The Origin of Computer Graphics within

General Motors

FRED N. KRULL

This article traces the history of the development of computer graphics
technology at the General Motors Research Laboratories during the period
from 1958 to 1967. A concept demonstration was formulated in the late
1950s to show the feasibility of applying computer technology to the problem
of vehicle body design. The narration then traces the history of a joint proj-
ect between GM and IBM for development of new and unique computer
graphics hardware. The salient features of the Design Augmented by Com-
puter (DAC-1) system are summarized in terms of nine separate technolo-
gies that were brought together for the first time to form a complete com-
puter-based design environment.

t is always instructive to rediscover an idea that still

has some merit today and is relevant to current tech-
nology and problems. In writing this article, I have,
across the distance of time, gained a new perspective of
some things that were done right and some that were
done wrong during the course of a rather large and in-
volved technical project.

As early as 1952, the General Motors Research Laborato-
ries (GMR) were using a card-programmed digital computer
for engineering and scientific analyses. However, notably
absent from the applications were problems related to
graphical design. To gain an insight into the automotive
design process, research personnel began discussions with
General Motors (GM) engineers and designers. It soon be-
came obvious to the researchers that drawings, pictures, and
models were the principal media for communication and
documentation of design ideas.

As a result of these discussions, four distinct types of
man-machine communication were identified:

1. Existing engineering drawings. The research project
was realistic enough to realize that computers could
not replace all the drawings used in the design process.
Such a claim would have been akin to the office auto-
mation claims of the paperless office, which still
shows no prospect of being achieved. Therefore, it was
concluded that a computer system must provide means
for reading existing engineering drawings and for
creating these drawings. Fortunately, because of the
nature of automotive design, body drawings are pri-
marily drawn to scale on a background of grid lines
with no dimensions. Digitizing this line information
seemed to be a feasible task.

2. Interactive manipulation of graphic information. The
design process frequently involved one person indicat-
ing a problem on a drawing to another person and then
their joint exploration of potential changes to the
drawing. It had to be possible to “point to” or indicate

the location of the problem, and to make an immediate
change so that the implications of the change could be
evaluated.

3. Comparison. Often there was a need to compare last
year’s design with the latest design efforts. In most
cases, what was desired was the ability to overlay or
superimpose one drawing on another so that the differ-
ences between two graphical images could be seen.
Obviously, if both designs were represented by
mathematical models, they could be displayed in dif-
ferent colors on a screen. However, color displays were
not yet commercially available. In addition, it was as-
sumed that much of the archival design information
would be available only in the form of drawings.

4. Nongraphical information. At that time, the commonly
used method for communicating numbers and text to
computers was via punched cards, which were read in
batch mode. Interactive terminals that would provide
immediate access to computer processing power were
still years in the future. It was deemed that interactive
or “immediate” input of moderate amounts of alpha-
numeric information would be an important part of an
effective design environment.

As a result, GMR began a study of the potential role of
digital computers in the graphical aspects of design. The
question that was being asked was, “How could computa-
tional techniques significantly impact the design process?” A
series of feasibility experiments led to the decision to estab-
lish a more comprehensive laboratory for studies in man-
machine communication. The facilities were to permit the
computational power of a large-scale digital computer to be
brought to bear on the problems of graphical design, while
recognizing the essential part played by the human in the
design process.

The initial goal of the project was the establishment of a
laboratory that would permit “conversational” communica-
tion between individual and computer and provide a plat-

1058-6180/94/$4.00 © 1994 IEEE

40 IEEE Annals of the History of Computing, Vol. 16, No. 3, 1994



Figure 1. IBM 704 computer system with display unit and film recorder.

form for experimentation in the design process. This goal
was achieved in 1963. This article traces the events that led
to the installation of the first computer graphics system
within GM and discusses the implications of this new tech-
nology in terms of both hardware and software.

Introduction

In 1955, the computer scientists at the General Motors
Research Laboratories became recognized as a separate
group within the Special Problems Department. Donald Hart
was appointed assistant department head with George
Ryckman and Edwin Jacks as supervisors. The group was
named Data Processing since computer science was not yet
recognized as a separate discipline by most universities. The
group was later made into a separate department in 1961.

Under the leadership of Donald Hart, two major depart-
mental activities were undertaken. George Ryckman’s group
was responsible for operation of a computing center that, at
that time, included an IBM 704 computer, keypunch sta-
tions, and off-line card-to-tape and tape-to-printer equip-
ment, together with the system programs to support their
operation. The remainder of the department, under the su-
pervision of Edwin Jacks, consisted of a programming staff
devoted to the development of software applications. Both
systems and applications were very fertile areas for work at
that time. The systems group was just beginning to gain
recognition in the IBM user community as a leader in the
development of computer batch operating systems. Early
experiments among GMR, North American Aviation, and

IBM led to the development of a batch monitor* program for
an IBM digital computer.' Most of the programming was
still being performed in IBM assembly language, but by
1958 a new Fortran compiler from IBM was being tested at
selected customer sites, including GMR.

During this same period IBM marketed a film recorder for
the IBM 704 computer that could be used to record “point
plots” on 8-mm film. This facility provided engineers with
their first opportunity to view computer-generated graphs
and computer-animated movies. Computer-generated traffic
simulations were recorded on film using this equipment.” For
demonstration purposes, IBM also provided a display unit
that operated as a slave to the film recorder so that the plot-
ting could be seen by the machine operator. The film re-
corder and display unit (Figure 1) became the basis for the
initial GMR experiments in interactive computer graphics.

June 1958 saw the start of discussions with various GM
divisions, such as Styling, Fisher Body, and Chevrolet, to
gain an appreciation for the many problems of vehicle de-
sign and engineering. From these discussions, it became
apparent that the time-consuming problems were in the areas
of drafting and the translation of drawings into models,
templates, production tools, and fixtures. It was felt that, if a
computer could read sketches and drawings, then it could be
programmed to produce further drawings, engineering data,
and control tapes for numerically controlled machine tools.

*At the time of the events described in this article, the term
“monitor” was used for what would now be termed an “operating
system.”
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Figure 2. Functional process of digitizing a drawing.

By 1960, the process for programming machine tools was
already under development at MIT, resulting in the Auto-
matic Programmed Tool part programming language.’ Nu-
merically controlled machines were just beginning to be
installed within GM. The Manufacturing Development group
within GM was already at work on numerical control ma-
chining software. The MIT and the Manufacturing Devel-
opment efforts were both based on the premise that drawings
were the finished documentation of a design. Languages
were defined for preparing numerical control part programs.
In contrast, GMR personnel decided to concentrate their
efforts on the product design aspect of the process that
would result in the creation of drawings. It was believed that
this approach would open the door to the creation of numeri-
cal control information without the need to write extensive
numerical control part programs.

In November 1956, George R. Price, a research associate
at the University of Minnesota, had published an article
about engineering design titled “How To Speed Up Inven-
tion.” On the basis of some of Price’s thoughts about design
and the rapidly evolving technologies of digital computers
and numerical control machine tools, there developed the
concept of a computer system for vehicle design. The prob-
lem to be addressed was the design of a vehicle’s exterior
surface geometry together with all the interior components
that make up the chassis and body. These objectives did not
include the design of engines, transmissions, or other me-
chanical subassemblies. In 1959, Donald Hart encouraged
the applications group to begin the implementation of such a
system, and a five-person project team was formed. The
project was named “Digital Design,” and it went full steam
ahead to develop a feasibility demonstration. The name of
the project was later changed to DAC-1, Design Augmented
by Computers, since GMR management did not want to give
the impression that digits were being designed!

What resources were needed to carry out a feasibility
demonstration? Members of the department had already
programmed the IBM 704 computer to produce a point plot
on the IBM 780 display unit. To maintain an image on the
display only required putting the program into a loop. Inter-

active control of the computer was solved in a unique fash-
ion. The normal control of the system was via sense lights
and sense switches on the faceplate of the central processing
unit. Programs were started by keying in bootstrap com-
mands through these sense switches. Clearly, this was inade-
quate for any type of interactive design activity. Attached to
the central processing unit was a line printer that was nor-
mally used for operator messages. An arrangement of five
10-position dials was wired into the echo checking logic of
the on-line printer. A monitor program was then written that
would poll the printer and read the positions of the five dials.
These five digits were then used to control program execu-
tion, thus providing the project with an interactive input
device.

With this arrangement, it was now possible to control the
software and to direct program execution of the IBM 704
computer interactively. The display unit and numerical con-
trol machines provided good methods for the creation of
graphic output and physical models. The same boundary
curve and section line drawings that were viewed on the
display screen could also be redirected to a GMR-designed
drawing table that was mounted on a three-axis milling ma-
chine located at Bendix Controls, Inc.’ A Bendix-supplied
postprocessor was used to create machine tool commands.
Mylar machine tool control tapes were generated by creating
a tape image on IBM cards, followed by converting the cards
to punched mylar with an off-line IBM 047 card-to-tape
machine.

The spindle of the milling machine was simply used to
hold a ballpoint pen. This idea had already been used some
time earlier at Boeing Aircraft to produce full-size drawings
or “lofts” of airfoils. The only added flourish was to divide
the full-size drawing into 32 x 32-inch segments that could
be drawn one segment at a time. The drawing table was then
equipped with an indexing head and set of rollers that in-
creased the effective drawing area to 96 inches by the length
of the roll. After a few false attempts to coordinate the table
indexing with the drawing commands, a program was writ-
ten to generate a printed setup procedure that told the ma-
chine tool operator what table setup operations to perform
and when. A computer-generated process plan became stan-
dard operating procedure for all numerical control drawings.

There still remained the problem of providing graphical
input to a computer and, with the help of the GMR Instru-
mentation Department, this aspect of the problem was ad-
dressed at the same time. A digital circuit was designed to
use the signal from a photomultiplier tube mounted in a
hood covering the display unit to detect the presence or ab-
sence of light and set one of the sense lights on the IBM 704
computer accordingly. Drawings and sketches were traced
onto a clear plastic overlay mounted on the face of the IBM
780 display unit. The lines on the overlay were then digit-
ized by finding those points where the light, from a spot of
light plotted on the display unit, was occluded by the line on
the overlay (see Figure 2).

Since a drawing consisted mainly of “white space” and the
actual lines themselves covered only a minute percentage of
the total area, digitizing was not done by a raster scan. This
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would have been much too slow
using existing scan rates. Instead,
program logic was developed to
“lock onto” a line and digitize the
path to each terminal point in much
the same manner as an ant might
crawl along a wire. This facility
provided the last ingredient from
which a feasibility demonstration
was created.

The Digital Design
feasibility
demonstration

The Digital Design feasibility

demonstration had to show how
computers could be applied to the
vehicle design process. Also, in
August 1959, preliminary discus-
sions were started with IBM for the acquisition of custom-
designed graphics hardware and an IBM 7090 computer.
Therefore, the demonstration had to do more than demon-
strate feasibility. It had to justify the investment in a mul-
timillion-dollar joint project with IBM for the development
of a laboratory for the study of graphical man-machine
communication.’

The feasibility demonstration was designed to show how a
mathematical model of a vehicle might be created starting
from a series of designer sketches. After the three-
dimensional mathematical model is created, it must be ca-
pable of being modified quickly and then the resulting
mathematical model used to create physical models and full-
size drawings. All the mathematical algorithms were to be
programmed for the IBM 704 computer using the new For-
tran language and compiler. System routines or 1/0 drivers
were coded in assembly language.

During discussions with Styling, Fisher Body, and other
divisional personnel, it became apparent that they were very
concerned about the smoothness of the initial line drawings
used to show a new styling concept. Line drawings must
represent aesthetically pleasing curves from which all irregu-
larities, flat spots, or hollows have been removed. The con-
ventional process was to use the skills of a trained clay
modeler to translate from a rough design sketch to a full-size
clay model of the vehicle. It was felt that a design machine
could address some of these same problems if it were intro-
duced early enough in the design process. Therefore, it was
decided that early styling concept sketches would be the
starting point. Stylists were requested to sketch the concept
in perspective on paper (Figure 3), and the computer would
then be used to construct a three-dimensional mathematical
model that not only reflected the design intent but also rep-
resented the object to the necessary degree of detail,
smoothness, and accuracy.

A transparent overlay was used to trace the location of
four boundary curves of the hood surface. The two-
dimensional shape of these boundary curves, along with the

Figure 3. Designer sketch of a styling concept.

orientation and position of the model in Cartesian coordinate
space, provided enough information from which to compute
the spatial location of the hood boundary curves.

The transparent overlay containing the four boundary
curves was mounted on the display unit of the IBM 704
computer, and these lines were digitized by plotting points
on the screen and testing to see if the light triggered a sense
light using the light-sensitive photomultiplier. Points were
plotted from left to right and from top to bottom to locate
each boundary curve. The center of each line was estimated
from the two locations where the point plots first detected an
edge and subsequently reappeared on the opposite edge.
Successive locations along each boundary curve were then
digitized using a mathematical compass to plot points of
light according to the desired sampling interval (S), as
shown in Figure 4. It was possible to plot at a rate of 6,000
points per second, where the delay and rise times of the
photomultiplier were the limiting factors.

Smoothing the digitized data and estimating the direction
of the boundary curve were done dynamically by fitting the
data with cubic polynomials. A simple least-squares fit was
used to compute the cubic coefficients, and the polynomial
was used to extrapolate for an estimated location of the next

= SPOTS OF LGHT
@ - SAMPLED POINTS ON CURVE

S = SAMPLING INTERVAL

Figure 4. Line digitizing procedure.
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sample point. If subsequent sampled points were within a
specified tolerance of the estimate, then the sampling con-
tinued. If sampled data were outside this tolerance, the slope
and ordinate of the polynomial at the last good point were
used as initial conditions for constructing a new estimating
function. Thus, the digitizing automatically produced for
each boundary curve a set of cubic polynomials whose first
derivative was continuous — that is, they were C' continu-
ous.

The interior surface of the hood was represented by an
interpolation formula, as shown in the sidebar on the facing
page. It would appear that this method of interpolation an-
ticipated, by several years or more, the basic
(nonparametric) Coons surface patch.”” Limited to just the
blending of four boundary curves without cross-boundary
derivative input, the representation lacked the flexibility of
higher order Coons-Gordon patches to interpolate a network
of curves that had C' continuity. Joining of adjacent patches
with C' continuity was possible, and the developers did not
overlook this fact. In the simplest case, surface blending
formulas were expressed as ¢, = (1 — x°)’, with the value of k
left at an arbitrary value. The only method for the stylist to
change the surface interpolation, other than modifying the
boundary curves, was to change the value of .

The final decision as to what was an acceptable interpola-
tion was left up to the original designer. The design system
provided a variety of tools by which the designer might
evaluate the quality of the surface interpolation. The shortest
and most immediate means for evaluation was to display the
surface and original boundary lines on the IBM 704 display
unit. Either perspective or orthographic projections of the
boundary lines and section cuts through the surface were
available upon demand. However, it was extremely difficult
to make decisions relative to three-dimensional surface
quality from a presentation on a 17-inch display screen. This
statement is still true today.

To demonstrate that the computer provided a feasible so-
lution to the design problem, it was necessary to show how
numerically controlled machine tool technology could be
used to make accurate drawings or to machine models. The
GMR drawing table, located at Bendix Controls, was used to
produce full-size body drafts — 6 x 20 feet. Subsequently,
the same three-axis milling machine was also used to pro-
duce three-dimensional models of the styling surfaces, al-
though for purposes of the demonstration, all that was ever
machined were templates representing section cuts through
the surface.

Finally, the feasibility demonstration had to address some
aspect of surface geometry that was more engineering ori-
ented. A body designer was asked to sketch the plan view of
a desired hood opening line. This curve was digitized in the
same manner as the surface boundary curves and the opening
line projected onto the interpolated surface. The body de-
signer was then asked to draw the cross section of the flange
that must be attached to the curve formed by projecting the
hood opening line onto the hood surface. Flange surfaces
that met engineering criteria were created automatically
from this data.

The feasibility demonstration along with a proposal to
enter into a joint development project with IBM was finally
shown to the GMR policy group in July 1960. In attendance
were Lawrence Hafstad, vice president of research; John
Gordon, president of GM; and Fred Donner, the board
chairman. The presentation was well received. At the con-
clusion of the demonstration, all of the presenters except for
the assistant department head (Donald Hart) were asked to
leave the room for a few minutes. Since a quorum was pres-
ent, a meeting of the policy group was convened. Within two
minutes the proposal to initiate a joint development contract
with IBM was approved in total. Needless to say, all mem-
bers of the team were elated, but a lot of hard work lay
ahead.

Without any real planning, a number of other spin-off
R&D activities resulted from the concept demonstration.
Significant was the resulting work in line and surface ap-
proximation. During this same period, the GMR Mathemat-
ics Department, under Henry Garabedian, became interested
in the more mathematical aspects of the vehicle design
problem. Some of the earliest work in spline-based curve
and surface approximation resulted from these efforts.”"
Later, the DAC-1 concepts for scanning a drawing became
the basis for research in image processing.

The joint development contract with
IBM

The approval by GM management of the DAC-1 project
triggered a serious effort to draw up a legal agreement be-
tween GMR and IBM. In July 1960, IBM presented a formal
proposal to GMR for IBM to design and build a Graphic
Expression Machine (Project GEM). IBM proposed to de-
sign and construct five hardware components:

. aspecial data channel,

. adisplay adapter,

. adisplay unit,

. a photo-recorder-projector, and
. a photo scanner.

[ N R S

The characteristics of these hardware components are de-
scribed in detail in a joint GMR/IBM paper titled “Image
Processing Hardware for Graphical Man-Machine Commu-
nication.”"?

The agreement was based on GMR taking responsibility
for all software development and IBM to be the supplier of
computer hardware and associated special graphics equip-
ment. A common assumption was that GMR would install an
IBM 7090 processing system to provide the basic computing
platform for the joint project, and support high-end scientific
batch processing for GM users. The IBM 7090 was a nor-
mally configured commercial machine except for the addi-
tion of two special data channels: one for the yet to be an-
nounced 1301 disk file, and the second to serve as a
communication path between the host computer and the
GEM special graphics devices. In addition to the special data
channels, IBM provided a memory protect mode instruction,
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which prevented programs in high
(low) memory, by error, from ref-
erencing low (high) memory. The
memory protection instruction was
the same or very similar to the
instruction provided to MIT at the
same time to support development
of the Compatible Time-Sharing
System (CTSS)."”

It was assumed that the principal
design inputs would come from
two sources: freehand sketches and
drawings or records of previous
designs. There was a widespread
mistaken impression that the me-
dium for previous design data
would be drawings rather than ar-
chival copies of computer models.
While drawings continue to be a
major medium of communication,
few, if any, computer systems use
archived drawings as their input
medium.

A display unit was configured

Interpolation formula" e

An ad}acent surface patch sharing’ the:'x
-~ nuity ufﬂ a!sesnares F‘“”( X, Z.),

m:srms of the fnnctm ¥

with an electronic pencil to be used
for “sketching,” and a photo scan-
ner/recorder was designed for “reading” existing engineering
drawings. Graphics output could be displayed dynamically
on a screen or recorded on 35-mm film for rapid processing
and subsequent projection or printing. Delivery of the sys-
tem was estimated at 18 months after the contract was
signed in November 1960. Needless to say, it took a bit
longer (approximately 30 months).

IBM was particularly anxious to obtain the hardware con-
tract as it represented a commercial project for IBM person-
nel who were just phasing out of the SAGE early warning air
defense project that featured both graphic input and output
capabilities. The new IBM special data channel and the
graphic console represented straightforward implementations
of prior technology. However, the photo scanner/recorder
unit represented much more of a technical challenge and
later would present obstacles to both partners. A technical
liaison activity was organized between GMR and IBM to
monitor the progress of hardware development.

IBM planned a series of commercial products to evolve
from the joint endeavor. There were no restrictions on IBM
selling similar or identical hardware to other customers.
IBM certainly knew the goals and technical objectives be-
hind the project, but GMR systems and applications software
were regarded as proprietary information. After delivery of
the DAC-1 system in April 1963, IBM undertook a follow-
on project named “Alpine,” which resulted in three new
commercial graphics products: the IBM 2250 graphics con-
sole, the IBM 2280 film recorder, and the IBM 2281 film
scanner.

All three devices were intended for use with the just an-
nounced IBM System/360 series of computers. The graphics
console received a warm reception from the just emerging

CAD/CAM industry. The film recorder and film scanner
received a lukewarm reception and were later withdrawn as
supported products.

As the hardware development progressed during 1961 and
1962, two problem areas were identified. First and foremost
was the time GMR needed to develop and test software.
Long before the DAC-1 hardware was delivered to Warren,
Michigan, an IBM 7090 had been installed at GMR. The
central issue became how to test graphics software prior to
delivery of the graphics hardware. IBM agreed to allow
GMR to have access to an IBM 7090 in Kingston, New
York, where the IBM graphics development work was being
done. The arrangement called for IBM personnel to use the
system first and second shifts for their purposes. GMR per-
sonnel were allocated third shift for software testing.

Many long, trying weeks were spent in Kingston testing
the software. The scenario was to go to work Monday
morning in Warren, Michigan, travel to Kingston, New
York, and work there five consecutive nights. The weekly
return to Warren was scheduled for Saturday morning. This
was the early 1960s. IBM was very hesitant to allow GMR
female employees to work third shift because they could not
be escorted to the ladies’ room. GMR female employees
were both annoyed and amused by IBM’s attitudes, but it did
not stop them from fully participating in all activities of
the test team — both working and social. A male key-
punch operator was specially recruited by IBM for third-
shift coverage.

As the deadline for delivery of the system to GMR grew
closer, a larger and larger contingent of GMR employees
traveled to Kingston each week. The cost of travel became
so-acute that management secured use of a GM executive
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Convair aircraft to ferry out project personnel on Monday and
pick up the team on Saturday. Competition for third-shift ma-
chine time was very keen. Programmers competed with one
another for one or at the most two “shots” at the hardware each
night. In addition, IBM customers engineers, who normally per-
formed preventive maintenance on the IBM 7090 during third
shift, now found the machine room full of GMR programmers.
However, the spirit of cooperation remained high, and a lot of
good work was accomplished.

The second major problem to arise was the performance
of the photo scanner when used to read drawings. Partway
through the project in 1961, IBM held an internal technical
audit and changed project management. The new manager,
Dr. Ernest Newman, met with GMR liaison personnel and
presented revised specifications that he felt IBM realistically
could achieve. The hardware delivery acceptance tests for
optical resolution and analog linearity and stability were
revised based on internal IBM tests.

There was some consternation on both sides of the table
during the meeting but, in the final analysis, GMR had to
accept a less ambitious performance level lest it be forced to
settle for no equipment at all. Later on in actual use, it be-
came clear that photo scanning would be a less significant
aspect of the project. The major technical hardware
achievement of DAC-1 turned out to be the delivery of an
interactive graphic console attached to an IBM computer
intended for commercial rather than military applications.

Finally, a demonstration of the system hardware and soft-
ware in operation was given to IBM and GM upper man-
agement in December 1962 at the IBM laboratory in King-
ston, New York. Everything that didn’t move was painted
either gray or blue in preparation for the arrival of the ex-
ecutives. The demonstrations were repeated at least four
times with bleachers set up so that everyone could see the
single small terminal in operation. During the next-to-last
step in the final demonstration, a fatal system error message
appeared on the console screen. The IBM 1301 disk had
crashed. However, all acceptance tests were subsequently
completed to the satisfaction of both corporations, and the
graphics hardware was delivered to the GM Technical Cen-
ter in Warren, Michigan, during April 1963.

The DAC-1 system

What was the DAC-1 system? Was it merely a collection
of software that manipulated graphic images on a display, or
was there much more to it that was not intuitively obvious to
the casual observer? Certainly, the twenty plus professionals
on the software development team knew that there were
many subtle aspects to the system. One way to describe
DAC-1 would be to examine the technical achievements
within the following nine categories: operating systems,
languages and compilers, databases, the graphic console, the
photo scanner/recorder, mathematics, graphics, numerical
control machining, and DAC-1 design procedures.

Operating systems. In 1961, an IBM 7090 computer
system was installed at GMR to support the DAC-1 project
and to provide batch processing for GM scientific applica-

tions. This machine was a standard configuration in almost
every respect — with 32 Kbytes of memory, two channels,
and an assortment of peripheral equipment. At this time, the
only concession to the DAC-1 project was to add an IBM
1401 processor to channel B so that the project might gain
some experience with a disk-based operating system.

What type of computer operating system would be needed
in support of the DAC-1 project? Clearly, IBM standard
batch systems were inadequate. There had to be immediate
access to a large volume of data and programs. This implied
that the system must be disk-based. Furthermore, there had
to be immediate (millisecond) response to graphic interac-
tive operations while, at the same time, a smooth flow of
batch processing had to be maintained, but at a lower prior-
ity. All these requirements led the team to conclude that a
multiprogramming operating system must be an essential
part of the graphics system.

An operating system was designed based on the computer
configuration shown in Figure 5. However, in 1961, many of
the components did not yet exist. The DAC-1 graphics
hardware on channel C would not be delivered to GMR for
another 18 months. The IBM 1301 disk did not yet exist and
was temporarily replaced by an IBM 1401 and 1405 disk
attached as a tape unit. The initial IBM 7090 was equipped
with only a single 32-Kbyte memory. The final DAC-1 con-
figuration was an IBM 7094-1I with two 32-Kbyte core
memory boxes.

The multiprogramming system was managed by a trap
control system (TCS), which resided on the batch side and
acted as a traffic cop between the interactive and batch com-
puting demands. All interrupts were fielded by TCS and
control was passed to the appropriate control program:
BATCH or the DAC-1 monitor, depending on the type of
activity.

If an interrupt originated from the graphics channel, TCS
switched memory protection to the DAC-1 side and trans-
ferred control to a graphics monitor. When the graphics
monitor had no more work to perform, it relinquished con-
trol to TCS, which in turn transferred control to the IBM
batch monitor. These two modes of operation became known
internally as D’ and E’, where of course D’ meant “digital
design” and E* was “everything else.”

The foreground D’ task was assigned the higher priority
and was allowed the privilege of interrupting the background
E’ task whenever necessary. Since the graphics monitor re-
ceived immediate access to the main processor, system users
became accustomed to immediate response times. Immediate
response time became an important factor for user accep-
tance of the system. The normal system delays inherent in
conventional time-sharing would later become a significant
distraction for the interactive-graphics user community.

The problem of operating with a single 32-Kbyte memory
box was solved by logically splitting it in half, with 16
Kbytes assigned to support the interactive graphics opera-
tions and 16 Kbytes allocated for batch processing. The
memory protection feature was effectively used to isolate
high memory from low memory and vice versa. While it was
not always convenient to fit software into 16 Kbytes, the job
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was possible, except for one prob-
lem. IBM’s new Fortran IV lan-
guage was receiving increased use
within GM as a scientific batch
programming language; however,
the IBM compiler was written to
run in a full 32 Kbytes of memory.
The predecessor Fortran II com-
piler ran nicely in 16 Kbytes, but it
was being replaced by a richer,
more powerful language. There-
fore, GMR requested that IBM
provide access to the Fortran
compiler source code, and it was
modified to run in 16 Kbytes.

TAPES CHANNEL A

TAPES

DAC - 1
IBM ——{ CHANNEL C___| GRAPHIC
DEVICES
7090
COMPUTER CHARNEL D 1301 DISK
AND DRUMS
32K 32K
BATCH
DAC - 1
TCs

Fortunately, shortly after deliv-
ery of the graphics hardware to
GMR in April 1963, the initial 32-
Kbyte machine was upgraded to 64
Kbytes by the addition of a second
memory box. There were very few IBM 7090 computers
with two 32-Kbyte core boxes, and no two were programmed
in the same way. A full 32 Kbytes of memory was provided
for the interactive programs, while batch operations had their
own 32 Kbytes, which permitted the execution of any indus-
try standard application that was not time-dependent. Other
batch operating systems that obeyed the rules for interrupt
handling could have been supported in a like manner.

The use of two separate core boxes also provided a rudi-
mentary form of memory protection since one 32-Kbyte
memory was not addressable from programs resident in the
other 32-Kbyte memory. This use of a standard IBM proces-
sor in a multiprogramming mode with priority interrupts was
considered a first by many in the industry. These ideas were
adopted by IBM and others in the implementation of operat-
ing systems for subsequent generations of multiprogrammed
or time-shared computer systems.

The graphics monitor program was the kernel for a com-
plete disk-based interactive operating system. A more de-
tailed description of the disk subsystem is contained in a
paper entitled “Operational Software in a Disk Oriented
System.”"* The disk subsystem provided access and storage
for four types of information:

1. system processors, such as memory managers or a re-
locatable program loader;

2. application subroutines including math, graphics, or
photo scanning modules;

3. anumerical representation of graphic design data; and

4. scratch storage.

It did not take long for the project to recognize the value
of maintaining all programs on line for immediate access.
Most batch programs were executed from a batch stream
contained on a sequential tape device. If the batch program
needed intermediate programs or data, it usually was neces-
sary (o issue a message to the operator for additional tapes to
be hung on scratch tape drives. When the scientific and en-

Figure 5. System configuration.

gineering computing community learned that all graphics
programs and data were maintained on line using disk stor-
age, some jealousy and envy arose.

However, there was a rather unexpected performance
benefit of multiprogramming that seemed to pacify the batch
programming community. Since the multiprogramming
overlapped 1/0, it became less expensive to run a batch pro-
gram on a multiprogrammed computer than on a dedicated
batch system. It was hoped that the advantages of overlap-
ping I/O would extend to later time-sharing systems, but the
inherent nonrepeatability of system response time when
nearing system saturation became a large distraction.

The next most important contribution of the operating
system was in the area of memory management and dynamic
storage allocation. It was recognized from the inception of
the project that applications would easily exceed the size of
the available physical memory of the computer. Initially,
graphics applications were allocated 16 Kbytes, of which 14
Kbytes were dedicated to resident system code and disk /O
routines. Therefore, some type of memory management
scheme was essential. The program overlay solutions in-
vented for batch systems were inadequate because the se-
quences of module execution in an interactive environment
were unpredictable.

The solution that was adopted relied on dynamic memory
allocation and the use of relocatable object software that
could be loaded, dynamically linked, and executed at any
memory location. Calls to system routines from an applica-
tion were provided to allocate or free memory and to load or
unload programs at the subroutine level. A subroutine
“combine” function was invented to load groups of object
programs as one physical “load” or “clump.” The implemen-
tation did provide a solution to the memory management
problem, although it was not practical until a second 32-
Kbyte memory box was added to the system, since clumps
easily exceeded the size of available memory.

The software developed in support of a disk-based system
was an essential aspect of the system. The IBM 1301 was a
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fixed-block-size device with preformatted tracks, each con-
taining space for 465 36-bit words of data. System proces-
sors, subroutines, or data requests were then assigned cylin-
der-track addresses according to the size and number of
blocks requested. Disk memory management was based on
high-water-mark logic with garbage collection and cleanup
of unused space accomplished by running disk utilities dur-
ing off-shift hours as a batch program. An applications pro-
grammer requesting disk space for small elements of geo-
metric data asked for space from the small-block-size pool
(25 words per block, 15 records per track). Conversely, if a
large scratch storage area was needed, the largest block size
(465 words per block, 1 record per track) was requested.

Languages and compilers. The experience in implement-
ing the feasibility demonstration showed the value of high-
level languages both as an implementation tool and as an aid
to documentation. When the DAC-1 operating system and
applications software implementation began, it became clear
that some language and compiler changes in support of
graphics programming would be necessary regardless of
which high-level language was selected for use.

One alternative would have been to create a preprocessor
for Fortran, but this would have increased the already high
compilation times of IBM’s Fortran compiler. An available
alternative was the work at the University of Michigan on
the MAD (Michigan Algorithm Decoder) language.” The
MAD compiler was extremely fast. MAD, an Algol-58 de-
rivative, had firmed up in 1961 and was widely used at the
entire University of Michigan as well as several other uni-
versities. An important advantage was that the authors of
MAD were close at hand and able to effect the necessary
language and compiler extensions.

Significant additions to the MAD language included 13
new operators, new variable types (notably the “global vari-
able”), a new relocation scheme, and real-time statements.
The new operators and data types were designed to allow
cystems programs or graphics programming (bit manipula-
tion) to be expressed in a high-level language. The rapid
compilation boosted the productivity of the software devel-
opers. A project was begun in which the authors of MAD
made the necessary changes to the compiler and worked with
GMR personnel to produce the resulting “NOMAD” com-
piler. During its development, the name NOMAD stood for
“Non-Operational” MAD. Later, when NOMAD reached
production status, the name meant “Newly Operational”
MAD.

The selection of NOMAD as the name also became ap-
propriate because the compiler was designed to produce
location-independent code — that is, code that could execute
at any load address or wander from place to place. Compiled
object modules were stored on disk in libraries in a nonlink-
age edited format and loaded into memory for execution
upon demand.

NOMAD became the primary language for DAC-1 operat-
ing systems development and for supporting applications
development (math, graphics. and so on). Over 90 percent of
DAC-1 code was written in NOMAD, the most notable ex-

ceptions being TCS and the NOMAD compiler itself, which
were written using assembly language.

A second rather unusual software development led to an-
other systems language named Maybe, since it was not clear
that it would ever work or ever be used. The IBM 7909
channel could interpret a number of special commands for
error checking, retry when necessary, and off-line searching
and staging of data. While the numerical commands were
quite primitive, involving not much more than incrementing
or decrementing a register and comparing a register to zero
for a conditional branch, there were enough commands to
suggest that a high-level language could be designed to sup-
port the development of channel software. Consistent use of
the channel I/O capabilities by the applications programmers
was essential to the integrity of the system. During 1962, the
development of Maybe became a joint effort of the Univer-
sity of Michigan and the DAC-1 systems group. This effort
may have resulted in possibly the only attempt to develop a
high-level language and a compiler for a data channel.

While project management was adamant that Maybe be
used to write all channel programs, there was much skepti-
cism among the programming team. In point of fact, Maybe
did work and was used to synchronize the operations be-
tween the graphical devices and the host 7090 computer.
Maybe provided the linkages to keep track of the interrupts
and to transfer control to the appropriate NOMAD subrou-
tine. As the process was a back-and-forth transfer of control
across the data channel, it was feasible to nest NOMAD and
Maybe subroutines to an unlimited depth without the system
losing track of where it was or from where it had been inter-
rupted.

DAC-1 also provided a descriptive geometry language
(DGL) as a means for expressing the procedural decision
process that would go into a design sequence. In contrast to
the other languages mentioned in this section, DGL was a
programming language intended for the users of DAC-1
rather than the builders of the system. The language was
actually developed as a test bed for the mathematical opera-
tions prior to delivery of the DAC-1 hardware.

Consider the following DGL language statements:

LN0O1 INTERSECT(SU025, SU043);
LN006 = SMOOTH(LN003, TOLERANCE = .005);
DISPLAY(LN0O1, LNOO6);

In the first statement, SU025 and SU043 are the two ele-
mentary geometric surfaces to be intersected, INTERSECT
is the name of the mathematical operator to perform the
intersection, and LNOO1 is the result. In the second state-
ment, LNQO3 is a line to be smoothed to a tolerance value of
.005 and LNOO6 is to be the result. Finally, the DISPLAY
statement creates an image of the lines LN0OO1 and LN0O6 on
the graphic console screen.

DGL was a programming language with variables, con-
stants, statements, branching, looping, subroutines, and
parameterization in which INTERSECT, SMOOTH, and
DISPLAY were just three of a large number of operational
statements. It was assumed that designers would “program”
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and desk check these procedures before sitting down at the
DAC-1 terminal.

DGL procedures were then entered into the system via
decks of punched cards. Execution of a parameterized pro-
cedure then meant supplying the parameter values from the
keyboard, photo scanner, or electronic pencil.

Databases. The disk database associated with DAC-1
consisted of programs, descriptive text, and geometric
quantities such as points, lines, and surfaces that represented
components of a vehicle design. To the extent that DAC-1
was a computer-based geometric modeling system, the geo-
metric elements of the database represented the model.
Many nongeometric elements also became part of this data-
base, such as subassemblies: collections of other elements,
or drawings, which were a definition of the data needed to
create a physical layout (scale, orientation, content, notes,
dimensions, and so on). Each data element was named by a
two-character prefix that identified the type of data (LN for
lines), followed by a three-digit item number, followed by a
file number (LNO15-28). The data name, when passed
through a catalog of assigned disk space, was then mapped
into cylinder, track, and record address. While this type of
file organization was not naturally hierarchical in structure,
it became popular to save the names of related data within a
data element, thus providing the beginnings of a default
hierarchical file organization.

Of course, the usual functions were provided for dynamic re-
trieval or storing of data, but the allocation of space for a file was
done as a system function at the time a file was created. Disk
contents were backed up onto tape for protection against the
inevitable disk failures. However, no provision was made for
recording a log or an audit trail of database activity. Data secu-
fity, back-out, recovery, and restart were not done initially.
However, before termination of the project in 1967, the need for
some of these facilities became obvious.

Graphic console. During the development of DAC-1
there was so much preoccupation with reading and writing
drawings that the graphic console (or operator’s console)
almost became an afterthought (Figure 6). Little did the de-
velopment team realize that interactive graphics consoles
would become the dominating method of design and that the
need to “read” drawings was of little consequence. In fact, it
was probably the case that IBM supplied the console more
for operator use than as a design terminal. To be sure, the
graphic console did come equipped with both input and out-
put graphics capabilities. The graphic console could display
wireframe drawings or system messages. However, the
complexity of the image was very limited by two factors:

1. the display buffer for the vector stroke image was held
in main memory (which already was very limited), and

2. the vector drawing rate was such that the display would
flicker for images with more than a few thousand vec-
tors.

Frequently, the screen turned into a wheat field. The opera-
tor immediately knew the display buffer had been corrupted,

Figure 6. DAC-1 graphic console.

since the vector display of computer instructions looked like
random vectors.

The graphic input medium was an electronic pencil whose
position was sensed by a conductive coating applied to the
screen of the display unit. However, by 1965 it became ap-
parent that designers could not easily sketch on a vertical
display screen, and the mode of sketching a design was
quickly abandoned. The human factors of raising an arm to
point or sketch on a vertical screen were very objectionable.
There also was an abortive attempt to use the electronic
pencil to draw or print characters on the screen with auto-
matic character recognition, but this technology was also
abandoned because of human factors and problems with the
recognition algorithms. In 1968 the development team had
an opportunity to visit Douglas Engelbart at Stanford Re-
search Institute, and everyone was very impressed with the
graphic input possibilities of a mouse.

Since graphic input at a console was not productive, how
was the graphic console used? First, it served as an opera-
tor’s console for controlling the image-processing functions
of the photo scanner/recorder. Second, the development team
quickly realized that computer-aided design was really a
series of geometric constructions that could be initiated and
controlled from a graphics console. The console was used to
input commands via the alphanumeric keyboard, and, of
course, the console could be used to input parameters Or
select alternative operations via function button selection.

Utility routines were developed to provide multiple
choice, text entry, and query capabilities.” In fact, the mode
of operation was to program specific application-defined
functions for each button on the keyboard. The keys them-
selves were fitted with a transparent overlay such that the
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Figure 7. DAC-1 scanner/recorder.

labels could be changed for each new application by re-
placement of the overlay. One button might be assigned the
function of computing the intersection of two lines. Depress-
ing this button would cause a program to prompt the user to
“pick” the two lines from the display from which to compute
the intersection. Other buttons were assigned more generic
functions such as Left, Right, Up, Down, or even Yes and
No. Thus, computer-aided design became a process of select-
ing function button operations in a desired sequence and
supplying parameter values for each function. Within a very
short period of time, the development team realized that the
buttons (today we call them icons) could just as easily be
programmed to appear on the screen and be selected via the
electronic pencil. Specific regions of the screen were dedi-
cated to specific functions, as in a menu area or a graphics
display area. So began the development of a menu- and win-
dow-based design environment (see the later section “DAC-1
design procedures”™).

Photo scanner/recorder. The photo scanner/recorder was
combined into a single subsystem and packaged in a single
enclosure, as shown in Figure 7. The purposes for which the
photo scanner was intended were perhaps the most ambitious
portion of the joint project with IBM. The entire system was
extremely complicated and, at one time, the IBM engineers
estimated space utilization inside the scanner/recorder enclo-
sure at over 300 percent. (Light paths for the scanner and
recorder were sometimes reused three and four times by
bouncing images off multiple mirrors.) The digital electron-
ics represented state-of-the-art technology, and the perform-

ance specifications for the analog elements of the system
pushed the very limits of available technology.

Very complicated lens optics were used to focus the light
onto a 35-mm film image and subsequently onto light-
detection circuitry. Special distortion-correction circuitry
was added to the system to compensate for nonlinearity in
the positional accuracy of the CRT spot. Software was de-
veloped by GMR personnel to calibrate and dynamically
compensate for both optical and electronic distortions within
the field of the image.

Mechanical failures would continually dog the hardware,
which contributed to a high failure rate and abnormally low
availability time. For example, the 35-mm film mechanisms
frequently scratched the film and, instead of analyzing data,
the program logic became confused by distortions in the
field of view. Shortly after the hardware was moved to the
GM Technical Center in Warren, Michigan, a supply line for
moist air was left on all weekend. The temperature dropped,
and on Monday morning the development team stood and
watched IBM bail water out of the electronic enclosures,

The purpose for which the photo scanner had been Jjusti-
fied was to “read” engineering drawings.” As the project
evolved, there was less and less need for this technology
simply because engineering drawings were not needed as an
input medium to the system. However, even without the
need to use drawings as input, the analysis and understand-
ing of the information content of an engineering drawing are
complicated problems. Even if one makes a lot of assump-
tions about standards such as labels, dimensions, title blocks,
and so on, the topology of a drawing can be ambiguous and
extremely difficult to understand. Fortunately, the
CAD/CAM applications for which the DAC-1 system was
intended found other methods for entering digital informa-
tion into the system (IBM cards or mylar punch tape).

It was also the ambition of the DAC-1 team to input three-
dimensional measurements taken from models of vehicles.
Structured lighting patterns were projected onto full-size
clay models of concept vehicles. Alternatively, designers
were requested to mark the clay models with tape or to
scribe lines on the model to highlight the important
“features” of the design. Two stereo photographs of the
model were then transferred to 35-mm film, and continuous-
tone images were digitized using the same photo scanner.
Close-range photogrammetric measurement techniques were
then used to correlate the two images to compute the three-
dimensional coordinates of the feature lines on the surface of
the model (see Figure 8). Computationally, the techniques
worked well, but the nonrepeatability, the unreliability of the
scanner, and the distortions in the optics made the system
unusable. Years later, other systems were built to perform
the same function using glass plates and lasers to obtain
much higher digitizing accuracy.

Mathematics. As might be expected from the nature of
the applications, the DAC-1 system made a substantial
commitment to the development of new mathematical
modeling techniques. Creation of a three-dimensional
mathematical model of vehicle geometry was in the fore-
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front of many minds. Mathematical

operations to create and manipulate v

points, lines, and surfaces were a
major part of the system. However,
the two topics that received the
most attention from the standpoint
of mathematics were free-formed
line and surface approximation.
Early on, it had been assumed
that most of the input to the system
would come from drawings and
from designer sketches. When both
of these modes of input became
less viable, conventional coordi-
nate measurements taken from
physical models became the start-
ing point for the design activity.
These coordinate measurements
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were defined in a Cartesian coor-
dinate system and related to vehi-
cle body position by an arbitrary
origin and orientation. Physical
models were digitized as a network of intersecting point-set
space curves lying on the surface. The network of surface
curves was chosen very carefully to capture surface “flow”
lines or any apparent feature lines that represented surface
discontinuities. The process of converting the network of
point measurements to a single mathematical representation
was then formulated in three phases:

1. translate the CMM (coordinate measuring machine)
data to an internal format, remove inconsistencies, and
make sure that all crossing lines met at common
points;

2. approximate the intersecting surface network of lines
using polynomial equations to guarantee a smooth rep-
resentation, while maintaining constraints such as the
coordinates of the intersections; and

3. interpolate the smooth network of polynomial space
curves with a formula that matched each boundary and
provided a faithful representation of design intent be-
tween boundaries.

The following discussion will attempt to provide a brief
outline of the development efforts in each of these three
phases without getting into the details of an implementation.
This work did represent some of the earliest CAD/CAM
efforts in polynomial-based line and surface approximation.
Removal of inconsistencies was conceived as an auto-
matic process." The ground rules were that the network of
surface lines would be composed from collections of coordi-
nate points organized as sets of U lines that did not intersect
one another and sets of V lines that did not intersect one
another. The two sets of lines were assumed to intersect each
other at one point and one point only, as shown in Figure 9.
The first objective was to resolve any inconsistencies in
the CMM data and to guarantee that all intersections were
defined by a single common point. An optimal search strat-

Figure 8. Photogrammetric stereo images.

egy was devised for comparing each coordinate point on
every U line with all points on every V line to locate ap-
proximate intersections. Parabolic interpolation of each U
and V line along with iteration was then used to locate opti-
mal intersection points between pairs of lines. Linear, cubic,
or quadratic blending formulas were then used to adjust
spans of point sets lying between pairs of adjusted intersec-
tion points.

In practice the problem was straightforward, but errors in
the input data model called for more interactive solutions.
This was the first instance where interactive computer
graphics was used effectively to locate a problem, display
the situation, and prompt the user to resolve the error. Issues
such as double data, stray points, or missing information
were readily discovered by displaying the network on the
graphic console and asking the user to indicate corrective
action. The turnaround time to solve these problems was
absolutely astounding compared with normal batch process-
ing techniques. This turned out to be the real value of inter-
active computing — to keep the user in the loop for deci-
sion-making purposes.

After interactive changes were made to the data, the

V1

u2

ve Ul

Figure 9. Network of surface feature lines.

IEEE Annals of the History of Computing, Vol. 16, No. 3, 1994 51




Computer Graphics at GM

Figure 10. DAC-1 graphic image.

automatic method for adjusting a grid of lines was invoked
again. This process continued until no errors were detected
or until the user was satisfied with the quality of the adjusted
line-grid network. The coordinate point data were then ready
for approximation as a series of polynomial equations.
Piecewise cubic or quintic polynomials were used to ap-
proximate spans of coordinate points between successive
intersections. Usually, polynomial curves of degree greater
than two that are generated from a least-squares fit to noisy
data exhibit unwanted inflections; to avoid this, a form of
quadratic programming was applied to the fitting process.
The method could be described as constrained least squares
with an infinite number of linear inequality constraints im-
posed, such that the fitted curve’s second derivative was
nonnegative (or nonpositive) at every point of the domain.
The accumulated chordal length [ between successive points
normalized to the range (0 < [ < 1) was used as the inde-
pendent parameter, and this seemed to produce good results.
To establish a starting point for each piecewise polyno-
mial and to join them with at least C' continuity proved to be
a more difficult task. A marching procedure was used, where
each successive segment was extended to take in as much of
the data as it could and yet provide a close fit. This some-
times led to a bind, with no way of completing the fit within
the specified tolerance. As was the case for adjusting a grid
of lines, the solution to a fitting problem was to display the
segment in question and prompt the user for corrective ac-
tion, which might be the relaxation of the fitting tolerance or
elimination of extraneous data points. Today, of course,
infinitely constrained least-squares fitting of polynomial
splines with variable knots is, if not commonplace, at least
well within the capability of most CAD/CAM systems.
Surface interpolation in DAC-1 was of two kinds: rail and
key blending,” and interpolation of patches through a net-
work of space curves.” The terminology of the former ap-
proach was taken from the body designer’s lexicon. A “key”
is a line that is imagined to stretch between two opposing
“rail” curves and to deform continuously as it moves along
these rails, sweeping out a surface. The surface boundary,
consisting of initial and final keys and the two rails, and the
surface normals along the boundary, are given as input to
this interpolation process. In an emulation of traditional
drafting technique, the traces of the interpolated surface

could be controlled in two different projections, such as side
view and plan view. The viewing directions did not have to
be at right angles, however; nor were they necessarily in-
variant from station to station along the rails. The overall
method was particularly well suited to the interpolation of
developable surfaces between prescribed boundaries such as
were required for the design of windshields.

The second interpolation method was based on the defini-
tion of mathematical patches between pairs of opposing
curves in space. Initially, the methods described below were
limited to the four-sided boundary patch. However, the de-
generate case of three boundary curves or the cases of five
and six boundaries were treated as extensions to the four-
boundary case.

Surface patches were defined parametrically in their ana-
Iytic representation. The composite surface consisted of an
image in (x, y, z) space of the range of values O<u<l1,0<
v < 1) in the u, v domain under the mapping:

P(x,5,2)=0(uv)

The Cartesian coordinates of ail points interior to the area
enclosed by the four boundary curves were then expressed as
a linear combination of the corner points, points on the
boundaries, and mixed partial derivatives at the corners. The
blending function method of S.A. Coons was used for
patchwise interpolation of the boundary values, which pro-
vided C' continuity overall. By using the same basis func-
tions (namely, cubic splines) for blending in the interior of a
patch as were used on the boundaries to “blend” sampled
data points, a certain economy of representation was
achieved. Point values on the boundaries and cross partial
derivatives at the corners were the only input data needed to
define the surface. Local interpolation, involving a boundary
point and its nearest neighbors, was the means for determin-
ing suitable cross derivatives (or “twist”) vectors. While the
twist assignments and the choice of blending functions alone
determined the distribution of normals along a boundary, the
interpolation scheme could be enlarged to accept an arbitrary
prescribed distribution — again emulating Coons. To ensure
C' differentiability, a problem of reparameterization had to
be addressed. Beach® describes the problem and its solution,
and also gives an exposition of Coons surfaces.

Graphics. All graphic images in DAC-1 were created
from points, lines, surfaces, and text (Figure 10). Since the
system could display only a wireframe image, the represen-
tation for a surface was a series of section lines through the
surface and the boundary lines of the surface. Remember
that all of the geometric data were created in three dimen-
sions. Therefore, a format was defined that contained the
projection transformation (orthographic or perspective), the
window location, and the font or line format information. A
drawing was defined in terms of a display list containing
names of formats, points, lines, surfaces, or collections of
geometric elements. The display software performed the
function of replacing points, lines, surfaces, and text by a
series of blanked or unblanked vector endpoints that were
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assembled in an in-memory display buffer. If necessary,
clipping computations were performed to limit the image to
the defined size of the display window. After the vector end-
point display list was formed, a channel program was started
that simply looped on the contents of this display buffer,
refreshing the image on the display screen of the graphic
console.

No work was done on hidden-line or hidden-surface re-
moval simply because the user community was accustomed
to looking at all the hidden construction lines on engineering
drawings. Since all of the applications for DAC-1 were with
stylists, product engineers, or tool engineers, this never be-
came a problem. Years later, the technical illustration people
became interested in this technology, at which time hidden-
line and hidden-surface removal became a more important
problem.

What was of more importance to the use of graphics could
better be described under the category of human factors
problems. Project personnel became concerned about this
problem and did some early evaluation of user attitudes as a
joint study with IBM human factors personnel. Because most
images contained too many vectors for the hardware refresh
rate, there was a tendency toward flicker in the image. As a
result, there were many concerns about the visual perception
of the users. This became an important problem as soon as
graphics terminal access became more readily available.
What types of vision problems would be experienced by a
user who sat at a graphics terminal for eight hours? Some of
the solutions were obvious: improve the resolution, reduce
the flicker, and eliminate background reflections. These still
are valid concerns today, although visual images are much
cleaner and color seems to have made a big impact on image
legibility.

The other human factors issues related to the input devices
such as the electronic pencil, the function keyboard, and a
card reader. The only use that was ever made of the card
reader was to process an accounting record when logging
onto DAC-1. The function keyboard was more easily re-
placed by functional icons displayed on the screen. Alpha-
numeric input could have been more readily prepared on a
normal typewriter keyboard, instead of the graphic console
keys, which were awkwardly arranged in 6 x 6 alphabetic
order. Finally, as was mentioned earlier, the electronic
pencil was used only as a pointer to pick items or icons that
were displayed. Sketching was not practical, and even the
fact that the operator had to raise his arm to screen level to
make an icon selection became objectionable to the users.

Numerical control machining. During the period of
DAC-1 development, numerically controlled machine tools
also were becoming more and more popular within GM. The
APT language for programming a machine tool was under
development at MIT." Within GM, a part programming sys-
tem called INCA was already being used to program ma-
chine tools for cutting sheet metal stamping dies.” The
DAC-1 project did not want to be in direct competition with
the INCA system for the creation of part programs. Instead,
the DAC-1 project decided to concentrate on the automatic

Figure 11. Trunk exterior tool paths created directly
from mathematical data.

Figure 12. Model of a trunk lid created by numerical
control.

creation of numerical control cutter paths directly from a
mathematical model. The machining technology that was
chosen was five-axis contour machining, and steps were
taken to put together a feasibility demonstration. Logic was
developed to optimize the machining of sheet metal die sur-
faces. By using the geometric programming language, a car
roof model was machined a year before the graphics hard-
ware arrived. The model demonstrated to GM management
(at the executive vice president level) that hard progress
(rather than “soft” progress) was being made. The demon-
stration helped to keep the project alive until the DAC-1
hardware could be installed at a GM site. In November 1963,
a full-size rear deck (trunk lid) for a prototype Cadillac de-
sign was machined entirely from mathematical data.
Three-axis tool paths (Figure 11) were used to machine a
wood model (Figure 12) that had all the same character-
istics and appearance of a conventional model before
final hand finishing.

Conventional three-axis machining was better accepted in
the tool room because it resembled the manual pantograph
techniques. Even today, five-axis machining has had a small
impact because three-axis machining is perfectly adequate,
as long as the machining step size is held small.

DAC-1 design procedures. DAC-1 provided 1/O facilities
to digitize and create drawings. A wide range of mathemati-
cal procedures consisting of the basic data manipulation
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operations available in DAC-1 were evolved for the creation
and manipulation of geometry. Disk storage devices made it
possible to build up large databases of this design data.
However, how did DAC-1 allow the designers to specify the
content or essence of their designs?

Many books have been written on the subject of what
constitutes design. However, most authors agree that design
is a decision process based on rules and experience. The use
of a written language, such as DGL, to express a design pro-
cedure, was generally not well accepted. Only a few of the
end users or designers who were recruited from the Fisher
Body and Styling Divisions of the corporation were ever
able to master DGL. Instead, the project pioneered the de-
velopment of design “overlays” or an icon-based menu mode
of operation that is seen today in most general-purpose
CAD/CAM systems. All line-related operations for creating
and manipulating lines were grouped together into a so-
called “line overlay.” Similarly, all surface operations were
grouped together into a “surface overlay.” The term
“overlay” came from the fact that a transparent overlay was
used to relabel the function buttons for the group of opera-
tions to be performed.

Of course, the value of preplanning or programming a de-
sign procedure should not be discounted. Even today, most
commercial systems provide some type of macro language
that can be used to describe sequences of operations. The
real power of this approach is when an operational language
can be used to customize a general-purpose CAD system for
a specific class of operations. There has been a very effec-
tive use of macro languages to customize generic systems
for specific problem domains such as architecture, geology,
and electrical design. Perhaps the designers of DAC-1 had
the right idea from the beginning, but the technology needed
to be packaged in a fashion that would be more amenable to
the designer’s natural language of communication.

Termination of the DAC-1 project

In 1967 Edward Cole was GM’s president. He had ob-
served the beginnings of computer-aided design at GMR. He
made the observation that this was becoming an increasingly
large undertaking. Therefore, he decreed that DAC-1 was no
longer a research project and that the responsibility for fur-
ther development and application of this technology should
be transferred to the Manufacturing Development Staff. Ac-
cordingly, the DAC-1 development group at GMR was bro-
ken up, and key members were transferred to carry on this
work under new management. Other members of the DAC-1
team transferred to other divisions of the corporation, includ-
ing Marketing Staff and the GMR Mathematics Department.
A smaller team of engineers and scientists, reporting to Ed-
win Jacks, remained without a project.

After the personnel transfers were completed, Edwin
Jacks called a meeting of the remaining lead team members.
Each member was polled as to the key technical issues that
needed to be addressed in the field of computer science.
Almost everyone agreed that the computer operating system
was the weakest element that limited the future of interactive

computer graphics applications. This conclusion was reached
because of the universal dissatisfaction with IBM time-
sharing systems. A time-shared operating system needed to
be tailored to the needs of interactive graphics. Furthermore,
the system had to be implemented in a high-level language
and support a hierarchical file system. So was born the GMR
version of Multics that was called MCTS for Multi-Console
Time Sharing.” The processor selected for this project was
the Control Data Star-100, and GMR began to develop op-
erating system software. However, that is another story and
perhaps worthy of another article.

By the late 1960s IBM 7094 computers were being re-
placed by IBM System/360 computers. The DAC-1 hardware
had been moved to the Fisher Body Division but was now
obsolete and no longer of use to GM. Therefore, all graphics
hardware and software were donated to the University of
Michigan for experimental purposes. However, maintenance
problems plagued the hardware, and the university never
really made any use of the system. The equipment was fi-
nally scrapped for parts to populate an electronics labora-
tory.

How well did the achievements of the DAC-1 project
satisfy the original objectives? As a laboratory for ex-
perimentation in graphical man-machine communication, the
system was a huge success. Certainly, computer graphics
and CAD/CAM systems are today a multibillion-dollar busi-
ness. GM uses the technology in almost every aspect of the
business, from engineering to advertising. Nevertheless,
there remain two questions: How has this technology im-
pacted the design process, and have we really achieved com-
puter-aided design? Today, most vehicle designs are ex-
pressed in the form of three-dimensional mathematical
models. Vehicle geometry is expressed as a surface model
or, in some cases, a solid model, rather than just a collection
of lines and dimensions on a drawing. However, studies of
the design process by GM and others™ have concluded that
design is principally a decision-making process. DAC-1
technology was applied mostly as a detailing tool rather than
as a decision-making tool.

How has the technology encompassed by the DAC-1 sys-
tem evolved over the past 30 years? Certainly, computer
graphics is now recognized by itself as a separate field of
technology. The wide array of graphics hardware and soft-
ware offerings displayed each year at the ACM Siggraph or
Design Automation conferences makes the early DAC-1
efforts look primitive. Raster-display technology has re-
placed stroke or vector displays, and with raster technology
came 3-bit, 8-bit, and 24-bit color systems. DAC-1 display
software has been replaced by hardware accelerators that
automate many of the time-consuming aspects of image
generation.

In spite of multiprogramming, it became much too ex-
pensive to dedicate an entire IBM 7094 computer to support
a single graphics terminal, as was done for the DAC-1 sys-
tem. Time-sharing was an attempt to distribute the expense
of a large mainframe among a community of users. In most
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cases, the objectives were achieved, but two fundamental
problems became more and more evident:

1. the limited bandwidth between remote graphics termi-
nals and a mainframe computer, and

2. the variations in response time of a time-shared system
when operating near saturation.

As a result, more and more graphics-related applications
have migrated toward minicomputers and 32-bit microproc-
essors. The engineering workstation revolution of the late
1980s has made it such that only a workstation can deliver
the graphics performance expected of today’s systems. Of
course, there is also a wide range of smaller two-
dimensional drawing applications that execute quite success-
fully on personal computers. In many respects technology
has recycled back to where DAC-1 began — namely, a sin-
gle computer dedicated to a single graphics display.

During the development of DAC-1, no operating system
existed that would provide the services needed for interac-
tive graphics applications. Today, most operating systems
for computer graphics applications are based on some flavor
of Unix. The early experiments with high-level languages in
DAC-1, namely NOMAD, have certainly continued. Today
most graphics applications are implemented in the C or C++
programming languages, and there seems to be no reason
why most system code cannot be implemented in a high-
level language. The Unix system has also proved the viabil-
ity of writing a large operating system using a high-level
language.

Whereas the DAC-1 approach to a disk database was very
primitive, we now have a wide range of database technolo-
gies to choose from, including relational and object-oriented
systems. However, the fundamental idea of a mathematical
model maintained on a disk file and manipulated by a col-
lection of programs controlled from an interactive terminal,
as put forth by DAC-1, remains intact. Perhaps the one new
concept widely used today is that the data and programs
need not be maintained local to the graphics device itself but
instead can be accessed transparently via a network.

While DAC-1 did have some very advanced concepts with
respect to systems and programming, it did not provide any-
where near the software tools for testing and debugging that
we have today. All DAC-1 programming was done on cod-
ing sheets and subsequently keypunched onto IBM cards.
Compilation was via submission of cards to a batch stream
with a lot of manual checking before execution was ever
attempted. Since DAC-1 supported only a single terminal,
testing and debugging meant standing in line with 20 other
programmers for a five-minute shot at three in the morning.
No software tools were made available for interactive de-
bugging of programs. If the programmer happened to forget
to initialize a variable and the program blew up, there would
not be a chance to make the correction and try it again be-
fore the next evening.

Software today is much more complex as compared with
DAC-1. The entire DAC-1 system consisted of several hun-
dred NOMAD subroutines. Today, comprehensive modeling

systems contain thousands of modules and rely on libraries
of utilities for graphics I/O, database access, numerical com-
putation, and operating system services. The DAC-1 displays
were limited to a few thousand vectors. Modern graphics
devices usually deal with millions of vectors or millions of
surface elements.

The DAC-1 system was conceived entirely to address the
design of three-dimensional free-formed components, tools,
and dies. The successors to the DAC-1 system are being
used for that purpose today. During this same period, the
Sketchpad system developed at MIT addressed the topic of
two-dimensional prismatic wireframe objects.”* Since that
time, we have seen an explosion in the variety of graphics
applications. Integrated circuit design would not be where it
is today without computer graphics technology. There are
also a large number of two-dimensional drawing or graphic
illustration applications. However, from day one, DAC-1
always had in mind that the mathematical model was three
dimensional and that two-dimensional drawings could be
created from a projection of the three-dimensional model.

DAC-1 was both a three-dimensional wireframe and a
three-dimensional surfacing system and, as such, the opera-
tions on points, lines, and surfaces were geometric in nature
(transform, intersect, project, smooth). It was not until years
later that solid modeling systems demonstrated the value of
Boolean operations on geometry. However, it was recog-
nized early on that the topology of an object or the connec-
tivity of geometry was equally as important as the shape.
DAC-1 did provide an operation that made a cutout in a sur-
face. It was recognized that it was important to remember in
what surface the cutout had been pierced. Similarly, it was
necessary to record which lines were the boundaries of
which surfaces and how surfaces were related one to another.
These are all elements of modern modeling systems.

As has been mentioned earlier, the importance placed on
the photo scanner/recorder for “reading” engineering draw-
ings was greatly diminished by the way the entire
CAD/CAM industry evolved. Interactive terminals became
the main medium for communication of information be-
tween a designer and a computer. However, in many respects
the photo-scanning technology became the forerunner of
modern image-processing systems. Today, image processing
is a field of technology unto itself. The breakthrough was to
utilize raster scan devices and use image-processing or filter-
ing techniques to handle the large volume of scan data. |
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