
MANAGING MEGABYTES

A Better Way to
Compress Images
Mathematics is providing a novel technique forachieving

compression ratios of 10,000 to 1-and higher

THE NATURAL WORLD is filled with
intricate detail . Consider the geometry
on the back of your hand : the pores, the
fine lines, and the color variations . A
camera can capture that detail and, at
your leisure, you can study the photo to
see things you never noticed before . Can
personal computers be made to carry out
similar functions of image storage and
analysis? If so, then image compression
will certainly play a central role .
The reason is that digitized images-

images converted into bits for processing
by a computer-demand large amounts of
computer memory . For example, a high-
detail gray-scale aerial photograph might
be blown up to a 3'h-foot square and then
resolved to 300 by 300 pixels per square
inch with 8 significant bits per pixel .
Digitization at this level requires 130
megabytes of computer memory-too
much for personal computers to handle .

For real-world images such as the aeri-
alphoto, current compression techniques
can achieve ratios ofbetween 2 to 1 and
10 to 1 . By these methods, our photo
would still require between 65 and 13
megabytes .

In this article, we describe some ofthe
main ideas behind a new method for
image compression using fractals . The
method has yielded compression ratios in
excess of 10,000 to 1 (bringing our aerial
photo down to a manageable 13,000
bytes) . The color pictures in figures 1
through 5 were encoded using the new
technique ; actual storage requirements
for these images range from 100 to 2000
bytes .
A mathematics research team at the

Michael F. Barnsley andAlan D. Sloan

Georgia Institute of Technology is devel-
oping the system, with funding provided
by the Defense Advanced Research Proj-
ects Agency (DARPA) and the Georgia
Tech Research Corporation (GTRC) . Our
description is necessarily simplified, but
it will show you how a fractal image-
compression scheme operates and how to
use it to create exciting images.

Describing Natural Objects
Traditional computer graphics encodes
images in terms of simple geometrical
shapes : points, line segments, boxes, cir-
cles, and so on . More advanced systems
use three-dimensional elements, such as
spheres and cubes, and add color and
shading to the description .

Graphics systems founded on tradi-
tional geometry are great for creating pic-
tures of man-made objects, such as
bricks, wheels, roads, buildings, and
cogs . However, they don't work well at
all when the problem is to encode a sun-
set, a tree, a lump ofmud, or the intricate
structure of a black spleenwort fern .
Think about using a standard graphics
system to encode a digitized picture of a
cloud: You'd have to tell the computer the
address and color attribute of each point
in the cloud . But that's exactly what an
uncompressed digitized image is-a long
list ofaddresses and attributes .

To escape this difficulty, we need a
richer library of geometrical shapes .
These shapes needto be flexible and con-
trollable so that they can be made to con-
form to clouds, mosses, feathers, leaves,
and faces, not to mention waving sun-
flowers and glaring arctic wolves . Fractal

geometry provides just such a collection
ofshapes . For a hint ofthis, glance at the
pictures in The Fractal Geometry ofNa-
ture by Benoit Mandelbrot, who coined
the term fractal to describe objects that
are very "fractured" (see references for
additional books and articles) . Some ele-
mentary fractal images accompany this
article .

Using fractals to simulate landscapes
and other natural effects is not new ; ithas
been a primary practical application . For
instance, through experimentation, you
find that a certain fractal generates a pat-
tern similarto tree bark . Later, when you
want to render a tree, you put the tree-
bark fractal to work .
What is new is the ability to start with

an actual image and find the fractals that
will imitate it to any desireddegree ofac-
curacy . Since our method includes a com-
pact way of representing these fractals,
we end up with a highly compressed data
set for reconstructing the original image .

Overview ofFractal Compression
We start with a digitized image . Using
image-processing techniques such as
color separation, edge detection, spec-
trum analysis, and texture-variation
analysis, we break up the image into seg-
ments . (Some of the same techniques

continued

Michael F. Barnsley and Alan D. Sloan
are professors of mathematics at the
Georgia Institute ofTechnology (Atlanta,
GA 30332) and officers ofIterated Sys-
tems Inc. (1266HollyLane NE, Atlanta,
GA 30329).

Figure 1: IFS-encoded color image of
three-dimensionalferns (4
transformations, 100 bytes).

Figure 2: IFS-encoded color photo of
BlackForest, color set adjusted to give
winter tones (120 transformations,
2000 bytes) .

IMAGE COMPRESSION

form the basis for the automatic coloring
of black-and-white motion pictures .) A
segment might be a fern, a leaf, a cloud,
or a fence post . A segment can also be a
more complex collection ofpixels : A sea-
scape, for example, may include spray,
rock, and mist.
We then look up these segments in a li-

brary of fractals . The library doesn't
contain literal fractals ; that would require
astronomical amounts of storage . In-
stead, our library contains relatively
compact sets of numbers, called iterated
function system (IFS) codes, that will re-
produce the corresponding fractals . Fur-
thermore, the library's cataloging system
is such that images that look alike are
close together : Nearby codes correspond
to nearby fractals . This makes it feasible
to set up automated procedures for
searching the library to find fractals that
approximate a given target image. A
mathematical result knownas the Collage
Theorem (more on that later) guarantees
that we can always find a suitable IFS
code-and gives a method for doing so .
Once we have looked up all the seg-

ments in our library and found their IFS
codes, we can throw away the original
digitized image and keep the codes,
achieving our compression ratio of
10,000 to 1-or even higher.

Iterated Function Systems
We start by explaining how a set of IFS
codes can approximate a natural image .

IFS theory is an extension of classical
geometry . It uses affine transformations,
explained below, to express relations be-
tween parts ofan image. Using only these
relations, it defines and conveys intricate
pictures . With IFS theory, we can de-
scribe a cloud as clearly as an architect
can describe a house .
By studying the following sections,

you should be able to encode and decode
fascinating black-and-white image seg-
ments, such as leaf skeletons, tree
shadows, spirals, and thunderheads . You
should also obtain an overview of how a
fully automated fractal compression sys-
tem operates .

Affine transformations can be de-
scribed as combinations of rotations,
scalings, and translations of the coordi-
nate axes in n-dimensional space . An ex-
ample in two dimensions is

W(x,y) = (y2x+'ky+1, 'lax+'hy+2),

which can also be written in matrix form
as

R' [xy]
=

[.5
.25 .55]

[xy]
+

[2I]
.

This transformation movesthe point (0,0)
to (1,2) and moves (-1,0.5) to (0.625,
2) . To confirm your understanding ofthe
idea, you should work out where it moves
the point (1,1) . We denote this transfor-
mation by W; the notation W(S) denotes
the subimage of Won a set of points S.
Now let's see what Wdoes to a picture

ofa smiling face, F, lyingon thex,y plane
(see figure 6) . The result is a new,
squeezed face W(F) . The affine transfor-
mation has deformed and movedthe face .
Notice that the eyes in the transformed
face W(F) are closer together than they
are inF.We say that the transformation W
is contractive: It always moves points
closer together .

Another example of a contractive af-
fine transformation is shown in figure 7 .
This time it acts on a leaf to produce a
new, smaller leaf .

The general form for an affine trans-
formation is

Figure 3 : IFS-encoded colorphoto ofa

	

Figure 4: IFS-encoded colorphoto of

	

Figure 5 : IFS-encoded color image
Bolivian girl (120 transformations, 2000

	

theMonterey coast (60 transformations,

	

from A Cloud Study (30
bytes) .

	

100bytes).

	

transformations, 500 bytes).

photographs © 1987 Georgia Tech Research Corp. Figure 1 : Barnsley; Figures 2 and 3 : Barnsley,
lacquin, Malassenet. Rarer, Sloan; Figures 4 and 5: Barnsley, Jarquin, Reuter, Sloan.

W [Yx]
_ Ca d]

[xY] +

_ ax+by+e
- I cx+dy+f I '

where the coefficients a, b, c, d, e, andf
are real numbers .

Ifwe know in advance the translations,
rotations, and scalings that combine to
produce W, we can generate coefficient
values as follows :

a = rcos 6, b = -s sin ~,
c=rsin0,d=scos0,

where r is the scaling factor onx, s is the
scaling factor on y, 9 is the angle of rota-
tion on x, 0 is the angle of rotation on y, e
is the translation on x, andfis the transla-
tion on y.
How can you find an affine transfor-

mation that produces a desired effect?
Let's show how to find the affine trans-
formation that takes the big leafto the lit-
tle leaf in figure 7 . We wish to find the
numbers a, b, c, d, e, andffor which the
transformation Whas the property

W(big leaf) = little leaf.

Begin by introducing x and y coordinate
axes, as already shown in the figure .
Mark three points on the big leaf (we've
chosen the leaf tip, a side spike, and the
point where the stem joins the leaf) and
determine their coordinates (a,,a2),
(N1,N2), and (y,,72) . Mark the corre-
sponding points on the little leaf and
determine their coordinates (ix,,a 2),
(N2), and (j,,y2), respectively .

Determine values for the coefficients
a, b, and e by solving the three linear
equations

IMAGE COMPRESSION

al a+a2 b+e=
0,a+a2b+e=
-y,a+_y2 b+e =1',,

and find c, d, and f in similar fashion
from these equations :

a,c+a2 d+f= a2 ,
0,c+02 d+f= N2,
y,c+ti 2 d+f=y2 .

(4)
(5)
(6)

We recommend the use of an equation
solver such as TK Solver Plus (Universal
Technical Systems, Rockford, Illinois) or
Eureka (Borland International, Scoffs
Valley, California) for finding the coeffi-
cient values . Doing it manually can be
tedious .
Now that we know what a contractive

continued

Figure 6: An affne transformation W
moves the smilingface F to a newface
W(F) . The transformation is called
contractive because it moves points
closer together.

((3 1 ,82)

~-(«1,C-0

fY1,l`z) _

	

i-(a~,az)

Figure 7 : Two ivy leaves fix an affine transformation W.

Table

W

2: IFS

a

codesfor

b

a

c

square .

d e f P

Table

W

4 : IFS

a

codesforfractal tree .

b c d e t P

1 0.5 0 0 0.5 0 0 0.25 1 0 0 0 0.5 0 0 0.05
2 0.5 0 0 0.5 0.5 0 0.25 2 0.1 0 0 0.1 0 0.2 0.15
3 0.5 0 0 0.5 0 0.5 0.25 3 0.42 -0.42 0.42 0.42 0 0.2 0.4
4 0.5 0 0 0.5 0.5 0.5 0.25 4 0.42 0.42 -0.42 0.42 0 0.2 0.4

Table

W

1: IFS

a

codesfor

b

a

c

Sierpinski

d

triangle .

e f P

Table

W

3: IFS codesfor afern.

a b c d e f P

1 0.5 0 0 0.5 0 0 0.33 1 0 0 0 0.16 0 0 0.01
2 0.5 0 0 0.5 1 0 0.33 2 0.2 -0.26 0.23 0.22 0 1 .6 0.07
3 0.5 0 0 0.5 0.5 0.5 0.34 3 -0.15 0.28 0.26 0.24 0 0.44 0.07

4 0.85 0.04 -0.04 0.85 0 1 .6 0.85

affine transformation is and how to find
one that maps a source image onto a de-
sired target image, we can describe an
iterated function system . An IFS is a col-
lection of contractive affine transforma-
tions . Here's an example of an IFS of
three transformations :

W' 1yI _ [0.0 0.5] Cy] + [00] '

WZ

Cy]
= [o:o oa]

Cy]
+ Co] '

W,
[y] _

	

00 0.5

	

Cy] + 1 .55]

Each transformation must also have an
associated probability, pi, determining its
"importance" relative to the other trans-

IMAGE COMPRESSION

formations . In the present case we might
havep,,ps, andp, . Notice that the proba-
bilities must add up to 1 . That is, p, +
p,+p,=1 .
Of course, the above notation for an

IFS is cumbersome. Table 1 expresses
the same information in tabular form .
Other examples of IFS codes are given
in tables 2 through 4 . Notice that an IFS
can contain any number of affine
transformations .

The Random Iteration Algorithm
Now let's see how to decode an arbitrary
IFS code using the random iteration
method . Remember that in general an
IFS can contain any number, say m, ofaf-
fine transformations, W,, W2 , W3, . . .,
W,., each with an associated probability .
The following code summarizes the
method :

Figure 8 : The result ofapplying the random iteration algorithm to the IFS code in
table 1 . It is calledthe Sierpinski triangle.

Figure 9: Afern appears when the random iteration algorithm is applied to the IFS code in table 3.

(i) Initialize : x=0, y=0.
(ii) For n=1 to 2500, do steps (iii)-(vii) .
(iii) Choose kto be one ofthe numbers 1,
2 , . . ., m, withprobabilityP,
(iv) Apply the transformation W, to the
point (x,y) to obtain
(v) Set (x,y) equal to the new point : x=z,
y=y .
(vi) If n > 10, plot (x,y) .
(vii) Loop .

Applying this procedure to the trans-
formation in table 1 produces the figure
shown in figure 8-a fractal known as the
Sierpinski triangle . Increasing the num-
ber of iterations n adds points to the
image . Figure 9 shows the result of the
random iteration algorithm applied to the
data in table 3, at several stages during
the process . By increasing the scale fac-
tor used in plotting, you can zoom in on
the image (see figure 10) . The text box on
page 221 contains a BASIC implementa-
tion of the method with additional com-
ments on programming .
You may wonder why the first 10

points are not plotted (step (vi)) . This is
to give the randomly dancing point time
to settle down on the image . It is like a
soccer ball thrown onto a field of expert
players : Until someone gains control of
the ball, its motion is unpredictable, or at
least is independent of the players' ac-
tions . But eventually a player gets the
ball, and its motion then becomes a direct
result of the skill ofthe players . The fact
that our transformation is contractive
guarantees that the "ball" will eventually
get to one of the "players," and that it
will stay under control after that .
How do we know that the random iter-

continued

at on algorithm will produce the same
image over and over again, independent
of the particular sequence of random
choices thatare made? This remarkable re-
sult was first suggested by computer-graph-
ical mathematics experiments and later
given a rigorous theoretical foundation by
Georgia Tech mathematician John Elton .

The Collage Theorem
Our next goal is to show a systematic
method for finding the affine transforma-
tions that will produce an IFS encoding of
a desired image . This is achieved withthe
help ofthe Collage Theorem .

To illustrate the method, we start from
a picture of a filled-in square S in the x,y

Figure 10 : Successive zooms onpieces ofan IFS-encodedfern .

IMAGE COMPRESSION

plane, with its vertices at (0,0), (1,0),
(1, 1), and (0,1) (see figure 11) . The ob-
jective is to choose a set ofcontractive af-
fine transformations, in this case W , W2,
W,, W4 , so that Sis approximated as well
as possible by the union of the four sub-
images WI(S) U W2(S) U W3(S) U W4(S) .
Figure 11 shows, on the left, S together
with four noncovering affine transforma-
tions of it ; on the right, the affine trans-
formations have been adjusted to make
the union ofthe transformed images cover
up the square .
To find the coefficients of these trans-

formations, we use the method described
earlier in the section on iterated function
systems, leading to simultaneous equa-

tions 1 through 3 and 4 through 6 . The
values one finds in the present case are
given in table 2 . When the random itera-
tion algorithm is applied to this IFS code,
the square is regenerated .
The preceding example typifies the

general situation : You need to find a set
of affine transformations that shrink dis-
tances and that cause the target image to
be approximated by the union of the af-
fine transformations of the image . The
Collage Theorem says that the more ac-
curately the image is described in this
way, the more accurately the transforma-
tions provide an IFS encoding of it .

Figure 12 provides another illustration
of the Collage Theorem . At the bottom
left is shown a polygonalized leafbound-
ary, together with four affine transforma-
tions of that boundary . The transformed
leaves taken together do not form a very
good approximation ofthe leaf, in conse-
quence, the corresponding IFS image
(bottom right), computed using the ran-
dom iteration algorithm, does not look
much like the original leaf image. How-
ever, as the collage is made more accu-
rate (upper left), the decoded image
(upper right) becomes more accurate.

So, there's a fundamental stability
here . You don't have to get the IFS code
exactly right in order to capture a good
likeness of your original image. More-
over, the IFS code is robust : Small per-
turbations in the code will not result in
unacceptable damage to the image . In
each ofthe above examples, we have used
four transformations to encodethe image .
However, any number can be used.

For example, the spiral image in figure
13 can be encoded with just two contrac-
tive affine transformations . See ifyou can
find them . Then determine the IFS trans-
formation coefficients and input them to
the random iteration algorithm to get the
spiral back again .

Figure 11 : The collage theorem is used to encode a classical square S. The correct IFS code is obtained when thefour affine
transformations ofScover S, as shownon the right .

Assigning Probabilities
Once you have defined your transforma-
tions, you need to assign probabilities to
them . Different choices of probabilities
do not in general leadto different images,
but they do affect the rate at which vari-
ous regions or attributes of the image are

IMAGE COMPRESSION

filled in . Let the affine transformations
W, corresponding to an image I be

W, [xY]
- [c, d,]

[xy]
+

where i = 1, 2, 3, . . ., n. Then the

amountoftime that the randomly dancii.g
point should spend in the subimage W, is
approximately equal to

continued

IFS Decoding
in BASIC

isting A is a BASIC implementation
of the random iteration algorithm .

It includesthe data for the Sierpinski tri-
angle, but you can use it to process any
IFS tables . In particular, you will want
to try the data in tables 2, 3, and 4. Be
sure to set the variable m correctly; it
tells the program howmany transforma-
tions are in the IFS.

It is also essential that the probabili-
ties in p() add up to 1. For speed, the
transformations should be listed in de-
scending order of probability : the high-
est probability transformation first, and
the lowest probability last .
The program includes variables for

resealing and translating the origin to
accommodate the range ofthe points be-
ing plotted to the limits ofyour screen. If
the image is too wide, decrease xscale ;
if the points are too close horizontally,
increase xscale . Adjust yscale simi-
larly to get a good vertical point spread .
To move the image, adjust xoffset and
yoffset.
You can do these adjustments by trial

and error: Run the program; interrupt it
and change the offsets and scale factors ;
and run it again. Or, you can replace the
plot command pset with a command to
print the values of x and y and run the
program to get an exact idea ofthe range
ofpoints being plotted, so you can adjust
the scale and offsets more precisely .

Another way to arrange the program
is to have it read all the data-m, a() ,
(), c(), d(), e(), f(), p() >

xscale, yscale, xoffset, and yoff-
set-from a disk file specified by the
user . Instead of reading in the coeffi-
cients a, b, c, and d, you may want to
read in angles 0 and0and scale factors r
and s, and then calculate the
coefficients .
The random iteration method is com-

putation-intensive, so we recommend
use of a compiler such as Microsoft's
QuickBASIC or Borland's Turbo
BASIC. Ifyour computer has a floating-
point coprocessor and your compiler
supports one, so much thebetter .

ListingA: A BASICprogram demonstrating the use ofthe random
iteration algorithm to reconstruct an IFS-compressed image.

10 'Allow for a maximum of 4 transformations in the IFS
20 DIM a(4), b(4), c(4), d(4), e(4), f(4), p(4)
30
40 'Transformation data, Sierpinski triangle
50 'First comes the number of transformations
60 'then the coefficients a through f and probability
70 'The values for pk should be in descending order .
80 DATA 3
90 DATA .5,0,0, .5,0,0, .34
100 DATA .5,0,0, .5,1,0, .33
110 DATA .5,0,0, .5, .5, .5, .33
120
130
140
150
160
170
180
190
200
210
220
230
240
258
260
270
280
290
300
310
320
330
340
350
360
370
380

470
480
490
500
510
520
530
540
550
560

'Read in the data
READ m
pt = 0 'Cumulative probability
FOR j = 1 TO m

READ a(j), b(j), c(j), d(j),
pt = pt + pk
P(j) = pt

NEXT j

'Set up for Graphics
SCREEN 3

	

'Select graphics screen
xscale = 350

	

'Map [0,11 onto [0,3501
yscale = 325

	

'Map [8,11 onto [0,3251
xoffset = 0
yoffset = 0

	

'Leave the y-origin

'Initialize x and y
x = 8
y = 0

'Do 2500 iterations
FOR n = 1 TO 2580

pk = RND
'The next line works for m<=4 . It must be modified
'for values of m > 4 .
IF pk <= p(1) THEN k = 1 ELSE IF pk <= p(2) THEN k =

ELSE IF pk <= p(3) THEN k = 3 ELSE k = 4
390

	

newx = a (k)

	

* x + b (k)

	

* y + e (k)
400

	

newy = c (k)

	

*

	

x + d(k)

	

*

	

y +

	

f (k)
410

	

x = newx
420

	

y = newy
430

	

Use PRINT x,y instead of the PSET line
440

	

'to see the range of coordinates . Then fix
450

	

'xscale, yscale, xoffset, and yoffset
460

	

IF n > 10 THEN PSET (x * xscale + xoffset, y
+ yoffset)

NEXT n

LOCATE 24, 35
PRINT "Press any key to end ." ;
WHILE INKEY$
WEND

'Return to text screen
SCREEN 0
END

e(j), f(j), pk

pk

yscale

2

IMAGE COMPRESSION

Figure 12 : The Collage Theorem is applied to a leaf. The collage at lower left isn't
much good, so the corresponding IFS image, shown at lower right, is a poor
approximation. But as the collage improves, upper left, so does the IFS image.

Figure 13 : Can youfind the IFS codesfor this spiral image? Only two
transformations are needed.

So long as ad - cd is not 0, it is a stan-
dard calculus result that our ratio equals
the determinant ofthe transformation ma-
trix for W,. . So a good choice for the prob-
abilityp; is

a;d; - b; c;

Iakdk-b,Ckl

provided none of these numbersp; comes
out to be 0 . A 0 value should be replaced
by a very small positive value, such as
0.001, and the other probabilities corre-
spondingly adjusted to keep the sum ofall
the probabilities equal to 1 .
We now summarize the compression

and decompression process : An input
image is broken up into segments through
image-processing techniques . These
image components are looked up in the
IFS library using the Collage Theorem,
and their IFS codes are recorded . When
the image is to be reconstructed, the IFS
codes are input to the random iteration al-
gorithm . The accuracy of the recon-
structed image depends only onthe toler-
ance setting used during the collage
mapping stage .

Applications
For graphics applications, we use a more
sophisticated procedure that allows full-
color images to be encoded . Combina-
torial searching algorithms can be used to
automate the collage mapping stage . Fig-
ures 2, 3, and 4 were obtained using IFS
theory at compression ratios in excess of
10,000 to 1 . These images were based on
photographs in recent issues of National
Geographic . A full-sequence video ani-
mation, A Cloud Study, was shown at
SIGGRAPH '87 . This was encoded at a
ratio exceeding 1,000,000 to 1 and can be
transmitted in encoded form at video
rates over ISDN lines (ISDN stands for
integrated services digital network, a
concept for integrated voice and data
communications) . A frame from the ani-
mation is shown in figure 5 .
The IFS compression technique is

computation-intensive in both the encod-
ing and decoding phases . Computations
for the color images were all carried out
on Masscomp 5600 workstations (dual
68020-based systems) with Aurora
graphics . Complex color images require
about 100 hours each to encode and 30
minutes to decode on the Masscomp .

For practical applications, you need
custom hardware that can speed the en-
coding and decoding process . An experi-
mental prototype, the IFSIS (iterated
function system-image synthesizer), de-
codes at the rate of several frames per
second . The IFSIS device was produced
fromacooperative effortbetween GTRC,

DARPA, Atlantic Aerospace Electronics
Corporation, and Iterated Systems, and it
was demonstrated on October 5, 1987, at
thethirdannualmeetingoftheAppliedand
Computational Mathematics Program of
DARPA. Itcan be connectedto a personal
computer through a serial port ; the per-
sonal computer sends the IFS codes to the
device, whichrespondsbyproducingcom-
plex color images on a monitor.
The IFSIS is a proof of concept for

faster devices with higher resolution .
Once the higher-performance IFSIS de-
vices are combined with ISDN telecom-
munication, full-color animation at video
rates over phone lines will be a reality .

Another area for future application of
IFS encoding is automatic image analy-
sis . What's in a picture? Does it show a
spotted sandpiper or a robin? The more
complex the image or the more subtle the
question, the harder it becomes for an al-
gorithmic answer to be formulated . But
here's the point: Whatever the answer, it
will proceed faster if stable, compressed
images are used. The reason for this is
that image-recognition problems involve
combinatorial searching, and searching
times increase factorially with the size of
the image file .

During the spring of 1987, Iterated
Systems was incorporated to develop
commercial applications of IFS image
compression. It is exciting to see howan
abstract field of mathematics research is
leading to new technology with implica-
tions ranging from commercial and in-
dustrial work to personal computing. E

ACKNOWLEDGMENTS
Figures2 through Swere encodedbygradu-
ate students Francois Malassenet, Laurie
Reuter, and Arnaud Jacquin. All color
images wereproduced in the Computergra-
phicalMathematics Laboratory at Georgia
Institute of Technology and are copyright
1987, GTRC.

BIBLIOGRAPHY
Barnsley, M. F. and S. Demko. "Iterated

Function Systems and the Global Con-
struction of Fractals ." The Proceedings
of the Royal Society of London, A399,
1985, pp. 243-275.

Barnsley,M. F., V. Ervin, D. Hardin, and
J. Lancaster. "Solution of an Inverse
Problem for Fractals and Other Sets ."
Proceedings ofthe National Academy of
Science, vol. 83, April 1985 .

Barnsley, M . F. Fractals Everywhere . Ac-
ademic Press, 1988 . Forthcoming.

Elton, J. "An Ergodic Theorem for Iterated
Maps." Journal of Ergodic Theory and
Dynamical Systems. Forthcoming .

Mandelbrot, B. The Fractal Geometry of
Nature . San Francisco, CA:W. H. Free-
man and Co., 1982 .

IMAGE COMPRESSION

BYTE
THE SMALLSYSTEMSJOURNAL

Reprinted with permission from the January 1988 issue of BYTE magazine.
Copyright c 1988 by McGraw-Hill, Inc., New York, 10020. All rights reserved.

