements and references to subscripted variables. The sim- 
plest way to effect a reference to A(I,J) is to evaluate an expression involving the address 
of A(1,1), I, and K × J, where K is the length of a column (when A is stored columnwise). 
But this calculation, with its multiplication, is much less efficient than the way most hand 
coded programs effect a reference to A(I,J), namely, by adding an appropriate constant to 
the address of the preceding reference to the array A whenever I and J are changing lin- 
early. To employ this far more efficient method section 2 had to determine when the sur- 
rounding program was changing I and J linearly. 

Thus one problem was that of distinguishing between, on the one hand, references to an 
array element which the translator might treat by incrementing the address used for a pre- 
vious reference, and those array references, on the other hand, which would require an 
address calculation starting from scratch with the current values of the subscripts. 

It was decided that it was not practical to track down and identify linear changes in sub- 
scripts resulting from assignment statements. Thus the sole criterion for linear changes, 
and hence for efficient handling of array references, was to be that the subscripts involved 
were being controlled by DO statements. Despite this simplifying assumption, the number 
of cases that section 2 had to analyze in order to produce optimal or near-optimal code was 
very large. (The number of such cases increased exponentially with the number of sub- 
scripts; this was a prime factor in our decision to limit them to three; the fact that the 704 
had only three index registers was not a factor.) 

It is beyond the scope of this paper to go into the details of the analysis which section 2 
carried out. It will suffice to say that it produced code of such efficiency that its output 
would startle the programmers who studied it. It moved code out of loops where that was 
possible; it took advantage of the differences between rowwise and columnwise scans; it 
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took note of special cases to optimize even the exits from loops. The degree of optimiza- 
tion performed by section 2 in its treatment of indexing, array references, and loops was 
not equalled again until optimizing compilers began to appear in the middle and late 1960s. 

The architecture and all the techniques employed in section 2 were invented by Robert 
A. Nelson and Irving Ziller. They planned and programmed the entire section. Originally 
it was their intention to produce the complete code for their area, including the choice of 
the index registers to be used (the 704 had three index registers). When they started look- 
ing at that problem it rapidly became clear that it was not going to be easy to treat it opti- 
mally. At that point I proposed that they should produce a program for a 704 with an un- 
limited number of index registers, and that later sections would analyze the frequency of 
execution of  various parts of the program (by a Monte Carlo simulation of its execution) 
and then make index register assignments so as to minimize the transfers of items between 
the store and the index registers. 

This proposal gave rise to two new sections of the compiler which we had not antici- 
pated, sections 4 and 5 (section 3 was added still later to convert the output of sections 1 
and 2 to the form required for sections 4, 5, and 6). In the fall of 1955 Lois Mitchell Haibt 
joined our group to plan and program section 4, which was to analyze the flow of a pro- 
gram produced by sections 1 and 2, divide it into "basic blocks" (which contained no 
branching), do a Monte Carlo (statistical) analysis of the expected frequency of execution 
of basic blocks--by simulating the behavior of the program and keeping counts of the use 
of each block--using information from DO statements and FREQUENCY statements, 
and collect information about index register usage. (for more details, see Backus et  al.,  
1957; Cocke and Schwartz, 1970, p. 511). Section 5 would then do the actual transforma- 
tion of the program from one having an unlimited number of index registers to one having 
only three. Again, the section was entirely planned and programmed by Haibt. 

Section 5 was planned and programmed by Sheldon Best, who was loaned to our group 
by agreement with his employer, Charles W. Adams, at the Digital Computer Laboratory 
at MIT; during his stay with us Best was a temporary IBM employee. Starting in the early 
fall of 1955, he designed what turned out to be, along with section 2, one of the most intri- 
cate and complex sections of the compiler, one which had perhaps more influence on the 
methods used in later compilers than any other part of the FORTRAN compiler. (For a 
discussion of his techniques, see Cocke and Schwartz, 1970, pp. 510-515.) It is impossible 
to describe his register allocation method here; it suffices to say that it was to become the 
basis for much subsequent work and produced code which was very difficult to improve. 

Although I believe that no provably optimal register allocation algorithm is known for 
general programs with loops, etc., empirically Best's 1955-1956 procedure appeared to be 
optimal. For straight-line code Best's replacement policy was the same as that used in 
Belady's MIN algorithm, which Belady proved to be optimal (Belady, 1965). Although 
Best did not publish a formal proof, he had convincing arguments for the optimality of his 
policy in 1955. 

Late in 1955 it was recognized that yet another section, section 3, was needed. This 
section merged the outputs of the preceding sections into a single uniform 704 program 
which could refer to any number of index registers. It was planned and programmed by 
Richard Goldberg, a mathematician who joined us in November 1955. Also, late in 1956, 
after Best had returned to MIT and during the debugging of the system, section 5 was 
taken over by Goldberg and David Sayre (see below), who diagrammed it carefully and 
took charge of its final debugging. 
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The final section of the compiler, section 6, assembled the final program into a relocat- 
able binary program (it could also produce a symbolic program in SAP, the SHARE As- 
sembly Program for the 704). It produced a storage map of the program and data that was a 
compact summary of the FORTRAN output. Of course it also obtained the necessary li- 
brary programs for inclusion in the object program, including those required to interpret 
FORMAT statements and perform input-output operations. Taking advantage of the spe- 
cial features of the programs it assembled, this assembler was about ten times faster than 
SAP. It was designed and programmed by Roy Nutt, who also wrote all the I/O programs 
and the relocating binary loader for loading object programs. 

By the summer of 1956 large parts of the system were working. Sections 1, 2, and 3 
could produce workable code provided no more than three index registers were needed. A 
number of test programs were compiled and run at this time. Nutt took part of the system 
to United Aircraft (sections 1, 2, and 3 and the part of section 6 which produced SAP out- 
put). This part of the system was productive there from the summer of 1956 until the com- 
plete system was available in early 1957. 

From late spring of 1956 to early 1957 the pace of debugging was intense; often we 
would rent rooms in the Langdon Hotel (which disappeared long ago) on 56th Street, sleep 
there a little during the day and then stay up all night to get as much use of the computer 
(in the headquarters annex on 57th Street) as possible. 

It was an exciting period; when later on we began to get fragments of compiled pro- 
grams out of the system, we were often astonished at the surprising transformations in the 
indexing operations and in the arrangement of the computation which the compiler made, 
changes which made the object program efficient but which we would not have thought to 
make as programmers ourselves (even though, of course, Nelson or Ziller could figure out 
how the indexing worked, Sheridan could explain how an expresssion had been optimized 
beyond recognition, and Goldberg or Sayre could tell us how section 5 had generated addi- 
tional indexing operations). Transfers of control appeared which corresponded to no 
source statement, expressions were radically rearranged, and the same DO statement 
might produce no instructions in the object program in one context, and in another it 
would produce many instructions in different places in the program. 

By the summer of 1956 what appeared to be the imminent completion of the project 
started us worrying (for perhaps the first time) about documentation. David Sayre, a crys- 
tallographer who had joined us in the spring (he had earlier consulted with Best on the 
design of section 5 and had later begun serving as second-in-command of what was now 
the "Programming Research Department") took up the task of writing the Programmer's 
Reference Manual (IBM, 1956). It appeared in a glossy cover, handsomely printed, with 
the date October 15, 1956. It stood for some time as a unique example of a manual for a 
programming language (perhaps it still does): it had wide margins, yet was only 51 pages 
long. Its description of the FORTRAN language, exclusive of input-output statements, 
was 21 pages; the I/O description occupied another 11 pages; the rest of it was examples 
and details about arithmetic, tables, etc. It gave an elegant recursive definition of expres- 
sions (as given by Sheridan), and concise, clear descriptions, with examples, of each state- 
ment type, of which there were 32, mostly machine dependent items like SENSE LIGHT, 
IF DIVIDE CHECK, PUNCH, READ DRUM, and so on. (For examples of its style see 
Figs. 1, 2, and 3.) 

One feature of FORTRAN I is missing from the Programmer's Reference Manual, not 
from an oversight of Sayre's, but because it was added to the system after the manual was 
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Subscrilm. 

P a p e r :  T h e  H i s t o r y  o f  F O R T R A N  I, II, a n d  III 

GENERAL FORM EXAMPLES 

Let v represent any fixed point variable 
and c (or c') any unsigned fixed point 
co~,stant. Then a subscript is 
an expression of one of the forms: V 

C 

v + c o r v - c  

c * v  

c * v.-.[- C' or C*V--C'  

I 

3 
M U + 2  
MU-2 
5*J 
5 " J + 2  
5 *J-2 

The  symbo l  • denotes  mult ipl icat ion.  The wtriablc v must  not itself be sub- 

scripted. 

SubscrilJted Variables. 

GENERAL FORM EXAMPLES 

A fixed or floating poiut variable A(I) 
followed by parentheses enclosing 1, 2, or 3 . K(3) 
subscripts separated by commas. BETA(5*J-2, K+2,L) 

For  each ~,ariable that appears  in subscripted form the size of the ar ray  (i.e. the 

maximum values which its subscripts  can a t ta in)  must  be stated in a D I M E N -  

SION statement  (sec Chap te r  6) preceding the lirst appearance  of the wlriable.  

The mininlum wtlue which a subscr ipt  may assume in the object  program is + 1. 

Arrangement o/ A rrays in Storage. 

A 2-dimensional  a r ray  A will, in the object  p rogram,  be s iored sequential ly  in 

tile o rder  A], , ,  Az,i, . . . . .  , Am.,, &,2,  A=.2, • . . . .  , Am.z, • . . . . . . .  , A,,, .... Thus 
it is s tored " 'columnwise",  with the tirst of its subscripts  wlrying most rapidly,  

and the last wlrying least rapidly.  The same is true of 3-dimensional  arrays.  

l -d imension:d  ar rays  are of course simply stored sequentially.  All  ar rays  are 

s tored backwards  in storage; i.e. the above sequence is in the order  of decreas-  

ing absolule  location. 
Fig. 1. Original FORTRAN Manual, p. 11. [Courtesy of International Business Machines Corporation.] 
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A n y  such rou t ine  will be compi led  into the objec t  p rogram as a c losed sub rou -  

tine. In the sect ion on  Wr i t ing  Subrou t ine s  for the Mas te r  T a p e  in Chap te r  7 

are given the speci l ica t ions  which any such rout ine  mus t  meet.  

Expressions A n  express ion  is any  sequence  of cons tan ts ,  w~riables ( subsc r ip ted  or  no t  sub-  

sc r ip t ed ) ,  and  funct ions ,  separa ted  by ope ra t i on  symbols ,  c o m m a s ,  and  pa ren -  

theses st) as to form a mean ing fu l  ma thema t i ca l  express ion .  

However ,  one special  res tr ic t ion does exist. A Ft)RrRAN express ion  may  

be e i ther  a tixed or  a l loa t ing point  express ion ,  but  it mus t  not  be a mixed  

express ion .  Th i s  does not  m e a n  that  a l loat ing point  quan t i t y  can  not  appea r  

in a tixed po in t  express ion ,  or  vice versa, but  ra ther  that a quan t i t y  of one  

mode  can  appea r  in an express ion  of the o ther  mode  only  in cer ta in  ways. 

Brielly,  a [loafing point  quan t i ty  can appea r  in a fixed point  express ion  only  

as an  a r g u m e n t  of a func t ion ;  a tixed poin t  quan t i t y  can  appea r  in a t toat ing 

poin t  express ion  only  as an a r g u m e n t  of a func t ion ,  or  as a subscr ip t ,  or  as 

an  ex p o n en t .  

Formal Ruh's ]or Forming Expressions. By repeated  use of the fo l lowing 

rt, les, all permiss ib le  express ions  may  be derived.  

1. Any fixed point (floating point)  constant,  variable, or subscripted variable 
is an expression of tile same mode. Thus 3 and I tire tixed point expressions, 
and A I . I q l A  and A(I , J ,K)  are floating point expressitms. 

2 .  If S O M E F  is some function of i1 variahles, and if E, F . . . . . .  H are a set 
of n expressions of the correct modes for SOMEF,  then S O M E F  (E, F, 
. . . .  , H) is an expression of the same mode as SOMEF.  

3 .  If E is all expression, and if its lirst character is not -[ or - ,  then t E and 
- E  are expressions of the same mode us E. ' [hus  - A  is an expression, but 
t - - A  is not. 

4.. If E is an expression, Ihen (E)  is an expression of the same mode as E. 
Thus  ( A ) ,  ( ( A ) ) ,  ( ( ( A ) )  ), etc. tire expressions. 

5 .  If E and F are expressions of the same mode, and it the first character of 
F is not + o r - - ,  then 

E + F 
E - F  
E * F 
E /  F 

are expressions of the same mode. "Elms A-- t B and A/-~ B are not expres- 
sions. The characters + ,  - ,  *, and / detlote addition, subtraction,  multi- 
plication, and division. 

Fig. 2. Original FORTRAN Manual, p. 14. [Courtesy of International Business Machines Corporation.] 



STOP 
G E N E R A L  F O R M  E X A M P L E S  

"STOP" or "STOP n" where n is an STOP 
unsigned octal fixed point constant. STOP 77777 

DO 

This s ta tement  causes the machine to H A L T  in such a way that pressing the 

S T A R T  button has no effect. -Fhercfore, in contras t  to the PAUSE,  it is used 

where a gc t -o l I - the-machine  stop, rather  than a t empora ry  stop, is dcsired. The 

octal  number  n is d isplayed on the 704 console in the address  field of the 

storage register. ( I f  n is not .s ta ted it is taken to be 0.)  

G E N E R A L  FORM E X A M P L E S  

"DO n i = m~, m2" or "DO n i = m~, m2, m3" DO 30 I = ], 10 
where n is a statement number, i is a DO 30 I = 1, M, 3 
non-subscripted fixed point variable, and 
m,, m2, [% are each either an unsigned fixed point 
constant or a non subscripted fixed point variable. 
If m~ is not stated it is taken to be ! 

The DO s ta tement  is a c o m m a n d  to "DO the s ta tements  which follow, to and 

including tile s ta tement  with s ta tement  number  n, rcpeatedly,  the first t ime with 

i -- m~ and with i increased by m:~ for each succeeding time; after they have 

been done with i eqt, al to the highest ot this sequence of values which does not  

exceed mz let control  reach the s ta tement  following the s ta tement  with state- 

mcut  number  n". 

The range of a DO is the set of s ta tements  which will be executed re- 

peatedly;  it is the sequence of consecutive s tatements  immedia te ly  following 

the 1)O, to and including the s ta tement  numbered  n. 

The imlex of a DO is the fixed point  variable i, which is contro l led  by the 

DO in such a way that its wdue begins at m~ and is increased each time by 

m:~ until it is about  to exceed m~. Throughout  the range it is avai lable  for com- 
putat ion,  ei ther  as an ord inary  fixed point  variable or  as the variable of a 

subscript.  During the last execution of the range, the DO is said to be satisfied. 

Suppose,  for example ,  that control  has reached s ta tement  l0  of the 

program 
10 DO 11 I = 1 ,  10 

I I  A(I) .... I,N(1) 

12 

Fig. 3. Original F O R T R A N  Manual, p. 20. [Courtesy of International Business Machines Corporation.] 
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written and before the system was distributed/. This feature was the ability to define a func- 
tion by a "function statement." These statements had to precede the rest of the program. 
They looked like assignment statements, with the defined function and dummy arguments 
on the left and an expression involving those arguments on the right. They are described in 
the addenda to the Programmer's Reference Manual (Addenda, 1957) which we sent on 
February 8, 1957 to John Greenstadt, who was in charge of IBM's facility for distributing 
information to SHARE. They are also described in all subsequent material on FOR- 
TRAN I. 

The next documentation task we set ourselves was to write a paper describing the FOR- 
TRAN language and the translator program. The result was a paper entitled "The FOR- 
TRAN automatic coding system" (Backus et al., 1957) which we presented at the Western 
Joint Computer Conference in Los Angeles in February 1957. I have mentioned all of the 
thirteen authors of that paper in the preceding narrative except one: Robert A. Hughes. 
He was employed by the Livermore Radiation Laboratory; by arrangement with Sidney 
Fernbach, he visited us for two or three months in the summer of 1956 to help us docu- 
ment the system. (The authors of that paper were: J. W. Backus, R. J. Beeber, S. Best, R. 
Goldberg, L. M. Haibt, H. L. Herrick, R. A. Hughes, R. A. Nelson, R. Nutt, D. Sayre, P. 
B. Sheridan, H. Stern, I. Ziller.) 

At about the time of the Western Joint Computer Conference we spent some time in Los 
Angeles still frantically debugging the system. North American Aviation gave us time at 
night on their 704 to help us in our mad rush to distribute the system. Up to this point there 
had been relatively little interest from 704 installations (with the exception of Ramshaw's 
United Aircraft shop, Harry Cantrell's GE installation in Schenectady, and Sidney Fern- 
bach's Livermore operation), but now that the full system was beginning to generate ob- 
ject programs, interest picked up in a number of places. 

Sometime in early April 1957 we felt the system was sufficiently bug-free to distribute to 
all 704 installations. Sayre and Grace Mitchell (see below) started to punch out the binary 
decks of the system, each of about 2,000 cards, with the intention to make 30 or 40 decks 
for distribution. This process was so error-prone that they had to give up after spending an 
entire night in producing only one or two decks. 

(Apparently one of those decks was sent, without any identification or directions, to the 
Westinghouse Bettis installation, where a puzzled group headed by Herbert S. Bright, sus- 
pecting that it might be the long-awaited FORTRAN deck, proceeded, entirely by guess- 
work, to get it to compile a test program--after a diagnostic printout noting that a comma 
was missing in a specific statement! This program then printed 28 pages of correct results 
- -with  a few FORMAT errors. The date: April 20, 1957. An amusing account of this inci- 
dent by Bright is in Computers and Automation (Bright, 1971).) 

After failing to produce binary decks, Sayre devised and programmed the simple editor 
and loader that made it possible to distribute and update the system from magnetic tapes; 
this arrangement served as the mechanism for creating new system tapes from a master 
tape and the binary correction cards which our group would generate in large numbers 
during the long field debugging and maintenance period which followed distribution 

With the distribution of the system tapes went a Preliminary Operator's Manual (Op- 
erator's Manual, 1957) dated April 8, 1957. It describes how to use the tape editor and how 
to maintain the library of functions. Five pages of such general instructions are followed 
by 32 pages of error stops; many of these say "source program error, get off machine, 
correct formula in question and restart problem" and then, for example (stop 3624) "non- 
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zero level reduction due to insufficient or redundant parentheses in arithmetic or IF-type 
formula". Shortly after the distribution of the system we distr ibuted--one copy per instal- 
lat ion--what was fondly known as the "Tome" ,  the complete symbolic listing of the en- 
tire compiler plus other system and diagnostic information, an 11" by 15" volume about 
four or five inches thick. 

The proprietors of the six sections were kept busy tracking down bugs elicited by our 
customers' use of FORTRAN until the late summer of 1957. Hal Stern served as the coor- 
dinator of the field debugging and maintenance effort; he received a stream of telegrams, 
mail and phone calls from all over the country and distributed the incoming problems to 
the appropriate members of our group to track down the errors and generate correction 
cards, which he then distributed to every installation. 

In the spring of 1957 Grace E. Mitchell joined our group to write the Programmer's 
Primer (IBM, 1957) for FORTRAN. The Primer was divided into three sections; each de-  
scribed successively larger subsets of the language accompanied by many example pro- 
grams. The first edition of the Primer was issued in the late fall or winter of 1957; a slightly 
revised edition appeared in March 1958. Mitchell planned and wrote the 64-page Primer 
with some consultation with the rest of the group; she later programmed most of the exten- 
sive changes in the system which resulted in FORTRAN II (see below). 

The Primer had an important influence on the subsequent growth in the use of the sys- 
tem. I believe it was the only available simplified instruction manual (other than reference 
manuals) until the later appearance of books such as McCracken (1961), Organick (1963), 
and many others. 

A report on FORTRAN usage in November 1958 (Backus, 1958) says that "a  survey in 
April [1958] of twenty-six 704 installations indicates that over half of them use FORTRAN 
[I] for more than half of their problems. Many use it for 80% or more of their 
work . . . and almost all use it for some of their work."  By the fall of 1958 there were 
some 60 installations with about 66 704s, and " . . .  more than half the machine instruc- 
tions for these machines are being produced by FORTRAN. SHARE recently designated 
FORTRAN as the second official medium for transmittal of programs [SAP was the 
first] . . ." 

4. F O R T R A N  II 
During the field debugging period some shortcomings of the system design, which we 

had been aware of earlier but had no time to deal with, were constantly coming to our 
attention. In the early fall of 1957 we started to plan ways of correcting these shortcom- 
ings; a document dated September 25, 1957 (Proposed Specifications, 1957) characterizes 
them as (a) a need for better diagnostics, clearer comments about the nature of source 
program errors, and (b) the need for subroutine definition capabilities. (Although one 
FORTRAN I diagnostic would pinpoint, in a printout, a missing comma in a particular 
statement, others could be very cryptic.) This document is titled "Proposed Specifications 
for FORTRAN II for the 704"; it sketches a more general diagnostic system and describes 
the new "subroutine definition" and END statements, plus some others which were not 
implemented. It describes how symbolic information is retained in the relocatable binary 
form of a subroutine so that the "binary symbolic subroutine [BSS] loader" can imple- 
ment references to separately compiled subroutines. It describes new prologues for these 
subroutines and points out that mixtures of FORTRAN-coded and assembly-coded relo- 
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catable binary programs could be loaded and run together. It does not discuss the FUNC- 
TION statement that was also available in FORTRAN II. FORTRAN II was designed 
mostly by Nelson, Ziller, and myself. Mitchell programmed the majority of new code for 
FORTRAN II (with the most unusual feature that she delivered it ahead of schedule). She 
was aided in this by Bernyce Brady and LeRoy May. Sheridan planned and made the nec- 
essary changes in his part of section 1; Nutt did the same for section 6. FORTRAN II was 
distributed in the spring of 1958. 

5. FORTRAN III 
While FORTRAN II was being developed, Ziller was designing an even more advanced 

system that he called FORTRAN III. It allowed one to write intermixed symbolic instruc- 
tions and FORTRAN statements. The symbolic (704) instructions could have FORTRAN 
variables (with or without subscripts) as "addresses".  In addition to this machine depen- 
dent feature (which assured the demise of FORTRAN III along with that of the 704), it 
contained early versions of a number of improvements that were later to appear in FOR- 
TRAN IV. It had "Boolean" expressions, function and subroutine names could be passed 
as arguments, and it had facilities for handling alphanumeric data, including a new FOR- 
MAT code " A "  similar to codes " I "  and " E " .  This system was planned and programmed 
by Ziller with some help from Nelson and Nutt. Ziller maintained it and made it available 
to about 20 (mostly IBM) installations. It was never distributed generally. It was accompa- 
nied by a brief descriptive document (Additions to FORTRAN II, 1958). It became avail- 
able on this limited scale in the winter of 1958-1959 and was in operation until the early 
1960s, in part on the 709 using the compatibility feature (which made the 709 order code 
the same as that of the 704). 

6. FORTRAN after 1958; Comments 
By the end of 1958 or early 1959 the FORTRAN group (the Programming Research De- 

partment), while still helping with an occasional debugging problem with FORTRAN II, 
was primarily occupied with other research. Another IBM department had long since 
taken responsibility for the FORTRAN system and was revising it in the course of produc- 
ing a translator for the 709 which used the same procedures as the 704 FORTRAN II trans- 
lator. Since my friends and I no longer had responsibility for FORTRAN and were busy 
thinking about other things by the end of 1958, that seems like a good point to break off 
this account. There remain only a few comments to be made about the subsequent devel- 
opment of FORTRAN. 

The most obvious defect in FORTRAN II for many of its users was the time spent in 
compiling. Even though the facilities of FORTRAN II permitted separate compilation of 
subroutines and hence eliminated the need to recompile an entire program at each step in 
debugging it, nevertheless compile times were long and, during debugging, the consider- 
able time spent in optimizing was wasted. I repeatedly suggested to those who were in 
charge of FORTRAN that they should now develop a fast compiler and/or interpreter with- 
out any optimizing at all for use during debugging and for short-run jobs. Unfortunately 
the developers of FORTRAN IV thought they could have the best of both worlds in a 
single compiler, one which was both fast and produced optimized code. I was unsuccess- 
ful in convincing them that two compilers would have been far better than the compromise 
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which became the original FORTRAN IV compiler. The latter was not nearly as fast as 
later compilers like WATFOR (Cress et  al.,  1970) nor did it produce as good code as FOR- 
TRAN II. (For more discussion of later developments with FORTRAN, see Backus and 
Heising, 1964.) 

My own opinion as to the effect of FORTRAN on later languages and the collective 
impact of such languages on programming generally is not a popular opinion. That view- 
point is the subject of a long paper (Backus, 1978). I now regard all conventional languages 
(e.g., the FORTRANs, the ALGOLs, their successors and derivatives) as increasingly 
complex elaborations of the style of programming dictated by the von Neumann com- 
puter. These "yon Neumann languages" create enormous, unnecessary intellectual road- 
blocks in thinking about programs and in creating the higher level combining forms re- 
quired in a really powerful programming methodology. Von Neumann languages 
constantly keep our noses pressed in the dirt of address computation and the separate 
computation of single words, whereas we should be focusing on the form and content of 
the overall result we are trying to produce. We have come to regard the DO, FOR, 
WHILE statements and the like as powerful tools, whereas they are in fact weak pallia- 
tives that are necessary to make the primitive yon Neuman style of programming viable at 
all. 

By splitting programming into a world of expressions on the one hand and a world of 
statements on the other, yon Neumann languages prevent the effective use of higher level 
combining forms; the lack of the latter makes the definitional capabilities of yon Neumann 
languages so weak that most of their important features cannot be defined--starting with a 
small, elegant f ramework--but  must be built into the framework of the language at the 
outset. The gargantuan size of recent von Neumann languages is eloquent proof of their 
inability to define new constructs: for no one would build in so many complex features if 
they could be defined and would fit into the existing framework later on. 

The world of expressions has some elegant and useful mathematical properties whereas 
the world of statements is a disorderly one, without useful mathematical properties. Struc- 
tured programming can be viewed as a modest effort to introduce a small amount of order 
into the chaotic world of statements. The work of Hoare (1969), Dijkstra (1976), and 
others to axiomatize the properties of the statement world can be viewed as a valiant and 
effective effort to be precise about those properties, ungainly as they may be. 

This is not the place for me to elaborate any further my views about "Jon Neumann lan- 
guages. My point is this: while it was perhaps natural and inevitable that languages like 
FORTRAN and its successors should have developed out of the concept of the yon Neu- 
mann computer as they did, the fact that such languages have dominated our thinking for 
twenty years is unfortunate. It is unfortunate because their long-standing familiarity will 
make it hard for us to understand and adopt new programming styles which one day will 
offer far greater intellectual and computational power. 
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TRANSCRIPT OF PRESENTATION 

JAN LEE: Our second session this morning, and the first session dealing explicitly with a 
language, is to be the paper  by John Backus on the His tory of  F O R T R A N  I, II,  and III .  

I had an interesting occurrence just  before I left my office this week. I had a letter from 
Taiwan, believe it or not, saying, " I n  1959 you wrote a program, and I have a cus tomer  
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