
Introduction 

Graphics and J. Foley 
Image Processing Editor  

Optimal Surface 
Reconstruction from 
Planar Contours 
H. Fuchs, Z.M. Kedem, and S.P. Uselton 
The University of Texas at Dallas 

In many scientific and technical endeavors, a three- 
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surface over a set of cross-sectional contours. This 
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constructed by separately determining an optimal 
surface between each pair of consecutive contours. 
Determining such a surface is reduced to the problem 
of finding certain minimum cost cycles in a directed 
toroidal graph. A new fast algorithm for finding such 
cycles is utilized. Also developed is a closed-form 
expression, in terms of the number of contour points, 
for an upper bound on the number of operations 
required to execute the algorithm. An illustrated 
example which involves the construction of a 
minimum area surface describing a human head is 
included. 
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Many scientific and technical endeavors involve in- 
teractions with solids and surfaces. In biological re- 
search, medical diagnosis and therapy,  architecture, 
and automobile and ship design, for instance, these 
structures are often so detailed and the interaction with 
them so extensive that au tomated  assistance of some 
kind is almost a necessity. Such assistance is seriously 
hampered  by the difficulty of effectively defining these 
three-dimensional structures to the computer .  

I n  microscopy, for instance, one often deals with 
three-dimensional objects,  but, because light micro- 
scopes of any significant magnification are only mo- 
nocular, the three-dimensional structure has to be 
reconstructed from a sequence of two-dimensional 
images. Two methods are often employed to obtain 
these images. If the specimen is sufficiently transpar- 
ent, the microscope can simply be focused at various 
levels into the structure. The image obtained at one 
such setting consists primarily of those parts of the 
solid which are in focus, namely a cross-section of the 
solid at a given depth. These images are then recorded 
for further study. This method,  however,  cannot be 
used for opaque specimens. Such specimens are cut 
into thin slices; then each slice's microscopic image is 
examined and recorded individually. 

The cross-sectional images are then used to recon- 
struct the three-dimensional structure. A simple man- 
ual method is sometimes employed.  The images are 
transferred to photographic transparencies sized for 
table-top observation and are stacked in sequence with 
transparent  spacers of appropriate  thickness. The re- 
sulting semitransparent  stack roughly approximates  the 
original three-dimensional structure and can be exam- 
ined from various angles. 

Since the outside surface of the three-dimensional 
structure is often of greatest significance, an interme- 
diate step of determining, either manually or automat-  
ically, the boundary at each cross-section is often 
included [11]. The reconstructed structure then ap- 
pears similar to a set of wire-frame contours over  
which the surface "skin" is thought to lie [9]. Since 
the display of the structure is most often in the form of 
these wire-f lame contours, the task of creating the 
surface is left to the viewer's imagination. This is a 
nontrivial mental  exercise when dealing with any but 
the simplest structures (Figure 1). 

Although wide interest has been indicated in the 
development  of an automatic procedure for defining a 
surface over  wire-flame contours,  to the best of our 
knowledge, only a single object-constructing method 
has appeared in the literature, a volume-approximating 
procedure due to E. Keppel  [8]. This method intro- 
duced a reduction of the problem to finding a path in a 
directed graph and used certain heuristics for choosing 
an appropriate  path. The method to be presented here 
also reduces the problem to one in graph theory,  but 
does not utilize any heuristics, thus allowing a general 
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Fig. 1. Con tour  data of human  head.  

development with a variety of possible options for 
choosing optimizing criteria. (A simple procedure uti- 
lizing local optimization has been previously developed 
by one of the authors[4].) 

S t a t e m e n t  o f  P r o b l e m  

An unknown three-dimensional solid is intersected 
by a finite number of specified parallel planes. (The 
method can easily be extended to handle more general 
cases in which the contours do not necessarily lie on 
parallel planes. In the interest of simplicity of presenta- 
tion, these generalizations are not considered in the 
sequel.) The only information about the solid consists 
of the intersections of its surface with the planes. Each 
of these intersections is assumed to be a simple closed 
curve. These curves are not completely specified; in- 
stead, a finite sequence of points encountered during a 
positive (counterclockwise) traversal of each of the 
original curves is given. The curve segment between 
two consecutive points is approximated by a linear 
segment, called a contour segment. The sequence of 
contour segments lying on one of the parallel planes, 
which we assume also form a simple closed curve, is 
called a contour. The sequence of contours is used to 
construct a piecewise planar approximation to the orig- 
inal object surface. The approximating surface is con- 
structed in a way which assures that its intersections 
with the parallel planes are identical to the contours 
lying on them. 
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We reduce the problem of .constructing such an 
approximation to one of constructing a sequence of 
partial approximations, each of them connecting two 
contours lying on adjacent planes. Each of these prob- 
lems can be described as follows: 

Let one contour be defined by the sequence of m 
distinct contour points Po, PI . . . . .  Pro-l, and let the 
other contour be defined by the sequence of n distinct 
contour points Q0, Q1 . . . . .  Qn-1. We note that P0 
follows Pm-1 and that Q0 follows Q,_~, and so indices 
of P are modulo m and indices of Q are modulo n. (+k 
will be used to denote addition modulo k.) We wish to 
create a surface between the contours P and Q. The 
surface is constructed of triangular tiles between these 
two contours. The vertices of these tiles are contour 
points, with the vertices of each tile taken two from 
one sequence and one from the other.  Thus each tile is 
defined by a set of three distinct elements either of the 
form {Pi, Pk, Qj} or {Q~, Qk, Pj}. 

We next consider a simplifying observation. As- 
sume that the tile {Pi, Pk, Qj} is in the approximating 
surface. Then we know that the line segment P~Pk (or 
PkP~), which belongs to the intersection of the approx- 
imating surface with one of the parallel planes, has to 
be a part of the contour.  Thus the points Pi, P~+,,~, 
• • • , Pk (or the points Pk, Pk+m~ . . . . .  Pi) all lie on a 
straight line. Therefore ,  without changing the approxi- 
mating surface, the tile {P~, Pk, Qj} can be replaced 
by the tiles {P~, P~+,~, Q~}, {P~+,~, Pi+,z, Qj} . . . . .  
{Pk-,1, Pk, Qj} (or it can be replaced by {Pk, Pk+,l, Q~}, 
{Pk+ma, Pk+mz, Q~} . . . . .  {Pi-,a, P~, Q~}). (The case 
where {Q~, Qk, Pj} belongs to the approximating surface 
is treated similarly.) Thus, without loss of generality, 
we assume that all tiles belonging to an approximating 
surface will be elementary tiles, triangles either of the 
form {Pi, P~+,,~, Qj} or the form {Q~, Q~+nl, P~}. Thus 
each tile's boundary will consist of a single contour 
segment and two spans, each connecting an end of the 
contour segment with a common point on the other 
contour (Figure 2). 

Fig. 2. Reduct ion to " e l emen ta ry"  tiles. 

x 
14" ~. 

0 i -,I 0 i 

We orient the elementary tiles by writing a tile of 
the form {Pi, Pi+ml, QJ} as (P~, Qj, P~+ml) and by 
writing a tile of the form {Q~, Qj+,I, P~} as (QJ+n~, P~, 
Q~). The order of the three points in the sequences 
describing the tiles was chosen in a way which guaran- 
tees consistent orientation of the tiles' surfaces. Span 
PiQ~. will be considered the left span of (Pi, Q~, Pi+ml), 
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and span Pi+mlQ~ will be considered its right span. 
(PiQ~ and P~Qj+,I are, respectively,  the left and right 
spans of  (Q~+,I, Pi, Qj).) 

There  are of  course many sets of  e lementary  tiles 
which could" be defined over  the points of  the two 
contours .  As we want the tiles which will define a 
surface to "f i t"  together ,  we restrict considerat ion to 
those sets of  tiles which satisfy the following two 
condit ions:  

(1) Each contour  segment  appears  in exactly one  
tile in the set. 

(2) If  a span appears  as a left (right) span of  some 
tile in the set, then it also has to appear  as a right 
(left) span of  at least one tile in the set. 

A set of  tiles satisfying these two condit ions is 
called an acceptable surface. 

There  are still many sets of  tiles which satisfy the 
above condit ions;  therefore  addit ional  criteria will be 
used to choose the most  appropr ia te  surfaces f rom 
among  these sets. 

Solution 

The problem is reduced to one  in graph theory .  In 
the sequel,  the terms used, unless defined,  are those 
of  [5]. We define a directed graph G-(V,  A ) ,  in which 
the vertices cor respond to the set of  all possible spans 
between the points Po, P1, • • • , Pro-1 and the points 
Q0, Q~ . . . . .  Qn_a, and the arcs cor respond  to the set 
of  all the possible e lementary  tiles. An  arc in the 
graph will be incident f rom the vertex which corre-  
sponds to the tile's left span, and will be incident to 
the vertex which corresponds  to the tile's right span. 
Thus 

V =  {v~li = O, 1 . . . .  , m  - 1 ; j  = 0, 1 . . . .  , n  - 1} 

and v~ corresponds  to the span P~Qj. Fur the rmore  

A = {(vk~, vst) l either s = k and t = l + ,1 
or  s = k  + , , 1  and t = l } ,  

and thus (vet, vst) corresponds  to the e lementary  tile 
with the left span PkQt and the right span PsQt. G is a 
toroidal graph (see Figure 3). We refer to the vertex 
v~ as being in the row i and in the column j ;  similarly 
we say that the arc (vii, v~+,,~) is a vertical arc between 

the rows i and i+ml ,  and the arc (vi~, viz+,l) is a 
horizontal arc between the columns j and j + n l .  

A n y  set of  e lementary  tiles can be viewed as a 
subgraph of  G spanned by the arcs cor responding  to 
the e lementary  tiles (Figure 4). For  any subgraph S of  
G and a vertex v of  G we denote  by iudegrees(v) and 
outdegrees(v)  the number  of  arcs in S which are 
incident to v or  f rom v, respectively.  We next charac- 
terize those subgraphs of  G, referred to in the sequel 
as acceptable subgraphs,  which cor respond  to accepta-  
ble surfaces. Let  S be a subgraph of  G which corre-  
sponds to an acceptable surface. The previously stated 

condit ions (1) and (2) are equivalent  to the following 
condit ions on S: 
(1 ' )  For  every i, i = 0, 1 . . . . .  m - 1, there is 

exactly one vertical arc in S be tween the rows i 
and i+ml  (which corresponds  to an e lementary  
tile which includes the con tour  segment  
PiP~+ml); and for e v e r y j ,  j = 0, 1 . . . . .  n - 1, 
there is exactly one horizontal  arc in S between 
the c o l u m n s j  and j + . l  (which cor responds  to an 
e lementary  tile which includes the con tour  seg- 
ment  Qj, Qj+.I). 

(2 ' )  For  a vertex vii of  G,  ei ther  the indegrees(v~j) = 
outdegrees(v~j) = 0 or  indegrees(vij) > 0 and 
outdegrees(vij) > 0. 

We remind the reader  that  a directed graph is 
weakly connected if and only if it is connec ted  when 
considered as an undirected graph,  ignoring the direc- 
tion on the arcs. A directed graph splits into one  or  
more  maximal weakly connec ted  subgraphs,  which are 
referred to as weak components .  

LEMMA 1. A n  acceptable subgraph o f  G is weakly 
connected. 

PROOF. Let  S be an acceptable  subgraph of  G and 
assume by contradict ion that  S has at least two weak 
componen t s .  Consider  one  of  its componen t s  So. There  
is at least one arc of  S which is not  in So, and assume, 
without  loss of  general i ty,  that  it is horizontal .  We 
claim that there exist i a n d j  such that the vertex v~j is in 
So, but So does not contain a horizontal  arc be tween the 
columns j - , 1  and j .  Indeed ,  let us consider  the two 
possible cases: 
(1) So has no horizontal  arcs. As So is not empty  we 

choose  an arbitrary vertex of  So to be v~ (which is 
then incident with a vertical arc in So). 

Fig. 3. Toroidal graph representation. 
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Fig. 4. Correspondence between a set of tiles and a subgraph. 
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(2) So has at least one  horizontal  arc. As  S contains 
exactly one  horizontal  arc be tween any two adja- 
cent columns and as we have assumed there  is a 
horizontal  arc of  S which is not in So, it follows 
that  for some j ,  So has a horizontal  arc be tween 
the c o l u m n s j  a n d j + , l  but  has no horizontal  arc 
be tween the columns j - , 1  a n d j .  Choose  vii to be 
any vertex in the j th  co lumn which is in So. 

We now show that in both  of  these cases all the 
arcs (vki, Vk+m~,i), k = 0, 1, . . . , m - 1, are in So. As  
vii is in S, it follows that  indegrees(vu) > 0, and,  as 
(vi, i-,~, vu) is not  in So, (Vi-mlJ, Via) must  be in So 
(Figure 5). Therefore  Vi-maJ is in So, indegrees(vi_,,az) 
> 0, and ,  as (v~-~aj-.~, v~-,l j)  is no t  in So, 
(vi-,2j, Vi-m~j) must be in So. Proceeding in this way, 
we see that  for  all k ,  (vki, vk+,~,i) are in So. 

As  S contains a hor izontal  arc be tween any two 
adjacent  columns,  it follows that for some k, (vk.i-,i, 
vki) is in S (Figure 6). This arc shares a vertex with the 
arc (v~i , vk+,,,~j), which is in So, and thus (vk.i-.~, v~j) 
must be in So. As  we have assumed before  that So 
contains no arc be tween the columns j - . 1  and j ,  it 
follows by contradict ion that S = So, S is weakly 
connected .  [] 

LEMMA 2. I f  Vii is a vertex o f  S such that 
indegrees(v u) + ontdegrees(v u) -> 3, then indegrees(vu) 
= ontdegrees(vu) = 2, and for every other vertex v,~t o f  
S indegrees(Vst) = outdegrees(v~t) = 1. 

PROOf. By the assumption of  the l emma,  v u is 
incident with at least three arcs of  S. Without  loss of  
general i ty,  we may assume that  it is incident with the 

a r c s  (Vi,J_nl , Via), (via , Vi.i+nl), and (vi-.,1.j, vii). S does 
not contain any other  hor izontal  arcs be tween the 
columns j - . 1  and j and be tween the columns j and 
j + . l .  Thus by reasoning similar to that used in the 
p roof  of  L e m m a  1, it can be shown that S contains all 
the arcs of  the form (vki, vk+m~,i) for k = 0, 1 . . . . .  m 
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Fig. 5. 
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- 1 (Figure 7). S contains the arcs (vi-maz, vu) and (vii, 
vi+maj) and therefore  contains no o ther  vertical arcs 
between the rows i - , , 1  and i and between the rows i 
and i + m l .  Thus,  as S is weakly connec ted  and contains 
a horizontal  arc be tween any two adjacent  co lumns ,  it 
has to contain all the arcs of  the form (vi,k, vi.k+,1) for 
k = 0 ,  1, . . . , n - 1. Fu r the rmore  S c o n t a i n s  no 
addit ional  arcs, as we have already listed all its ver- 
tical and horizontal  arcs. 

We have already shown that vu is incident with the 
arcs (viz-,,1, vii), (vii, vij+,,1), (vi-mlJ, vi,i), and (vij, 
vi+.,lZ) in S. A n y  o ther  vertex of  S is e i ther  v~k or  vkj 
for some k. v~k is incident only with (v.k-.~, vik) and 
(v~k, vi.k+,,i) in S, and vkj is incident only (vk-mi.i, vk~) 
and (v~, vk+,.1j) in S. [] 
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We remind the reader that a directed graph is 
eulerian if and only if it can be traversed by a closed 
walk in which every arc of the graph occurs exactly 
once. Such a walk is called an eulerian trail. It is 
known that a subgraph S of a directed graph is eulerian 
if and only if it is weakly connected and for every 
vertex v in S i n d e g r e e s ( v )  = outdegrees(v). 

We now state a set of necessary and sufficient 
conditions satisfied by an acceptable subgraph. 

THEOREM 1. Let  S be a subgraph o f  G. Then S 
corresponds to an acceptable surface i f  and only i f  (1) S 
contains exactly one horizontal arc between any two 
adjacent columns and exactly one vertical arc between 
any two adjacent rows and (2) S is eulerian. 

PROOF. Let S correspond to an acceptable surface. 
Part (1) is just a restatement of condition (1').  By 
condition (2') and by Lemma 2 for every vertex v of 
S, indegrees(v) = outdegrees(v) ,  and by Lemma 1, S is 
weakly connected. Thus S is eulerian. Assume now 
that S satisfies parts (1) and (2). Condition (1') follows 
from part (1), and condition (2') follows from part 
(2). Thus S corresponds to an acceptable surface. [] 

REMARK. I f  S is an acceptable subgraph,  fo r  some  
i, i = 0 ,  1 . . . . .  m -  1, v ~o is in S (and for  some  ] , ] = 
O, 1 , . . .  , n - 1, voj is in S). 

PROOF. From part (1) of Theorem 1 we know 
that S must contain a horizontal arc of the form (v~0, 
v~,) (and a vertical arc of the form (v0~, vu)). Thus vi0 
(and v0~) must be in S. [] 

An acceptable subgraph S can be described as a 
closed trail (ul, u2 . . . .  , ur), where the uk are vertices 
of G such that ul = ur = V~o for some i, and S contains 
exactly all the distinct arcs (Ul, Uz), (Uz, ua), . . . ,  
(u~-l, u~). Note that r = m + n + 1 and S contains m 
+ n arcs. Such a trail is obtained by simply writing out 
the eulerian trail describing S starting with an appro- 
priate vi0. In the sequel we refer to acceptable 
subgraphs as acceptable trails. 

We note that S is in one of two forms: either 
indegrees(vij) = outdegrees(v~) = 1 for every vii of S, 
or indegrees(Vst) = outdegrees(vst) = 2 for one vertex 
of S and indegrees(vij) = outdegrees(vo) = 1 for every 
other vertex of S. These two cases correspond to two 
forms of an acceptable surface: in the first case it is 
homeomorphic to a cylinder (Figure 8), and in the 
second it is homeomorphic to two cones "glued" along 
the span PiQj (Figure 9). (In some applications one 
may consider the latter form inappropriate and accept 
only those surfaces which are homeomorphic to a 
cylinder.) 

We note that the number of acceptable surfaces is 
an exponentially growing function of max(m, n). To 
see this, consider all surfaces which correspond to 
trails beginning with v00. Each such trail can be de- 
scribed as Vo,I1, lz . . . .  , I,,+,, where each Ik may be 
thought of as one of the two instructions: "down" or 
"right." There are exactly m "down"  and exactly n 
"right" instructions in the sequence 11, 12, • • • , Im+,; 
these instructions can appear in all possible permuta- 
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tions. Thus there are (m + n)! l (m!  n!) possible "pro- 
grams," each of them corresponding to a distinct 
acceptable surface which includes the span PoQo. As 
(m + n)! / (m! n!) is already an exponentially growing 
function of max(m, n), the total number of acceptable 
surfaces (most of which do not include the span P0 Q0) 
is exponential. 

Fig. 8. An  acceptable surface homeomorph ic  to a cylinder. 
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Fig. 9. An  acceptable surface homeomorphic  to two cones.  
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As there  are many  acceptable  surfaces, we use addi- 
t ional criteria to choose  opt imal  surfaces f rom a m o n g  
them.  To this end we have to define the "qua l i ty"  of  an 
allowable surface, and then we look for  a surface of  
"bes t "  quality. 

We describe this measure  of  "qua l i ty"  by assigning 
costs to the tiles. We associate with each arc (Vkl, Vst) of  
G a cost  C((vkl, Vst)) chosen f rom some set; in the sequel 
this will be the set of  the real  numbers .  The  cost of  a 
trail is defined as usual to be the sum of  the costs of  the 
arcs t raversed by it. A surface of  best  "qua l i ty"  is one 
whose cor responding  trail is of  min imum cost. Using 
T h e o r e m  1, we can now state our  p roblem as follows: 
Find a minimum cost acceptable trail. 

As we have stated,  we can always write out  .the 
chosen trail so it starts and ends in a (single) vertex v~0 
for  some i = 0, 1 . . . . .  m - 1. We stress here that  we 
do not  assume that  a min imum cost acceptable  trail 
includes any specified vertex fixed in advance ,  and 
thus we do not  assume that  a best approximat ing  
surface will include a specified span.  By the R e m a r k ,  
the assumpt ion that a best  approximat ing  surface 
"s tar ts"  with a span of  the form PiQo does not  restrict 
the general i ty of  the solution.  

We reduce  the p rob lem of  finding a min imum cost 
acceptable  trail in our  toroidal  graph  G to finding 
certain min imum cost paths in an appropr ia te  planar  
graph  G' (see Figure 10). (Apa th  is a trail in which no 
vertex is repea ted . )  We define G '  = (V' ,  A ' )  by 

V ' = { v o l i = O ,  1 . . . . .  2m;  j = 0 , 1  . . . . .  n}, 
A '  = {(vkz, vst) [ ei ther  s = k and t = l + 1 

or  s = k  + 1 and t = l } .  

We also define for  an arc (Vkl, Vst) of G '  

C (  (V k l ,  V st)  ) = C (  (V k(modm), l(modn),  V s(modm),t(modn)) ) " 

Thus G '  is essentially cons t ruc ted  f rom G by cutt ing it 
open  and gluing toge ther  two copies of  the rectangle.  
Note  that  G '  is acyclic ( there are no closed nontrivial  
trails in G ' ) .  

Let  i = 0, 1, . . . , m - 1. There  exists a one- to-  
one co r respondence  be tween the set of  the paths f rom 
rio to vm+l. n in G' and the set of  the acceptable  trails in 
G which start and end at vi0. Indeed ,  such a corre-  
spondence  is defined by associating with a path 

r i O  ~--- V i l , J l ,  Vi2,J2,* . . ,  

in G '  the trail 

Vim+n+l,Jra+n+l ~ Vm+i, n 

ViO ~ Vil(rnodra),.il(modn) Viz(modm),J2(rnodn), 

• . . , Vim+n+l(modm),Jm+n+l(modn) ~ Vio 

in G. We also note  that this co r respondence  preserves 
the cost. Thus  our  p roblem can be succinctly stated as 
follows: Find a minimum cost path ¢r in G' from 
among all those paths which start at Vi.o and end at 
Vm+i.nfor i = 0, 1 . . . . .  m - 1. Def ine  zr[i] for  i = 0, 

Fig. 10. Planar graph G'  obtained from toroidal graph G. 
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1, . . . , m - 1 to be a min imum cost path f rom Vi,o to 
Vm+i. n. Then  the desired path ~-, cor responding  to a 
best acceptable  surface,  can be found  by first f inding 
zr[0], zr[1] . . . . .  zr[m - 1] and then picking a min imum 
cost path f rom a m o n g  these m paths.  

The  problem of  finding min imum cost paths in 
graphs has been studied extensively (for b ibl iography 
see [3] or  [6]). Two main variants have been  of  
interest:  
I. For  a pair  of  vertices (u, w) in the graph,  find a 

min imum cost path f rom u to w. 
II .  For  all pairs of  vert ices (u, w) in the graph,  find a 

min imum cost path f rom u to w. 
Well known methods  exist for  dealing with these 
variants.  

I f  we find ~- by first f inding m paths,  7r[0], 7r[1], 
. . . .  7rim - 1], and then picking 7r f rom a m o n g  them,  
then we are dealing with ano ther  possible var iant ,  
which falls be tween the two stated above:  
I I I .  For  several pairs of  vert ices (u, w) in the graph,  

find a min imum cost path f rom u to w. 
Indeed ,  in our  case we wish to find a min imum 

cost path for each of  m pairs. Variant  I I I  can always 
be solved by solving m instances of  variant  I. (For  our  
p roblem this is more  advan tageous  than solving one 
instance of  variant  II  and extracting the required  
informat ion . )  Thus  if T(m, n) is the n u m b e r  of  opera-  
t ions required  to find a single ~-[i], all the required 
paths can be found  in roT(m, n) opera t ions .  In ano ther  
paper  a general  me thod  for more  efficient solution of  
variant  I I I  is described [7]. In the sequel we present  a 
possible implementa t ion  of  that  me thod  for  our  prob- 
lem. The  implementa t ion  chosen is not  the most  ele- 
gant  one ,  but  ra ther  one  which lends itself to a simple 
presenta t ion.  As  we shall see, variant  I I I  can then be 
solved in slightly more  than (logzm)T(m, n) opera-  
tions, resulting in a reduct ion  of  the n u m b e r  of  opera-  
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W C + I ,  • . . 

We show 
say, rrw is 

~[i] ~ (Ul 

tions to almost  ( l o g z m ) / m  of that  required by the 
s t raightforward me thod  of  solving the problem by 
solving m instances of  variant  I. 

We extend the problem by requiring that  ~-[m], a 
min imum cost path f rom Vm. 0 to V2m.n , be found  also. 
(Since G '  consists of  two "cop ies"  of  G, ~-[m] can be 
obta ined  by simply shifting a previously found  7r[0] 
downwards . )  It is simpler to describe the implementa-  
tion by assuming that 7r[0], 7r[1], . . . , 7r[m - 1], ~-[m] 
are to be found.  

THEOREM 2. Let rr[i] be a m i n i m u m  cost  path 

f r o m  V~,otO Vm+i,nfor some  i E {0, 1 . . . . .  m}, and let j 
{0, 1 . . . . .  m} - {i}. Then there exists a m i n i m u m  

cost  path f r o m  V~,o to V,n+j,~ which does not  cross 7r[i] (it 
may  share vertices or  arcs with 7r[i]). 

PROOF. Let 7r[i] = (V~,o = Ua, uz . . . . .  um+~+a = 

Vm+i,,) and rr[j] = (vj,0 = wl ,  Wz . . . . .  Wm+,+l = 
Vm+j,,) be minimum costs paths,  and assume that they 
do cross. Without  loss of  generali ty assume that  i < j. 
A s /  < j  a n d m  + i < m + j ,  it follows that  w~ is below 
ua and Wm+,+~ is below Um+,+~. Let  c be the smallest 
integer for which 7r[i] and ~-[j] cross at the vertex Wc, 
and thus we = u~ for some a (see Figure 11). As  Wl is 
below u~, it follows that  Wc+~ is above 7r[i]. Since 
Win+n+ 1 is below Um+n+l ,  7r[i] and zr[j] share some 
vertex wa for d > c + 1. Pick the minimal such d.  
Then ,  for some b,  b > a + 1, ub = wa, and 7rw _A (Wc, 

, wa) lies above  ~'u ~ (Ua, u~+l, • • • , Ub). 
that  7rw and 7r~ are of  equal cost. Indeed  if, 
of  lower cost than 7r~, then the path 

, U 2 ,  • • . ~ U a  = W c ,  W c + l ,  • . . ~ W d  

= U b ~  U b + l ,  • . . , Um+n+l )  

is a path f rom v~,0 to vm+~,, which is of  lower  cost than 
7r[i], contradict ing the assumption that ~-[i] was a 
minimum cost path from v~0 to Vm+~,.. Assuming that 
rr~ is of  lower cost than Zrw leads to a similar contradic-  
tion. Thus the costs of  7r~ and rrw must  be equal.  
Define now the path 

7~'[j] ~ (Wl ,  W 2 . . . .  , W C _ I ,  W c 

U a ,  U a + l ,  • . . , U b  : W d ~  W d + l ,  • . . , W m + n + l ) .  

Then the cost of  ~-[j] is equal to the cost of  7rill. Thus  
we have defined a min imum cost path ~-[j] f rom v~,0 to 
Vm+j., which crosses rr[i] at fewer  points than did ~-[j]. 
This process is repea ted  until a min imum cost path 
f rom v0~ to Vm+j., which does not  cross 7r[i] is obta ined [ ]  

Let  now 0 _< i < j --< m and let 7r[i], 7r[j] be 
min imum cost paths which do not  intersect.  Let  V'(i ,  j )  
be the set of  those vertices of  G '  which ei ther be long to 
7r[i] or  7rill or  are be tween  rr[i] and 7rill. Def ine  G ' ( i , j )  
to be the subgraph of  G '  spanned by V'(i ,  j )  (Figure 
12). 

COROLLARY. Let  0 <-- i < j <-- m and let 7r[i] and 7r[j] 

be noncrossing m i n i m u m  cost  paths  f r o m  Vi,o to Vm+i, 
and f r o m  vjo to Vm+j.n, respectively.  Then f o r  every k ,  k 
= i + 1, i + 2, . . . , j  - 1, there exists a m i n i m u m  cost  

path 7r[k ] f rom Vk.o to Vm+k,, whol ly  contained in G'(i ,  j). 

Fig. 11. Two paths of  equal cost between Ua = We and ua = Wa. 

Ulq 

W 

° . .  

Um+n+l  

"-. ,Wm+n+l  

PROOF. Indeed ,  rr[k] starts and ends below 7r[i] 
and above  7r[j]. Thus  by T h e o r e m  2 it can be chosen so 
that  it does not  cross ei ther  7r[i] or  7r[j] and thus is 
wholly conta ined in G' ( i , j ) .  [] 

Using Theo rem 2, we can find all It[0], rr[1], . . . , 
~'[m - 1], ~r[m] by tlie following algori thm: 

Algori thm A L L P A  THS 

S I N G L E P A  TH(O, G'); 
S I N G L E P A  TH(m,  G'); 
PATHSBETWEEN(O,  m); 

where  the procedure  P A T H S B E T W E E N ( i ,  ]) is de- 
fined by 

Procedure PA T H S B E T W E E N  (i, j)  
k := t(i + J)/2l; 
if  i < k then 

begin 
S1NGLEPA TH(k,  G'(i, j)); 
PA THSBETWEEN(i, k); 
PA T H S B E T W E E N ( k ,  j)  

end 

and the p rocedure  S I N G L E P A T H ( k ,  H ' ) ,  not  defined 
here,  de termines  7r[k] by considering only the subgraph 
n t" 

By the Corol lary,  a search for  Ir[k] can always be 
limited to G'(i ,  j)  whenever  i < k < j (and 7r[i] and 
rr[.j] have been previously found).  We also note  that  
for any invocat ion of  S I N G L E P A T H ( k ,  G'( i ,  j))  in 
P A T H S B E T W E E N ,  the subgraph G'(i ,  j )  of G '  is a 
subgraph of  G'(0 ,  m). 

We now describe an iterative version of  this algo- 
r i thm whose analysis is simpler to present .  This version 
executes in llog2m] + 1 stages. At  the first stage 7r[0] 
and 7rim] are found.  At  stage o-, o- = 2, 3 . . . .  , 
[logzm], the algori thm finds 2 ~-z paths,  specifically 
7r[L(2k - 1)m/2~-lJ]  is found in G'(t(2k - 2)m/2~-1],  
L2km/2~r-l]) for k = 1, 2 . . . . .  2 ~-2. At  the stage 
[ logzm] + 1, the last stage,  each of  the paths of  the 
form ~-[L(2k - 1)m/2n°g~ml]] is found  in G'(L(2k - 
2)m/2n°g2ml], [2km/2n°g2m~]) for k = 1, 2 . . . . .  
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Fig. 12. Subgraph searched for paths ~r(i + l), ~r(i + 2) . . . . .  
~r(/" - 1). 

T[i ]  

-trtj] G'{i , j )  

2 fl°g2ml-1, unless the path was found in the previous 
stages. One easily sees that rn - 2 tl°g2m>l paths are 
found at this stage. 

We derive now an upper bound on the number of 
operations required by this version of the algorithm to 
find all rr[0], ~[1] . . . .  , 7r[m]. For a subgraph H '  of 
G ' ,  we denote by I H ' I  the number of arcs in H ' .  If u 
and w are two vertices in H '  and if we know that there 
exists a minimum cost path (in G ' )  from u to w which is 
wholly contained in H ' ,  then the search for this path 
can be limited to H',  and the number of operations 
required to find such a path is a function of H ' .  An 
implementation of S I N G L E P A T H ( k ,  H') using Dijk- 
stra's algorithm [1] will require O(I H'I"  logz (I H '  I/2)) 
operations. Because of the uniform structure of G '  it is 
possible to implement S I N G L E P A T H ( k ,  H')  so that 
the number of operations required is essentially equal 
to the number of arcs to be examined, and, since not 
every arc of H' has to be examined, the number of 
operations in an execution of S I N G L E P A T H ( k ,  H')  is 
bounded from above by I H ' I .  

We first observe that a search for 7r[k], a minimum 
path from vk.0 to Vm+k.n, can always be limited to those 
arcs of G '  which are of the form (vm, vst) for k -< p,  s -< 
rn + k, and there are 2mn + rn + n such arcs. Thus the 
number of operations in the execution of S INGLE-  
PATH(O, G') is bounded from above by 2mn + rn + n. 
Instead of actually executing S I N G L E P A T H ( m ,  G'); 
7rim] is obtained by "shifting" 7r[0] downwards. Thus 
stage 1 requires 2mn + rn + n operations. One easily 
sees that [G'(0, m)] = 2mn + rn + n + rn = 2ran + 2m 
+ n .  

Consider now a stage tr, o- = 2, 3 . . . . .  [log2m]. 
The number of operations in this stage is bounded from 
above by the sum of the number of arcs in the 
subgraphs of G'(0, m) considered in the stage. This 
bound is 

20--2 

o~ = ~ [ G ' ( / ( 2 k  - 2 ) m / 2 ~ - ' J ,  [2km/2'~-iJ)l. 
k=l 

To calculate this sum, we note that two subgraphs 
of the form 

700  

G'([(2k - 2)rn/2~-l], [2km/2~-l]) ,  and 
G'([2krn/2~], [(2k + 2)rn/2"]), 

which we call consecutive, both include the arcs in the 
path rr[2krn/2~-a], and they do not have any other 
arcs in common. Thus every two consecutive subgraphs 
share rn + n arcs (the number of arcs in the path). 

As there are 2 ~-2 - 1 pairs of consecutive graphs 
at this stage, o-, it follows that 

= [a'(0,  m) I + (2 ~-2 - 1)(m + n) 
= 2ran + 2m + n  + (2 ~ - 2 -  1)(m + n). 

Similarly, one can show that I G'(0, m)l + (m - 
2 ll°g2ml-1 --  1)( rn  + n )  is  an upper bound on the number 
of operations at stage [log2m] + 1, the last stage. 

The upper bound r(m, n) for the total number of 
operations will be: 

[logzml 

r ( m , n )  = 2ran + r n  + n  + ~ [2mn + 2m + n  
o'=2 

+ (2 ~ - 2 -  1)(m + n ) ]  + 2mn + 2m + n 
+ (rn - 2 tl°g~mj-I - 1)(m + n) 

= [log2m](2mn + m) + 3mn + m z. 

Up to now we have not considered the relative 
magnitudes of rn and n. To minimize r(m, n), we 
assume that rn --< n. This assumption does not decrease 
the generality of the solution, since if rn > n one can 
simply interchange the roles of the two contours. 

Thus we have 

r(m, n) < ([log2m] + 2)(2ran + m). 

As T(rn, n), the number of operations required by 
S I N G L E P A T H ( k ,  G'), is 2ran + rn + n, it follows that 
r(rn, n) < ([log2rn] + 2)T(rn, n). Thus we have achieved 
a reduction in the number of operations required to 
solve our instance of variant III  to less than ([log2m] + 
2)/rn of the number required by the straightforward 
method. 

The iterative algorithm was executed for graphs of 
various sizes for which rn = n. Ten graphs were chosen 
for each value of rn, and the costs were uniformly 
distributed pseudo-random numbers between 0~and 1. 
In each graph the appropriate rn paths were found. The 
number of arcs examined listed in Table I was the mean 
for the ten graphs for the value of rn. 

For the specific example described in the sequel, 
the performance did not vary significantly from the 
results summarized in Table I (e.g. form = 33, n = 52, 
the number of arcs actually examined was 19,953 com- 
pared to 116,061 required by the straightforward 
method and the upper bound r(33,  52) = 27,027). 

Example  

We enclose an example of a surface constructed by 
our algorithm. For this application, the cost assigned to 

.an arc was the area of the associated triangular surface 
tile. Thus the resulting overall surface is one with mini- 
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mum total surface area. Figure 13 illustrates the indi- 
vidual triangular tiles defined over the contours of 
Figure 1; Figure 14 contains continuous shaded images 
of the same surface from different orientations. 

We note that the object definitions generated by 
this algorithm can be compressed, if desired, by com- 
bining those adjacent tiles which are most nearly co- 
planar. 

Fig. 13. Optimal tiled surface defined over the contours of Figure 1. 

Applications 

We briefly sketch a few of the possible apivlications 
for this technique: 
-Reconstruction of three-dimensional microscopic 

structures from two-dimensional images [10] 
-Simulation of the likely results of reconstructive sur- 

gery from limited modifications of pre-surgery sur- 
face data 

-Volume calculations of human body components 
from tomographs (reconstructed cross-sectional X- 
rays) for diagnosis and therapy [2] 

-Construction of geographic terrain surfaces from 
topographic maps for realistic simulation of low-level 
flying in pilot training simulators 

-Approximation of geographic surfaces from limited 
reconnaissance data 

-Automatic  construction of surfaces in interactive 
geometric design systems (e.g. realistic renderings of 
automobile bodies from early "skeleton" sketches). Fig. 14. Smooth shaded displays of surface of Figure 13. 

Table I: Performance of New Minimum Cost Paths Algorithm. 

N e w  

Old New method New/ 
Paths Arcs 

method method upper old 
bound 

10 200 2,200 944 1,240 .429 
20 800 16,800 4,622 5,700 .275 
30 1,800 55,800 11,306 12,750 .203 
40 3,200 131,200 21,700 25,840 .165 
50 5,000 255,000 35,633 40,300 .140 
60 7,200 439,200 52,819 57,960 .120 
70 9,600 695,800 75,304 88,690 .108 
80 12,800 1,036,800 98,802 115,760 .095 
90 16,200 1,474,200 128,857 146,430 .087 

100 20,000 2,020,000 162,406 180,700 .080 

Paths 
Arcs 

Old method 

New method 

New method upper bound 

New/old 

Number of minimum paths found: m. 
Number of arcs in the graph G: 
2ran (m = n). 

Number of arcs examined by straight- 
forward method: m ( 2 m n  + m + n). 

Actual number of arcs examined by 
new method. 
~'(m, n) = [logzm](2mn + m)  + 3ran + 
m 2 . 

Actual ratio of arcs examined by new 
method to number of arcs examined by 
straightforward method. 
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Summary and Conclusions 

We have shown that: 
(1) The problem of defining a surface over contour 

points can be reduced to constructing a sequence of 
surfaces, one between each pair of adjacent contours. 

(2) These surfaces can be constructed solely from 
elementary triangular tiles, each defined between two 
consecutive points on the same contour and a single 
point on an adjacent contour.  

(3) All acceptable surfaces defined between two 
contours can be associated with certain cycles in a 
directed toroidal graph. 

(4) Finding such cycles can be reduced to deter- 
mining certain paths in an appropriate planar graph. 

(5) Finding such paths can be performed efficiently 
by an algorithm which successively subdivides the 
graph to minimize the search space. 

(6) The number of steps required to find a globally 
optimal path is bounded from above by ([log2m](2mn 
+ m) + 3mn + m2), where m and n are the number  of 
data points in each of the two contours. 

One may wish to consider generalizations to this 
reconstruction algorithm. For example, one may be 
interested in applications in which the object contains 
multiple contours on a single plane. The reconstruc- 
tion, for instance, of a standing human figure from 
contours on horizontal planes would involve perhaps 
three contours (two arms and the torso) at chest levels, 
merging into a single contour at the shoulder level. For 
these applications, the reconstruction algorithm would 
have to be extended to construct a single surface con- 
necting more than two contours on a pair of adjacent 
planes. 

8. Keppel, E. Approximating complex surfaces by triangulation o[ 
contour lines. IBM J. Res. Develop. 19 (Jan. 1975), 2-11. 
9. Levinthal, C., and Ware, R. Three-dimensional reconstruction 
from serial sections. Nature 236 (March 1972), 207-210. 
10. Shantz, M.J., and McGann, G. D. Computational morphology: 
three-dimensional computer graphics for electron microscopy. To 
appear in IEEE Transactions on Biomedical Engineering. 
11. Weinstein, M., and Castleman, K.R. Reconstructing 3-D 
specimens from 2-D section images. Proc. SPIE 26 (May 1971), 
131-138. 
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