
ANIMA II: A 3-D COLOR ANIMATION SYSTEM

Ronald J. Hackathorn

COMPUTER GRAPHICS RESEARCH GROUP

THE OHIO STATE UNIVERSITY

attempt to maximize the trade-offs involved in

3-D color animation. The goal has been to achieve
the capability and image quality necessary for

complex animation and, yet, maintain the total
system efficiency necessary for a production ani-

mation environment.

Anima II is a computer animation system designed

for the production of color, three-dimensional
video tapes. It is aimed at the animator, educa-
tor and artist who requires anything from a high

volume of short color sequences for teaching pur-

poses, to realistic key frame animation involving
complex color objects and precisely timed life-

like movements. The Anima II system provides an
efficient environment for the creation, animation
and real-time playback display of color-shaded
polyhedra. The video output is directly connected
to video recording equipment and a standard color

television set.

2. Background

Before discussing previous research in the area of

3-D shaded animation systems it is important to
briefly discuss the requirements, the problems and

the trade-offs which accompany the design and im-

plementation of such a system.

2.1 Requirements

System and user requirements for 3-D shaded anima-

tion can be classified into three factors deter-

mining overall system performance.

2.1.1 Capabilities - A shaded animation system

can be viewed as having three separate capabili-

ties. Each has a unique function within the sys-

tem and each has different problems.

• Data Generation is the process of constructing
a computer model representing the three-dimen-
sional object or form that is to be animated.
The type of data to be generated is determined

by the type of visible surface algorithm used.

Essentially, polygon-based algorithms need

planar polygons while parametric surface algo-

rithms need high-order patch equations. There

have been many approaches to inputting of 3-D

polyhedra. These include dual data tablet dig-

itizing (32), single data tablet (23,27), and
geometric modeling (4,8,13,29).

* Animation is the process of "giving life" to

ABSTRACT

An animation software system has been developed at

The Computer Graphics Research Group which allows
a person with no computer background to develop an

animation idea into a finished color video product
which may be seen and recorded in real time. The

animation may include complex polyhedra forming
words, sentences, plants, animals and other crea-

tures. The animation system, called Anima II, has
as its three basic parts: a data generation rou-

tine used to make colored, three-dimensional
objects, an animation language with a simple

script-like syntax used to describe parallel mo-

tion and display transformations in a flexible,
scheduled environment, the Myers algorithm used in

the visible surface and raster scan calculations

for the color display. This paper discusses the
requirements, the problems, and the trade-offs of

such a system. An overview of research in the

area is given as well as the design and implemen-
tation highlights of the Anima II system.

1. Introduction

During the past several years, films from the
University of Utah (16), General Electric Corp.

(17) and by N. Max (18), illustrate that the abil-

ity to produce 3-D shaded object animation has

been a significant addition to the field of com-

puter animation. Max's comment about his film,

"Sphere Eversion," describes the basic feeling to-

wards this type of animation: "The film produces

a visualization which could not have been achieved

in any other medium, and could never have been

animated by hand." (26)

A 3-D animation system which uses a visible sur-
face algorithm to calculate the final displayed

image must deal with severe time-space considera-
tions resulting from the increased complexity of

both the data and the data handling algorithms,
through all phases of the system. Traditionally,
shaded object animation while producing high qual-

ity has been a difficult, slow and expensive proc-

ess as a result of implementational trade-offs
among these various considerations.

An animation software system has been developed
by the Computer Graphics Research Group as an

54

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
Siggraph ’77, July 20-22 San Jose, California

the generated objects by specifying motions
which imitate the actions of the physical world.

These motions involve changes to an object's
position, orientation (rotation), size and
shape. Also the concepts of acceleration, de-
celeration and "path-following" are included as
motion descriptions. The animator controls the
motions of an object through a program or
"script" written in the syntax of the system's
language. Key frame techniques implemented in
several 2-D/3-D line animation systems (3,6,19,

36), notably by the Film Board of Canada (34,
35), have proven a most effective means for
specifying the motion dynamics (movement
through time and space) of complex animation.
The central notion of key frame animation is
that an action of an object will change "from"
some spatial state "to" a new state and that
this action will range "from" some time frame
within the sequence "to" a later frame. In
this manner the user need only specify the
spatial-temporal extremes and the in-between
frames are calculated by the language. As well
as other responsibilities, the animation lan-
guage must also control a visible surface algo-
rithm in one manner or another.

* Display and record techniques give the animation
system the capability of viewing the animation
during development and documenting the final
animation sequence. The most common method of

dealing with the output from a visible surface
algorithm is to photograph it frame by frame.
The image output may be a sweeping horizontal
scan line on a refresh CRT, or may be buffered
in a 2-D matrix memory with raster video dis-
play. Another method is to encode the visible
surface algorithm's results and store this in-

formation on an analogue (30), or digital (5,
25) disk. The video sequence may then be read
from the disk, decoded through a scan-line de-
coder, and displayed in real time on a video

monitor. A refresh CRT needs filters to pro-
duce color while a raster-scan display will
typically have color output.

2.1.2 Image Quality - The type of visible sur-
face algorithm used by the system determines to a
large degree the single (still) frame image qual-
ity produced. There has been much work in the
area of visible surface algorithms, and no at-
tempt is made here to present all the factors in-
volved. Basically, however, there are two types

of algorithms, the first type of which calculate
the intensities of a curved visible surface to the
resolution of a single picture element. This type
includes the "reflected radiation" algorithm of
Magi (20), the recursive bivariate surface patch
algorithm by Catmull (9), and (10,28). The second

type, polygon-based, simply colors or shades in
the faces of 3-D polyhedra. Here the Watkins (31,

33) and Myers (24) algorithms serve for examples.
The first method inherently produces a smoother
surface than the other and lends itself to the cal-
culation of texture, patterns and reflections (7).
Thus, for still frame images one typically insists
on a visible surface algorithm using the first
method. However, for multiple frame (moving)
images, motion contributes significantly to qual-
ity. Indeed it may be argued that the quality of
motion is the most significant contributor to the
quality of the animation. In any case, for

animation a visible surface algorithm using the
second method is capable of sufficient quality.

2.1.3 Efficiency - A general definition of effi-
ciency is "the ability to produce without waste."
In a computer environment, the most valuable re-
source to prevent from wasting is computer time.
In an animation environment the resource is people
time. Efficiency in an animation system implies
that all capabilities within the system are easy
to use and produce their desired results quickly.
For example, the system is inefficient if people
who have been trained in animation have to be re-
trained in mathematics and/or computer programming
just so they may apply their previous knowledge in
areas of color, form, composition, rhythm, flow
and motion. Further, it is inefficient if an ani-
mator is forced to stop repeatedly during the pro-
duction process, because of a slow turn-around
time to see the results.

To gauge efficiency at the system level (i.e. sys-
tem responsiveness and system throughput) an ani-
mator must question all phases of the system: How
long will it take to make the data? How hard is
it to describe the animation? How long will it
take to calculate (turn-around time)? How compli-

cated is the final recording process and how long
will it be to see the results? System efficiency
in an animation environment can only be measured
in terms of how long it takes and how hard it is
for the animator to get an animation idea off of a
storyboard and onto film or video tape. A system
which provides direct interaction and fast feed-
back gives an animator the freedom to experiment
with the system and get a feeling for what kind of

animation can be done.

2.2 Problems and Tradeoffs

Fitting the algorithms used for producing, handling
and displaying 3-D color data together into a uni-

fied animation system causes problems which effect
the system's total performance. The problems are
due to fixed limits within the system determined
by how much time, money and memory was available.
Trade-offs occur as some features must be lost in
order for others to be implemented.

For example the amount of directly addressable mem-

ory available determines how much data memory and
instruction memory can coexist. The size of the
data space limits the complexity of the objects
while instruction space can decide capability and
faster response times since program overlay and
task switch techniques can be avoided if all the
programs are in main memory together.

Another example is image quality and its relation-
ship to capability and efficiency. A high-order
parametric surface equation realistically describes
a smooth curved surface and has an increase in

image quality over shaded polyhedra. While it may
not be difficult to generate, the data for this
type of algorithm without a control language, pre-
sents difficulties for the animator. The algorithm
can also take a considerable amount of calculation
time to generate the final pictures. For instance,
there are some excellent results with Catmull's
method that took 25 minutes on a PDP 11/45 for a
single picture (7). Calculation time becomes im-
portant in an animation sequence where one minute

55

takes 1440 or 1800 frames (depending on film/video
recording). If polygon based shading algorithms
are used, image quality drops but capability and
efficiency increase (especially if the algorithm
is efficient).

Another trade-off in an animation system is the
means of displaying the data and recording the fi-
nal sequence. Film offers higher quality (resolu-
tion and contrast ratio) compared to video, but
must be chemically processed before the results
can be seen. Video however, has the advantage
that it can be immediately seen as it is being re-
corded and the video tape can be reused. Also
color is a natural component in a video system
whereas it must be added through filters for the
film process.

It is often said that standard TV display of com-
puter pictures is of low resolution because one
sees the jaggies. This assumption is quite mis-
leading and one should make a distinction between
the inherent resolution of TV and computer gener-
ated pictures. For instance, if a color TV camera
is recording a rotating 3-D color cube (a real-
world object) and it is displayed on the monitor
viewed at a distance 5 times the height of the
screen, then there will be no apparent jaggies.
On the other hand a computed animation sequence of
a similar colored cube rotating on the monitor also
viewed from the same distance will usually have
jaggies. The visible surface algorithm must com-
pute the 3-D position, intensity, hue and satura-
tion for each point generating the scan lines to
display the picture. Typically there is a certain
percentage of error in these calculations and the
computational time required to overcome these er-
rors can be lengthy. What one must consider are
the trade-offs. While high picture quality is im-
portant and desirable, what does it mean in the
context of moving images and the bandwidth limita-
tions of an NTSC signal? Vision research suggests
that less picture resolution is necessary for mov-
ing images than static images.

2.3 Other Systems

Based on the literature to date, there have been
many computer graphics facilities which have imple-
mented either a technique for generating 3-D ob-
jects, an animation language, or a visible surface
algorithm. Two examples would be the University of
Utah which produced the Watkins Algorithm (31,33),
and Archuleta's work at Lawrence Livemore Labora-
tory (2) where he implemented a fast version of the
Watkins Algorithm on a CDC 7600. However, only a
few facilities have attempted to integrate these
fundamental capabilities into one complete system
for the expressed purpose of animation.

2.3.1 An experimental 3-D animation system was de-
veloped at the IBM Watson Research Center by Appel
et al. (1). This system produced output to a high
resolution microfilm recorder in the form of hidden
line or shaded objects. A special "movie specifi-
cation language" was used to control motion, chang-
ing viewpoints of perspective and a remote light
source capable of casting shadows. Efficiency in
the system was increased by sharing program tasks
among an IBM 360/67, a 360/91, and a 1130. 3-D
data was entered into the system either by inter-
actively picking points with an IBM 2250 or by

"encoding manually when additional artistic free-
dom is required."

2.3.2 Case Western Reserve University has a com-
puter system which can generate shaded perspective
pictures in real time. This "Shaded Graphic Sys-
tem" was developed for Case by Evans and
Sutherland Corporation at a cost $400,000. It
consists of a graphics processor driving a pipe-
line of special purpose hardware for matrix multi-
plication and shading. Sharing memory with the
graphics processor is a PDP-11 with a 10 megabyte
disk and an assortment of I/O devices. 3-D data
is processed on a scan line by scan line basis by
a hardware implementation of Watkin's hidden sur-
face algorithm and sent to a shader which uses the
Gouraud shading technique (21). The resulting im-
age is displayed on a raster scan CRT for real-
time display. A camera unit with color filters
under computer control is used to produce computer
animated films.

Jones (22) describes a high level programming lan-
guage he implemented for the Case system. It con-
sists of a complete implementation, for the PDP
1l, of Algol-60 with the addition of string vari-
ables, I/O facilities, and extensions for handling
graphic shaded images. The primary purpose of
this work was to facilitate the use of a custom-
built system which can produce shaded images in
real time. According to Jones one important ad-
vantage of Algol was its block structure which
Jones decided would lend itself quite nicely to
the description of graphical structures. The con-
sequence of this approach is that just as Algol
itself is a way of talking about algorithms, the
graphic-extended Algol is a way of talking about
graphical data structures.

Currently, the system requires 3-D data to be en-
tered through a dual data tablet arrangement which
means the animator must provide detailed drawings
from several viewpoints (something most animators
with their "sketchy" storyboards don't have readi-
ly available). But besides this and the lack of
color in the system, the combination of Jones' ex-
tended Algol-60 language and the powerful graphic
display processor presents a good example of a
general purpose 3-D real-time animation system.
Most of the film "Sphere Eversion" was calculated
with this system.

2.3.3 Credit should be given to Goldstein (20),
Nagel, et al. (13) and Elin (14) for their pio-
neering work in the area of 3-D shaded animation
with the Magi-Synthavision system. The unique
visible surface algorithm uses curved patched sur-
faces, but its approach is fundamentally different
from others. "Rays" are fired from some point in
space and traced to the first visible point on a
3-D object. The advantage of this technique is
that since the rays are stopped at the first sur-
face encountered, no time is spent examining the
parts of the model which would be normally hidden.
The system is capable of generating data with a
sophisticated "combinatorial geometry" technique
(thus preventing the decrease in data generation
capability, typically associated with parametric
surface algorithms). Here, "the user specifies
the geometry by establishing two tables. The first
table contains the type and location of the bodies
used in the geometric description (there are nine

56

basic shapes). The second describes the physical
region in terms of the bodies in table 1 and the
three Boolean operators, '+', '-', and 'or'. Each

region has a unique region number and the bodies
are numbered in the order of their occurence. The

model is completely described in terms of its re-
gion number."

The input to the system also includes "the loca-
tion and characteristics of a camera (focal length
and size of image plane), the direction from which
the light is coming and a set of instructions
called "Director's Language," which tells the com-
puter how to treat the objects (animate the ac-
tors) in the film."

The calculated visible surface output is stored on
magnetic tape. Using this tape as input a second
pass through the computer is made to convert the
region-intensity data into color-intensity. The

film process (based on color addition) requires
that the output tape be made with three weighted
red, green and blue frames for every one frame
from the input tape. The tapes, in this form, are

fed through a Data General Minicomputer to a pre-
cision CRT. The images are filmed through a com-
puter controlled color wheel (triple exposure--
once for red, green and blue).

The Magi-Synthavision system has taken an excel-
lent approach to 3-D shaded animation with the use
of "Combinatorial Geometry" and a "Directors Lan-
guage" to control their calculated visible surface
output. Unfortunately the system suffers from a
lack of interaction, because to use these powerful
facilities the animator must keypunch in the com-
mands to control both the data generation and ani-
mation process. Also, calculation time is slow,
ranging from 30 seconds a frame for extremely sim-
ple data, up to around 20 minutes a frame (15).

3. Anima II

The animation software system has been implemented
in a standard minicomputer environment (Diagram 1)
with a PDP 11/45 as the central processing unit.
The CPU has 64 K of core memory (32 K of which
contains the RSX ll-D operating system) and 32 K

of MOS memory. In addition, the peripherals in-

clude: a 4096 x 4096 Vector General refresh CRT
with joystick, buttons and dials; a 44 mega-word
(16 bit), "3330 type" moving head disk used as the

system disk; a special purpose color, raster-scan
decoder which serves as our real-time video inter-
face. The software in the animation system was
written in assembly language to increase efficien-
cy (Diagram 2).

The system, Anima II, supports an environment in
which a user trained in areas other than computer
programming, is capable of:

* Creating complex color polyhedra with a real-
time interactive geometric "modeling" routine.

* Writing an animation script describing parallel,
keyframe motion dynamics controlling multiple
objects.

* Animating the script using a specially written
animation language processor in which the Myers
visible surface algorithm is the kernal

3.1 Data Generation

The objects in the animation sequence are created
with Parent's (29) interactive data generation pro-

gram. The user views and interacts with the ob-
jects in real time on a random scan CRT. Concave
polyhedra are joined and intersected to form com-

plex shapes. The object can be bent or warped into

57

component in the calculations for the final
display output.

o Displaying and directly recording in real time,
the color video sequence that was calculated
and stored (in binary) on the system disk by
the animation language.

While each of these areas have noteworthy theoret-
ical and implementational features in and of them-

selves, what is significant about the Anima II

system is the integration of these separate, com-
plex processes into a complete system, which is

both easy to use and efficient.

Currently the Anima II system is supporting anima-
tion projects in the areas of education, telecom-
munication and art as well as research projects
for astronomy, statistics and computer-aided
design.

ANIMA II SOFTWARE

USER INTERFACE

VIDEO
FILE SYTEM

FILE SYSTEM

Diagram 2

58

multiple shapes for animating later. Transparent
to the user is the data structure of the objects
which consists of closed polygons forming closed
convex or concave surfaces. The user is only aware
of positioning two objects in some relation to each
other, pushing a button, and either joining the two
together or cutting one into the other. The proc-
ess is accumulative and can be repeated as often as
necessary to build the final object. The color of
the objects can be specified when the user chooses
his primitive objects (a green ball can cut a green
hollow in a red cube) or individual faces may be
selected and "painted."

The data generation routine uses 32 K of MOS memo-
ry for instruction and data space and uses 20 K of
core memory for a device handler which buffers the
display lists and refreshes the Vector General.
The routine can handle up to 2500 unique edges. A
user accustomed to the "sculpting and building" ap-
proach of the routine can make an object in a very
short time. This can range from 5-15 minutes for
a simple shape such as a block letter, 2-3 hours
for the frog and duck in Figures 1-12, and up to
five hours for complex data like the "Jack-in-the-
Box" shown in the video tape accompanying this
presentation. These times also include the bending
and warping process to make multiple shapes for in-
terpolation (blending) in the language. A detailed
presentation of the intersection algorithm used in
the data generation routine is being given at this
conference by its author.

3.2 Script

Once the 3-D objects have been created, the user
controls the rest of the animation process through
his script. The script is a story-boarded anima-
tion idea, transcribed into a list of instructions
written in the special descriptive syntax of the
language. The language of the Anima II system of-
fers a means of imitating the complex motions of
"real" world objects by breaking each motion into
simple, but precisely controlled changes through
space and time. Language instructions are indi-
vidually scheduled to be active over a range of
time during the animation sequence. When the in-
struction has reached its time limit, it can be re-
scheduled to be active later in the sequence, or it
can be removed from further consideration. An in-
struction specifies key frame time parameters and
it also describes key frame spatial transform para-
meters. However only the extreme parameter which
the instruction is changing to need be given, be-
cause the language keeps track of where each object
currently is. This saves animators from having to
keep records on their own of what they have done so
far in the script. They specify where they want to
go "to," and the language calculates what the vec-
tor should be to get there. This applies whether
the transform affects position, rotation, size,
shape, or path. Using this format, a combination
of a "set" and a "change" scene directive can com-
pletely control one simple motion as in the exam-
ple:

59

position of some object to the point specified by
X, Y, Z on the first frame of the sequence (coor-
dinate and frame values can be given as numbers or
symbolic variables)." "At the same time, change
the position from the point where it was set, to a
new point given by different X, Y, Z values and be
there by frame number 100."

The ability to schedule the language instructions
allows the user to animate multiple objects with-
out being concerned with looping or programmatic
flow control. This notion of parallel commands is
quite different from the typical approach found in
other graphics languages in which the animation is
controlled by guiding an internal program address
counter or pointer, into, through and out of a se-
ries of transformation control loops.

The photographs in Figures 1 through 12 are sev-
eral of the extreme positions taken from an anima-
tion sequence involving a duck, a frog and the
meeting of the two. The first four stills show
the duck in a head-down, head-up position as it
takes a drink of water. What the photos can't
show is the duck wadling, wagging his tail, flap-
ping his beak, as well as changing his orientation
(turning to one side then the other) and moving
through space--all at the same time. The sched-
uled commands in the script can be given quite di-
rectly to control the transformations needed for
this type of animation. The animator works on mo-
tions independently, component by component. In
the case of Figures 5 to 9, the animator created
the frog and then intuitively "bent" the legs and
arms into the extreme shapes that make up jumping
and swimming. Then, in the script, the animator
decides what the timing will be to get the frog to
change realistically from one shape to another.
When this is settled, the animator may decide on
when to turn the frog during the sequence. After
that, how should the frog be moved to give the ef-
fect it is swimming. Here, acceleration and de-
celeration can be controlled by the animator to
improve the quality of motion. The introduction
of the duck, as seen in Figures 10 to 12 presents
no difficulty to the user. Commands animating the
duck and frog are given directly, in parallel and
with no regard to mutual interference.

When an animator is satisfied with the actions of
the objects, he has the option of controlling the
whole scene. Commands are used similar to conven-
tional animation terms such as pan, tilt, zoom and
field, which change the relationship of the ob-
server to the objects. Other features of the ani-
mation language include color, brightness, fades,
lighting-control in the form of independent posi-
tion and rotation of multiple light sources and
the ability to calculate a single frame or short
animation segment within the script.

3.3 Animation Language

When the objects have been made and the motion de-
scribed, the animator need only evoke the language
to calculate the final video sequence. The lan-
guage processor, designed and implemented by
Hackathorn (12), follows the user written script.
It compiles an animation file which contains all
the object and color parameters needed by the vis-
ible surface routines next in the production proc-
ess. If, for example, the script describes a

sequence animating thirty multi-colored block let-

ters and lasting for twenty seconds (600 frames),

then the compiled animation file will look like a

sequential list of six hundred dynamically changing

data structures, each defining the spatial and dis-

play parameters of a collection of colored surfaces

for one frame.

The program tasks for the animation language is di-

vided into four routines: preprocessor, scheduler,

interpreter, and compiler.

3.3.1 Preprocessor

The preprocessing routines are concerned primarily

with building the data structure, but also with the

keyword parsing of the script syntax. This routine

is controlled first by the prescene directives then

by the scene directives of the user written script.

The prescene directives instruct the preprocessor
in the building of the data structure for the en-

tire animation sequence. The data structure in-

cludes:

e Face and vertice information describing the
three-dimensional polygonal surface of each ob-

ject in the sequence.

e The different possible shapes that any object
can change into.

e Group pointers for each object.

o Sub-group pointers within each object (object

parts).

e Multiple "floating" light sources.

o Multiple, three-dimensional paths through space,

sharable by all objects.

e A separate color for the inside and outside of

every face for every object.

The animation language currently can control up to

128 objects, groups of objects, or possible object

shapes, however, the real limiting factor in the

maximum complexity of the system is the 32 K ad-

dress space of the PDP-11/45 CPU. The animation
language uses 32 K of MOS memory and 32 K of core

memory. This allows 20 K of object data space

(4000 to 5000 unique edges) and elsewhere a 16 K

section for buffering shape vertices and path ver-

tices (about 5300 points at 3 words each). If

there is room in memory for the data, the language

can control 128 objects, 128 shapes, 64 groups, 32
paths and over 500 command instructions.

The preprocessor routine parses, interprets, and

executes each of the prescene directives until it

comes to a SCENE START directive in the script.

For the remainder of the script the data structure

is fixed, no new objects can be added, and the rou-

tine parses nothing, but scene directives. Each

scene directive gets parsed and converted into a

"command block," kept as part of a data list in

memory. A command block has all the parametric and

key frame (schedule) information in it that was

given in the directive line. It also contains
pointers into the data structure, plus a workspace

area big enough to hold the unique motion values

which will change from frame to frame.

3.3.2 Scheduler

The scheduler is the first of three routines which

are evoked for each frame. The scheduling routine

is event driven by the start of each new frame.

Every frame it:

* Sequences through each command block in the
list, compiled by the parser.

* Judges whether the command block is flagged ac-

tive or inactive after a comparison of the key

frame information in the command block and the

current system frame counter.

* Updates the motion parameters in the workspace
area if the command is active this frame.

The scheduler routine works double duty by both

scheduling the command blocks and updating the

unique motion information that each block carries.

It is at this state that the concepts of "set" and

"change" become important. A "set" command block

holds its initial parameters through its time range

within the animation process. However, a "change"

block has a direction initially calculated as spe-

cified by the animator with a "change to" direc-

tive. From the first frame of activity, the direc-
tion (an increment in X, Y,' and Z) of the "change"

block will be added to the block's own internal
workspace memory. These incrementing (positive or

negative) parameters get interpreted and executed

as if they belonged to a "set" command block. This

information is used, with no further modifications,
by the interpreter routines in doing the actual
transformations to the data structure.

3.3.3 Interpreter

After the command blocks have been scheduled for

the current frame, the interpreter finds each ac-

tive command, determines the parameter type (rota-

tion, position, size, color, shape, path, etc.),

and performs the necessary motion or display trans-

formations to the data structures. The key to the

interpreter is that for each new frame, all command

blocks scheduled active will start their transfor-

mation on the original data. In this manner, both

the order of the commands and the range of their

schedule determines what transformations will be

done to the data on any given frame.

3.3.4 Compiler

The compiler routine compiles a data file as op-

posed to executable code. The routine calculates

the color of each face, does perspective transfor-

mations, clips all faces not seen by the observer

and builds an animation file containing a complete

scene description of every frame in the script.

The color of a face is a product of the relation-

ship between the current positions of the light

sources and the plane of the face. The system has

three light sources which it keeps as X, Y, Z

points in space and allows them to be translated

and rotated just like objects. The distance each

of the light sources is from the face, decides a

weighted brightness. From this relationship a

value between 1 and 224 is determined. This value

corresponds to a color palette made up of 224 en-

tries, each entry describing a fifteen bit red,

60

green, blue hue combination. The color palette is
logically organized into eight intensity-chroma
sections with 28 entries (the first entry is the
darkest color and the last entry is the brightest).
When the object is created in the data generation
stage, it is "colored" by assigning one of the
eight intensity-chroma sections to each face. With
the information supplied by the light source calcu-
lations the final offset into the color palette is
produced.

The scene has a user-specified observer position.
Every object has its own "picture plane." With
this information, the compiler routine calculates
perspective. Each frame, the vertices after being
transformed by the interpreter are projected onto
a picture plane. The 'Z' axis coordinates are un-
affected by the perspective so that depth compari-
sons may be done later by the objects in memory as
one object. It checks which faces can still be
seen and appends the animation file with:

* The faces in the object that are displayable.

e The colors of the displayable faces.

* The transformed vertices for the current frame.

* Miscellaneous display parameters i.e., z-clip-
ping plane position, and background color.

When the last frame of the script has been com-
piled, what is left is a data file on the system
disk ready to be turned into the final color video
sequence by the visible surface algorithm and a
raster-scan conversion routine. Up to this point
the calculation time has been relatively short.
The only major calculations in the language are the
dot products and face normals needed for the light
source equations. As a result, the language typi-
cally calculates a 300 frame (10 second) sequence
in under 5 minutes.

Through the script the animator may request that
the animation file on the disk be played back (in
real-time) to the Vector General. Since the
transformations of the objects are already com-
pletely defined for every frame in the sequence,
the V.G. playback routine has no computation re-
quirements. This makes for an excellent way of
previewing the animation sequence to get an idea
about the motions, but of course no color or
lighting information can be displayed. If V.G.
output is not specified in the script, the lan-
guage automatically evokes the visible surface.

3.4 Visible Surface Algorithm

The visible surface routine of the Anima II system
is a version of the Myers Algorithm. Full imple-
mentation details of the original algorithm may be
found (24), but for completeness, a brief descrip-
tion of the algorithm, as it affects the animation
process will be discussed.

The program uses 32 K of MOS memory, containing a
data space of 20 K. At the beginning of each new
sequence, the program reads a list of faces from
the animation file left by the language. Here we
note that the language has described all the ob-
jects in the animation sequence to appear as one to
the visible surface routine, also that all polygons

created with the data generation routines have been
reduced to triangles.

For each frame and starting with the first, the
procedure is as follows. The face's information
is read in. This contains faces clipped out of
view, backfaces removed optionally by the animator,
and color for each displayed face. Next the list
of unique vertice is read in as well as miscella-
neous information such as background color.

The program checks each face against the face file
for this frame and if it is to be displayed (not
clipped or "back faces" removed) the face is added
to a list of faces whose highest 'Y' value is iden-
tical to that of the current face. When all faces
have been checked for displayability, the algorithm
begins producing the visible surface output. As is
typical of linear to raster conversion and visible
surface algorithms, a scan line at a time is proc-
essed. Starting at the highest of the 512 scan
lines, lines are processed one line at a time until
all lines are processed. Each line is processed as
follows. If the line contains no active faces
(i.e., no face starts, crosses or ends on the line)
it is ignored. If the list of faces starting on
the line is not null then all of the faces on the
list undergo a format conversion and are added to
a list of active faces. If the list of active
faces is not null then each face on the list is
processed, one face at a time, in whatever order
the faces on the list are in, until each active
face has been processed.

Processing a face means processing a segment of a
face, since one scan line at a time is processed.
Thus the list of active faces can be thought of as
a list of segments to process on a scan line. The
first segment of the list is scanned (i.e., con-
verted to points). The 'Z' (distance from the ob-
server) and intensity values for each point are
stored in the appropriate places in the ZVSLS (Z
values scan line structure) and IVSLS (intensity
values scan line structure) respectively. Both the
ZVSLS and IVSLS consist of 512 locations, each lo-
cation of which corresponds to a horizontal posi-
tion on the output raster. At each horizontal po-
sition the 'Z' value of the new point is compared
with the 'Z' value of the point in the ZVSLS. If
the new 'Z' is closer to the observer then both the
ZVSLS and IVSLS values at the current horizontal
position are updated with the values from the new
segment. If the new 'Z' is farther or equal then
no updating occurs.

After processing a segment the corresponding active
face is updated for the next scan line. If the
lowest point of the face has been passed then the
face is removed from the list of active faces.
After processing all faces on the list of active
faces for a scan line the scan line is converted
into run length encoded binary data and stored a
scan line at a time on the system disk.

Given a typical animation sequence which contains
polyhedra of around 1000 edges and covering

an area of about one quarter of our TV monitor, the
visible surface and raster scan conversion calcula-
tion of a 300 frame (10 seconds) sequence takes be-
tween 5 to 10 minutes. If the complexity doubles,
but the area remains the same then the same se-
quence will take 7 to 12 minutes. However, if the

61

area doubles and the complexity remains the same,
the sequence will take 10 to 20 minutes.

3.5 Display and Record

Currently we are using a standard broadcast televi-
sion as the viewing mechanism, a large capacity di-
gital disk for image storage and broadcast video
for the raster-scan format image representation.
The broadcast video is not stored in composite NTSC
format, but rather is stored as run-lengths of par-
ticular intensity-chroma combinations which are
converted (in real-time) to composite NTSC format
for display. The use of run-length encoding is our
response to the insufficiency of current computer
technology to easily handle the large quantities of
information implied by raster-format representation
of dynamic images. For example, a raster-format
dynamic image of 512 by 512 resolution, 8 bits per
resolvable element information content, 30 frames
per second display rate and 30 seconds duration re-
quires over 235 million bytes of storage. The im-
plied data transfer rate (8 million bytes per sec-
ond) is prohibitive within our general purpose
design strategy. This is due to the fact that
although disks of over 200 million byte capacity
are available, the transfer rate available is less
than 2 million bytes per second.

The run-length decoding and analog systems were
constructed by Dr. John Staudhammer and his asso-
ciates (DIGITEC, Inc.; Box 5486; Raleigh, N. C.
27607). The analog system and rearend of the run-
length decoding system are similar to an earlier
system built under Staudhammer's direction. The
decoding system converts our run-length format to
that used in Staudhammer's earlier system. (30)

A dynamic sequence is transferred from the disk to
the TV according to the following scheme. A 32 KB
run-length buffer is divided into two 16 KB buffers
for double buffering. A buffer is filled from the
disk. While this buffer is being filled, informa-
tion to/from the disk controller from/to the CPU
must be multiplexed with the data from the disk.
This multiplexing is automatically handled by the
UNIBUS priority arbitration unit. Fortunately, the
quantity of control information necessary to run
the disk is a small percentage of the quantity of
data being transferred. Also fortunate is the fact
that the dual ported MOS main memory permits the
instructions and associated data of the control
program to be fetched simultaneously with the data
being stored from the disk. Thus, there are vir-
tually no memory cycles lost directly to the con-
trol program.

Information flowing into the run-length decoding
system is buffered in an internal 32 KB MOS buffer
before it is decoded. This is the reason that in-
formation may be transferred from the MOS main mem-
ory buffer into the decoding system with no concern
for field or frame boundaries. More explicitly,
since field and frame boundary information is con-
tained in the data, putting off decoding the data
until after information transfer permits the data
to be treated as a uniform stream.

The calculations below are intended to give a quan-
titative indication of the capabilities of the sys-
tem. It should be noted that in order to provide
the clearest calculations, minor overheads such as

start of field instructions are ignored.

The following calculations assume an average of one
byte per run. This case is approached for images
with (typically) fewer than 33 intensity-chroma
combinations within a scan line and fewer than 25
within a field. The disk specifications are those
of the manufacturer. Since the RJPO4 disk system
is (relatively) the slowest part of the system, it
determines the maximum performance level. For con-
tiguously stored files (as video files have to be
in this system) the disk can be read continuously
at maximum possible speed with the exception that
some time (7 milliseconds) is lost when changing
cylinders. Since there are 19 tracks per cylinder
and the disk requires 16.7 milliseconds for one
revolution, one cylinder can be ready every 317
milliseconds. Since 214,016 bytes are stored per
cylinder, the average data transfer rate is 675
bytes per millisecond. Allowing 10 milliseconds
for change of cylinder, 207,266 (214,016 minus
6,750) bytes can be obtained for every cylinder
read. Note that the storage space "passed over"
for change of cylinder is best wasted as an extra
revolution would be required to retrieve it. Thus,
the average data transfer rate is 654 (207,266 di-
vided by 317) bytes per millisecond. Since each TV
frame lasts about 33 milliseconds, this is 21,582
bytes per frame. At one byte per run, this is
21,582 runs per frame. Since the disk has 411 cy-
linders and the system is retrieving 207,266 bytes
per cylinder, there are 85,186,362 retrievable
bytes. At a maximum of 21,582 runs per frame, this
represents 3,947 frames. Since the data is contig-
uous, any reduction in runs per frame directly
translates into more frames. Thus, at 2,158 runs
per frame there are 39,470 frames. (25)

4. Conclusion

The development of computer generated 'solid' ob-
ject animation is changing the way an animator ap-
proaches the documentation of an idea. Convention-
al animation involves drawing and redrawing planar
images on each frame throughout the entire se-
quence. Image creation and image animation are
very often the same process. But in a 3-D computer
animation environment, the user first builds a col-
ored object then animates it and these processes
are separate. The approach of 3-D color animation
is similar to that found in other disciplines such
as Cinematography, Theatre and Choreography. Here
actors or dancers are chosen and given their roles
by a director who is responsible for the whole
show. The approach is closer still to that of pup-
pet animation in which the work if Jiri Trinka,
Willis O'Brien (King Kong) and Jim Hensen with his
Muppets serves as excellent examples.

The implementation of such an animation system re-
quires balancing system requirements against the
available resources, while at the same time keeping
some notion of efficiency in mind. Anima II, has
been developed and implemented as one solution to
the production of 3-D color animation. Each of the
subsystems in Anima II have been especially design-
ed to both interact freely with a user and inte-
grate transparently into a unified system. While
sitting at one work station, a user of Anima II can
create, animate and display 3-D colored objects,
then directly record the animation onto standard
video cassette tape. The system has limitations in

62

the areas of data complexity: 5000 unique edges
per scene; and data transfer: limited mainly by
the system disk which can transfer about 20,000
bytes (1-3 bytes per run-length) each video frame.
Currently methods are being explored to improve
these areas and the areas of image quality and to-
tal system throughput.

ACKNOWLEDGEMENTS

The Anima II system was designed and implemented
by the Computer Graphics Research Group at The
Ohio State University. Work on the project was
performed by Charles Csuri (Director), Allan Myers,
Richard Parent, Timothy VanHook, Diana Rainwater,
and the author. Funding for this project was pro-
vided by NSF Grant DCR 74-00768.

REFERENCES

15. Elin, L. (1977). Presented at National Con-
ference and Workshop on Electronic Music
and Art, University of Buffalo, Suny.

16. Film - "Walking Man," University of Utah.

17. Film - "NASA Space Shuttle" General Electric.

18. Film - "Sphere Eversion" N. Max.

19. Gattis, W., Watson, (1971). An Input Transla-
tor for Animation and Its Relationship to
Key Position Character Animation. Proceed-
ings of the Tenth Annual UAIDE Meeting.

20. Goldstein, R. (1971). A System for Computer
Animation of 3-D Objects, Proceedings of
the Tenth Annual UAIDE Meeting.

21. Gouraud, H. (1971). Computer Display of
Curved Surfaces. IEEE Transaction on
Computers.

22. Jones, B. (1976). An Extended ALGOL-60 for
Shaded Computer Graphics. Proceedings ACM
Symposium on Graphics Languages.

23. Lafue, G. (1975). Computer Recognition of 3-
Dimensional Objects from Orthogonal Views.
Research Report No. 56, Institute of Phys-
ical Planning, Carnegie-Mellon University.

24. Myers, A. J. (1975). An Efficient Visible
Surface Program. Technical Report to the
National Science Foundation, Grant Number
DCR 74-00768AO1.

25. Myers, A. J. (1976). A Digital Video Infor-
mation Storage and Retrieval System. Pro-
ceedings of the Third Annual Conference on
Computer Graphics and Interactive Tech-
niques--SIGGRAPH.

26. Max, N., (1975). Computer Animation of the
"Sphere Eversion," Proceedings of the Sec-
ond Annual Conference on Computer Graphics
--SIGGRAPH.

27. Negroponte, N. (1973). Recent Advances in
Sketch Recognition. Proceedings of the
National Computer Conference.

28. Newell, M. (1975). The Utilization of Proce-
dure Models in Digital Image Synthesis,
Ph.D. Dissertation, University of Utah.

29. Parent, R. E., Chandrasekaran, B. (1976).
Moulding Computer Clay. Pattern Recogni-
tion and Artificial Intelligence.

1. Appel, A., Stein, A., Landstein, J. (1970).
The Interactive Design of Three-Dimensional
Animation, Proceedings of the Ninth Annual
UAIDE Meeting.

2. Archuleta, Personal Communication with CGRG.

3. Baecker, R. M. (1969). Interactive Computer
Mediated Animation. Dissertation, Massa-
chusetts Institute of Technology.

4. Baumgart, B. G. (1974). Geometric Modeling
for Computer Vision. Dissertation, Stan-
ford University. NTIS Report Number AD/A-
002261.

5. Belady, L. (1970). TV Plus Computer Equals
Videographics. Proceedings of the Ninth
Annual UAIDE Meeting.

6. Blasgen, M. W., Gracer, F. (1970). KARMA: A
System for Storyboard Animation. Proceed-
ings of the Ninth Annual UAIDE Meeting.

7. Blinn, J. F., Newell, M. E. (1976). Texture
and Reflection in Computer Generated Im-
ages. Communications of the ACM, Vol. 19,
No. 10.

8. Braid, I. C. (1975). The Synthesis of Solids
Bounded by Many Faces. Communications of
the ACM, Vol. 18, No. 4.

9. Catmull, E. (1974). A Subdivision Algorithm
for Computer Display of Curved Surfaces.
Tech. Report UTEC-CSC-74-133, University of
Utah.

10. Clark, J. (1976). Hierarchical Geometric Mod-
els for Visible Surface Algorithms. Com-
munications of the ACM, Vol. 19, No. 10.

11. Csuri, Charles (1975). Computer Animation,
Proceedings of the Second Annual Conference
on Computer Graphics and Interactive Tech-
niques--SIGGRAPH '75.

12. Csuri, Charles A. (1977). 3-D Computer Ani-
mation. Advances in Computers. Academic
Press, Inc., New York.

13. Davis, J. R. (1968). A Model Making and Dis-
play Technique for 3-D Pictures, Pro-
ceedings of the Seventh Annual UAIDE Meet-
ing.

14. Elin, L. (1975). Synthevision: Serendipity
from the Nuclear Age, Artist and Computer,
edited by R. Leavitt, Harmony Press.

63

(C. H. Chen, Ed.) Academic Press, Inc.,
New York.

30. Staudhammer, J., Eastman, J. F. (1975). Com-

puter Display on Colored Three-Dimensional
Object Images. Proceedings of the Second
Annual Symposium on Computer Architecture,

pp. 23-27.

31. Sutherland, I. E., Sproull, R. F., Schumacker,
R. A. "A Characterization of Ten Hidden-

Surface Algorithms," ACM Computing Surveys,

Vol. 6, No. 1, pp. 1-55, 1974.

32. Sutherland, I. E. (1974). Three-Dimensional
Data Input by Tablet. Proceedings of the
IEEE. Vol. 62, No. 4, pp. 453-462.

33. Watkins, G. S. (1970). A Real-Time Visible

Surface Algorithm. University of Utah

Technical Report UTEC-CSC-70-101.

34. Wein, M., Burtnyk, N. (1971). A Computer Ani-

mation System for the Animator. Proceed-

ings of the Tenth Annual UAIDE Meeting.

35. Wein, M., Burtynk, N. (1975). Computer Anima-
tion of Free Form Images. Proceedings of

the Second Annual Conference on Computer
Graphics and Interactive Techniques--
SIGGRAPH '75.

36. Whitney, John, Citron, J. (1968). Camp-Com-
puter Assisted Movie Production, Proceed-
ings of the AFIPS Fall Joint Computer
Conference.

64

