
A CCNVERSATIONAL EXTENSIBLE SYSTEM FOR THE ANIMATION OF SHADED IMAGES(*)

by

Ronald M. Baecker
Dynamic Graphics Project, Computer Systems Research Group

University of Torcnto, Toronto, Ontario, Canada

Abstract

The terms "conversational" and "extensible" are defined and shown to be
useful properties of computer animation systems. A conversational extensible
system for the animation of shaded images is then described. With this system,
implemented on a minicomputer, the animator can sketch images and movements
freehand, or can define them algorithmically via the Smalltalk language. The
system is itself implemented in Smalltalk, and hence can be easily extended or
mcdified to suit the animator's personal style.

I. Introduction

Computer animation consists of a
variety cf techniques and processes in
which the computer is used as an aid in the
production of animated sequences [Halas 74,
Wein 74]. Computer animation systems can
generally be classified as either
algorihmic or demonstrative [Tilson 75].

1. Programming-language based systems
(Algorithmic systems)

EEFLIX [Knowlton 64], EXFLOR [Knowlton
7C], and ZAPP (Guerin 73, Eaecker 76],
reuire the animator to describe a movie in
a written programming language. These
systems generally are not interactive; the
arimator is provided no direct visual
feedback.

2. Interactive systems based on freehand
sketching (Demcnstrative systems)

GENESYS [Eaecker 69a,69b,70a], ARTA
[Mezei 71], and the Eurtnyk-Wein system
[Eurtnyk 71a,71b] allow the animator to
sketch images and movements free-hand.
These systems generally provide immediate
real time playback of the resulting movie.

32

We shall now focus upon the second
category cf systems. The strengths of
GENESYS lay in the spontaneous, real time
interaction it facilitated, and in the
ccnceptualization of the computer animated
film and the filmmaking process that it
embodied. The heart of this
conceptualization was a duality between
image and movement, and a rich set of
representations for movement and tools for
the construction of movement. The ARTA and
Eurtnyk-Wein systems demonstrated the
utility of various picture construction and
transformation tools, including the ability
to interpolate between images (key frame
animation).

By 1969, one could identify several
major weaknesses in these systems:

1. They were rigid, difficult to modify and
extend.

2. The animator could draw images and
movements, but could not compute them
directly; he had a fixed set of drawing
commands, not an open-ended programming and
drawing system at his fingertips.

3. Image quality was poor, consisting of
black-and-white dot and line drawings,
lacking levels of tone, texture, and color.

(*) This work was supported primarily by the Xerox Palo Alto Research Center.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
Siggraph ’76, July 14-16 Philadelphia, Pennsylvania

In the pericd 1969-1974, there were
several useful developments addressing
these problems. Burtnyk and Wein focused
upcn the problem of image quality [Burtnyk
73], succeeding to the point that Peter
Fcldes was able to make his Cannes award-
winning film HUNGER [Foldes 74]. Richard
Shcup and Robert Flegal at the Xerox Palo
Alto Research Center (PARC) developed a
rich color video system, and produced
numerous striking examples of directly
sketched or ccmputed color video [Shoup
74]. In Alan Kay's Learning Research Group
(IRG) at Xerox PARC, the Smalltalk language
was developed and shown to be a viable and
congenial host for the development of user-
responsive programs [Kay 72,74; LRG 76].
Experiments with freehand painting programs
demonstrated the viability of black and
white TV generated by a minicomputer as a
medium for shaded drawings. Finally, the
now legendary Pegasus-Cookie Monster movie
produced using Steve Purcell's playback
process (described below) demonstrated that
this same hardware could be used for the
real time animation of these drawings.

Thus, encouraged by these prior
developments, and guided by a previous
vision [Baecker 69a], until now
unfulfilled, of what it would like to build
arimation systems in an appropriate
language, we developed a new animation
system at the Xerox Palo Alto Research
Center in the summer of 1974. This system
successfully incorporates Purcell's real
time shaded image animation capability into
LRG's Smalltalk programming and drawing
environment. SHAZAM (Smalltalk's sHaded
image Zippy Animated Moviemaker) is a
demonstrative picture-driven animation
system modeled directly upon GENESYS
[Eaecker 69a,69b,70a,74]. Hence the
animator need know no Smalltalk. However,
the system was designed for children ages 8
to 15 who are learning Smalltalk [Goldberg
74], and they can compute images and
movements by executing Smalltalk commands
or by writing Smalltalk programs as easily
as they can sketch them freehand.
Furthermore, a skilled Smalltalk programmer
can extend or mcdify the system himself.

We shall next define the terms
"conversational" and "extensible", and
discuss the relevance of these language
features to computer animation. These
arguments constitute a concise and sharper
presentation of points originally made in
[Eaecker 69a]. Key aspects of the design
and implementation of SHAZAM will then be
presented; the relevance of
ccnversaticnality and extensibility will be
stressed, and some directions for future
research proposed.

33

II. Cn Conversaticnality and Extensibility
in Animation Systems

In concluding its discussion of
picture-driven animation, and in motivating
the design of the Animation and Picture
Processing Language (APPL), Eaecker [69a]
noted:

"We have seen that there are
advantages and disadvantages to each of
several approaches to the definition of
dynamic pictures--the construction of
individual frames, the algorithmic
generation of sequences of frames, and
picture-driven animation. This suggests
that a flexible animation system would
allow the harmonious blending of all these
techniques. Here GENESYS fails a priori,
fcr it makes inaccessible the full
ccmputaticnal power of the computer.
within the language of GENESYS cne cannot
implement algorithms by writing programs.
We have also seen that GENESYS is
inadequate because it presents the animator
with a fixed set of commands and tools,
with fixed mechanisms cf control, and with
fixed models cf pictures and of processes
of picture construction. A suitably
skilled animator may himself determine
these aspects cf his animation system, his
arimation-machine, only if the system is
not a fixed set of commands but an
extensible, truly open-ended programming
language."

The design of APPI, and the construction of
SHAZAM in Smalltalk, were intended to
demonstrate the feasibility and
attractiveness of unifying algorithmic and
demonstrative computer animation
capabilities in one system. (A similar
goal is pursued by [de Fanti 73].) For this
tc be possible, APPL had to be (and
Smalltalk is) conversational and
extensible. These terms are much used and
misused in the literature, so we shall now
define our use of them quite precisely.

A. Ccnversationality

The terms "conversational", "on-line",
and "interactive" are often used
interchangeably when applied to computer
systems. our usage shall be more
restrictive. A conversational language is
one in which:

1. "Response time is proportional to the
demand for computation and, in particular,
there is rapid response tc trivial
requests" [Standish 70].

2. The language is conveniently extendable,
that is, program's may be written in the
same language with which cne expresses
direct commands to the system, and they may
be immediately tested.

3. The animation environment or data base
is directly accessible at all times.

The response time criterion is
important for computer animation because of
the frequency with which animators make and
wish to preview the effect of small changes
tc their movies. Such changes typically
include speeding up or slowing down a
motion, introducing or removing an object a
split second earlier or later, and making
slight pcsitional changes to an object.
Compiled languages operating in card-
oriented slcw-turnaround batch systems (the
antithesis of a conversational system)
impede the animator's ability and desire to
carry out such refinements to a movie.

The extendibility criterion is
important for computer animation because
demonstrative systems rarely have the
perfect command set and the perfect
interaction style for every animator.
Although a system can be changed even if
the implementation language is very remote
from the user command language, the
dialogue between animator and animation
system programmer can be enhanced if the
twc languages are the same. Furthermore,
the animator can ultimately learn to make
simple additions and modifications by
himself.

The environment accessability
criterion is important for computer
animation because animation computations
often yield interesting pictures or
movements as by-products. It is of course
possible to anticipate these and explicitly
modify any animation program to write them
onto a file. But such results are often
unanticipated, even the result of
accidents, and one wants to be able to
access them at any time using the same
naming conventions as are used by the
animation program.

Conversational systems satisfying
these criteria include most LISP, LOGO,
API, and BASIC implementations, and
Smalltalk. These systems generally are
interpretive, but they need not be; the
same results could be achieved by
incremental compilation.

B. Extensibility

One recent definition of extensibility
has been provided by Cheatham [71]:

"By extensible programming language we
mean a base (or core) language plus a
programming system the totality of which
has facilities for extending or
modifying:(1) the syntax of programs; (2)
the operators available; (3) the data
structures and internal representations of
data structures which can be defined, given
values, manipulated, output, and so on:
and, (4) the regimes of control which can
be employed".

Extensibility of operators, data
structures, and regimes of control are
relevant to computer graphics in general
and to computer animation in particular
[Eaecker 70b, Standish 70].

A data definition facility in an
extensible language enables the
specification of a composite data type
(data structure) built out of primitive
data types and/or other composite data
structures. The extended language must
contain mechanisms for constructing members
of the new class from suitable components
(constructors), mechanism for selecting
distinguished components (selectors), and
mechanisms for testing if an arbitrary
datum belongs to the new class
(predicates). Standish [67] presented a
formalism and a methodology for augmenting
a language with a data definition facility
so that, given a new data structure
definition, the system can automatically
provide the associated constructors,
selectors, and predicates. Furthermore,
these constructors, selectors, and
predicates are used in formulating
extensions of the meaning of old operators
so that they apply to new data types.
(Adding new operators can be done via
function definitions in most procedural
languages, although these language
enhancements may be made more gracefully if
coupled with the syntax extension
capabilities of an extensible language.)

In computer animation we often
encounter classes of pictures or data which
possess unique characteristic features, and
specialized techniques for their
construction, decomposition and
manipulation. P-curves, waveforms,
selection description, and rhythm
descriptions [Baecker 69a,69b] are some
examples. An extensible animation language
allows us to define these new concepts
gracefully while remaining within the same
language.

The same kind of argument applies to
extensibility of control structure. One
good example is quasi-parallel processing.
Simulation is the mathematical dynamic
modelling of a hypothetical or real system;
animation is the pictural dynamic modelling
of a hypothetical or real system [Baecker
69a]. Hence an animation language must
allow several strands of activity to
proceed concurrently, synchronously or
asynchronously. Similar cases can be made
fcr other control regimes such as
semaphores [Horsley 74, Duff 76] and
continuously evaluating expressions. As
with data structures, greater flexibility
can be achieved if new control structures
can be defined by extending a set of
control primitives with an appropriate
definition facility [Fisher 70].

34

III. A Conversational Extensible Animation
System

A. The Essential Features of Smalltalk

[Goldberg 75] describes Smalltalk as a
programming language that:

"...permits detailed examinations of the
processes involved in carrying out a task.
It is a communication medium based on
sending and receiving messages among
objects. No exceptions exist to this
notion. Everything in Smalltalk is an
object; actions occur as a result of
sending a message to an object; an object
understands a message according to the way
it receives the message; and objects are
grouped in classes because of the
similarity of their description and the
sameness of the actions they can take.
Each member of a class remembers
information that distinguishes it from the
other members of the class, but each member
receives and sends messages according to
the class definition".

Any class definition in Smalltalk
follows the same skeletal pattern:

to class_name tempcrary_vars
object_vars 1 class_vars
(acticns of_any_member_of_the_class)

Class variables are those whose meaning
(binding) applies to all objects of the
class, object variables are those whose
meaning is unique to a particular object
(instance of the class), and temporary
variables are those that are created and
destroyed anew in any activation of any
object of any class. When an object is
activated (fired up, called), it carries
out the actions contained in the body of
the class definition.

The concepts of class and object
embodied in Smalltalk are similar to (in
fact, inspired by) those contained in
SIMULA [rahl 72]. But the concept of
sending and receiving messages is
significantly different from that of
passing arguments and binding them to
procedure parameters.

Each class definition contains
specifications which determine when it
chooses to receive a message and how it
will interpret that message. In
particular, it may receive a message
literally (unevaluated), it may receive and
evaluate a message in its own environment,
or it may receive and evaluate a message in
the environment of the message transmitter
(retrieve a binding from that environment).
These mechanisms fcr controlling evaluation
are similar to but more general than those
provided in LISP.

35

Like LISP and LOGO, Smalltalk is
ccnversational. Smalltalk furthermore
shares with LISP the property that
Smalltalk program segments (code vectors)
are data objects within the language. Thus
Smalltalk programs can easily construct or
modify other Smalltalk programs, which is a
tool of great power (although perhaps one
easily misused). Smalltalk also shares
with ICGO some properties that facilitate
its use by children, who are the prime
intended users of both languages. These
features include a straightforward syntax
requiring no declarations, and the simple
graphics sublanguage turtle geometry.
Experiences with both languages demonstrate
that children begin composing procedure
definitions (class definitions) in their
first hour on the machine.

E. SHAZAM's Basic Capabilities and
Interaction Style

SHAZAM contains only the most
essential animation capabilities. This is
in order to facilitate its learning by
children, who use it for making small
movies. Another reason is that more
scphisticated features can easily be added
by extension.

Static images in SHAZAM are called
cels. They resemble the cels cf. the
animation industry, in that they behave
like clear sheets of celluloid which can be
"painted" and overlaid. Commands exist to
paint cels, to erase them totally, to copy
a cel, and to cycle through all available
cels for review and possible insertion into
a movie. Cels are painted using "brushes"
which can have different shapes and which
can be "dipped" into different "paints".
Commands exist to select one of a number of
brushes (such as a pin or a blob), and one
of a number of paints (such as black, grey,
white, or transparent). The effect of
these brushes and paints may be seen in
some typical SHAZAM drawings shown in
Figures 1 and 2.

Figure 2

Figure 1

Dynamic images in SHAZAM are called
movies. A movie consists of a sequence of
cel selections (selection description),
which determines which cel is visible in
which frame, and a sequence of positions
(F-curve), which determines where the
selected cel is located in each frame.
Commands exist to sketch a p-curve, to
select a cel fcr a particular frame, to
single step through the movie (advance one
frame at a time), and to play back the
movie (cycle it continuously). As was true
using GENESYS, the SHAZAN animator can
create a movie such as the dripping faucet
of Figure 3 in 5 minutes of work with the
p-curve, selection description, single
step, and real-time playback capabilities.

Every cel and every movie is
affiliated with its own unique window.
Commands exist to reposition both the cel
(movie) and window relative to the screen,
tc move the window relative to the cel
(mcvie), and to expand or shrink the
window. Cels and movies are viewed through
their windows, which are drawn as dark
black outlines and which occlude material
falling outside their boundaries.
Composite movies such as those in Figures 4
and 5 may be formed by activating
individual movies, positioning them on the
screen, and controlling their appearance by
changing the location and size of their
surrounding windows.

SHAZAM continues to execute in
parallel with the playback process as it
displays one or more movies. Thus the
sketching of a cel can occur concurrently
with a playback of a movie in which that
cel is used. Defining a blinking pair (two
frame movie) using this feature provides a
vivid demonstration of the Phi Phenomenon
on which the illusion of animation is
based. One constructs, for example, a two
frame movie consisting of a bent arrow and
an undefined cel, fires up the movie
playback process, and then begins to sketch
a straight arrow as the second cel. At
first the movie is only a mechanical
alternation between two static images, but,
as the second cel begins to take shape, the
movie suddenly comes to life as an
energetic flexible arrow. (Figure 6)

Aside from typing in movie names so
that they may be saved on a disk, all
SHAZAM input is given from a hardware
pointing device such as a stylus. Cel and
movie windows each contain a menu of
command icons (light buttons). Pointing at
a particular icon causes the associated
ccmmand to be activated. For example,
pointing at a tiny palette activates
painting; pointing at a tiny staircase
causes the movie to single step. Each
window's command icons appear (disappear)
when the stylus enters (leaves) that
window. Positioning or scaling of windows
is done by "dragging" them with the stylus.
All windows also have a "vertical
location"; this layering causes some
pcrticns of pictures to be occluded by
others. A window can be "brought to the
top" by depressing the tip of the stylus
while it is within that window but not
pointing at any command icon.

36

Figure 5

Figure 3

Figure 4

Figure 6

C. The SHAZAM Playback Processor

Use of SHAZAM results in the
ccnstructicn of a tree of Smalltalk
objects. These objects are instances of
some Smalltalk classes all of which respond
tc the message 'display'. This tree
structure may be regarded as a display
file. There is also a special program
which accepts a pointer to the root of the
tree and passes the message 'display' down
it; this program may be considered a
display processor.

Primitive pictures in SHAZAM are
defined as 256x256 rasters of points, each
black, white, or transparent. They are
stored in a highly compact form, using a
hierarchic area encoding scheme, so that a
number of pictures can fit into memory
together. The display processor traces the
tree structure, scan converts, translates
clips, and does transparency-opacity
calculations (to determine which portions
of which layers are visible) in real time,
approximately 3 to 10 frames per second.
The results of these calculations are
double buffered to the video display to
enhance the perception of movement.

D. Conversationality in SHAZAM

Smalltalk is an interpretive system
implemented on a stand-alone minicomputer;
it provides "rapid response to trivial
requests". Hence it meets the response
time criterion for a conversational system.
The extendibility and environment
accessability criteria are also satisfied;
their importance to SHAZAM, however, is
somewhat subtler.

The extendibility criterion is perhaps
best discussed by relating an anecdote.
The incident occurred while Eric Martin, a
non-programming animator, was working with
SHAZAM shortly after it became operational.
Eric requested that SHAZAM be modified to
allow one to replicate a cel in multiple
frames of a movie with a single command.
This is particularly useful if one is
ccnstructing cyclic motions. Because of
Smalltalks's convenient extendibility, I
was able tc add this feature in fifteen
minutes. Furthermore, I was able to
explain what I was doing, enhancing Eric's
appeciation of possible system malleability
in terms of his nascent understanding of
Smalltalk. (Note: It is essential that a
computer animator develop an ability to
sense which aspects of a system's

limitations are arbitrary and which are
fundamental.) I contrast this experience to
similar incidents with the use of GENESYS,
in which I could add such a feature only
overnight, and in which it was impossible
tc explain to the animator what I was doing
in terms of what he was doing.

The role of environment accessability
for SHAZAM is equally dramatic. In GENESYS
every access path to the animation data
base had to be pre-planned and pre-
programmed. These included such trivial
functions as: retrieve a picture, given
its name; retrieve the X coordinate of a
particular cel in a particular frame of a
particular movie; and, reverse the
direction of movie playback. These
functions, and many more, all come "for
free" in SHAZAM because they may be
expressed simply and directly in terms of
the Smalltalk evaluator's mechanisms for
retrieving and establishirg bindings.
Furthermore, by cleverly including calls to
the Smalltalk evaluator at appropriate
points within interesting class
definitions, one can interrogate and modify
the local state of a particular instance of
that class. The experienced SHAZAM
animator can exploit this to explore and
refine individual movies.

E. The Extensibility of SHAZAM

Available space precludes the
presentation of a complete description of
the method and style of Smalltalk
extensions. Extensions of the operators,
of the syntax, of data structures, and of
ccntrol structures, may all be achieved.
The Smalltalk class concept, like that of
SIMULA, subsumes both procedures and data
structures as they appear in conventional
languages. Hence new data structures may
be defined as easily as and in the same
manner as new functions.

The design of the final version of
SHAZAM followed a pattern that seems to
characterize the development of many
Smalltak programs. First, the essential
Smalltalk classes, such as the cel, the
movie, the window, and the menu, were
identified. Next, the necessary local
state of each instance of each class was
specified, and appropriate instance
variables defined. Then, the messages
appropriate to each class were formulated.
Finally, code carrying out the response to
those messages was written.

37

IV. Conclusions

One particularly useful consequence of
Smalltalk conversationality and
extensibility is that an animation system
designer way formulate, implement in
preliminary fashion, test the viability of,
and, if need be, discard numerous design
ccncepts. The version of SHAZAM described
in this paper is literally the fourth that
we constructed in three man-months of
effort. Each of the first three
implementations explored a point of view
with respect to embedding picture-driven
animation within Smalltalk. Although none
were completed, each trial implementation
yielded useful insights which were
ultimately incorporated into the final
design. I know of no other environment
where design ideas can be explored with
ccmparable grace and fluidity.

luckily, SHAZAM is a relatively small
system, because large systems constructed
in this environment often run slowly, and
must therefore be reprogrammed in less
powerful but more efficient languages. The
utility of conversational extensible
graphics languages will obviously be
enhanced if appropriate tools for
performance measurement and analysis and
for compilation are developed.

Another area for future research is
the development of more general techniques
fcr coupling free-hand and algorithmic
specifications in computer animation.
SHAZAM takes a step in this direction by
allowing both cels and p-curves to be
sketched or computed, but the underlying
playback process is fixed, inaccessible to
the Smalltalk programmer. Animation
computation and playback processes should
be expressible with all the powers of the
conversational extensible graphics
language; techniques for combining these
processes and for enabling them to compute
efficiently must be developed.

Acknowledgements

The implementation of SHAZAM was
carried out by the author and Tom Horsley
while working in the Learning Research
Group (LRG) of the Xerox Palo Alto Research
Center. Eric Martin provided many useful
ideas and suggestions, and was the system's
first user. The very elegant design of the
windows is Tom's, inspired in part by a
previous implementation of Alan Kay's. The
display processor is the work of Steve
Purcell, also inspired (I believe) by a
suggestion of Alan Kay's. We are
especially grateful to Steve and to Dan
Ingalls, who came to our rescue on
countless occations. We also thank Adele
Goldberg, Chris Jeffers, Diana Merry, John
Shoch, and Steve Weyer for their support,
and Alan Kay for his inspiration and vision
which permeates LRG.

38

References

[Eaecker 69a] Ronald M. Baecker,
Interactive Computer Mediated-Animation,
MIT Project MAC-TR-61, 1969.

[Eaecker 69b] Ronald H. Baecker, "Picture-
Driven Animation", Proceedings of the 1969
Joint Computer Conference, 273-288.

[Paecker 70a] Ronald M. Eaecker, Lynn D.
Smith, and Eric Martin, "GENESYS: An
Interactive Computer-Mediated Animation
System", 17 minute color sound film, MIT
Lincoln Laboratory, Lexington
Massachusetts, 1970.

[Eaecker 70b] Ronald M. Baecker, "Current
Issues in Interactive Computer-Mediated
Animation", Proceedings of the Ninth Annual
Meeting of the Users of Automatic
Information Display Equipment, October
1970, 273-288.

[Baecker 74] Ronald M. Baecker, "GENESYS--
Interactive Computer-Mediated Animation",
appears in [Halas 74], 97-115.

[Baecker 76] Ronald M. Baecker, Marjorie
Guerin, and Michael D. Tilson, "An
Algorithmic Computer Animation Facility for
Research and Educational Filmmaking", 1976,
in preparation.

[Burtnyk 71a] Nestor Burtnyk and Marceli
Wein, "Computer Generated Key-Frame
Animation", Journal of the Society of
Motion Picture and Television Engineers,
Vol.80, March 1971, 149-153.

[Eurtnyk 71b] Nestor Burtnyk and Marceli
Wein, "A Computer Animation System for the
Animator", Proceedings of the Tenth Annual
Meeting of the Users of Automatic
Information Display Equipment, October
1971, 3.5-3.24.

[Eurtnyk 73] Nestor Burtnyk and Marceli
Wein, "Image Quality Considerations in
Computer Animation", Proeedings of the 3rd
National Research Council Man-Computer

Communication Seminar, May 1973, 20.1-
20.8.

[Cheatham 71] Thomas E. Cheatham, Jr., "TheRecent Evolution of Programming Languages",
Proceedings of the 1971 International
Federation of Information Processing
Societies Conference, 298-313.

[Dahl 72] Ole-Johan Dahl and C.A.R. Hoare,
"Hierarchical Program Structures",
Structured Programming, A.P.I.C. Studies inData Processing No.8, Academic Press, 1972,175-220.

[de Fanti 73] Thomas A. de Fanti, The
Graphics Symbiosis System--An Interactive
Mini-Computer Animation Graphics Language
Designed for Habitability and
Extensibility, Ph.D. Thesis, Dept. of
Computer and Information Science, Ohio
State University, 1973.

[Duff 76] Thomas D.S. Duff, Simulation and
Animation, M.Sc. Thesis, Dept. of Computer
Science, University of Toronto, 1976.

[Fisher 70] David A. Fisher, Control
Structures for Programming Languages, Ph.D.
Thesis, Dept. of Computer Science,
Carnegie-Mellon University, 1970.

[Foldes 74] Peter Foldes, "La Faim
(Hunger)", Color Sound Film, The National
Film Board of Canada, 1974.

[Goldberg 74] Adele Goldberg, "Smalltalk
and Kids--Commentaries", Xerox Palo Alto
Research Center Report XPARC-LRG-3, June
1974.

[Goldberg 75] Adele Goldberg and Bonnie
Tenenbaum, "Classroom Communication Media",
Topics in Instructional Computing, ACM
Special Interest Group on Computer Uses in
Education, Volume 1, January 1975, 61-68.

[Guerin 73] Marjorie Guerin, A System for
Ccmputer Animated Film Production in a
Batch Processing Environment, M.Sc. Thesis,
Dept. of Computer Science, University of
Toronto, 1973.

[Halas 74] John Halas(Editor), Computer
Animation, Hastings House, New York, 1974.

[Horsley 74] Thomas R. Horsley, SIMULOGO: A
Student Simulation Language, M.Sc. Thesis,
Dept. of Computer Science, University of
Toronto, 1974.

[Kay 72] Alan Kay, presentation at 1972 ACM
National Conference, Boston Mass., August
1972

[Kay 74] Alan Kay, presentation at First
Annual Conference on Computer Graphics and
Interactive Technique, Boulder Colorado,
July 1974.

[Knowlton 64] Kenneth C. Knowlton, "A
Computer Technique for Producing Animated
Movies", Proceedings of the 1964 Spring
Joint Computer Conference, 67-87.

[Knowlton 70] Kenneth C. Knowlton, "EXPLOR
- A Generator of Images from Explicit
Patterns, Local Operations, and
Randomness", Proceedings of the Ninth
Annual Meeting of the Users of Automatic
Information Display Equipment, October
1970, 543-583.

[LRG 76] Learning Research Group, Personal
Dynamic Media, Xerox Palo Alto Research
Center Report, 1976.

[Mezei 71] Leslie Mezei and Arthur Zivian,
"ARTA, An Interactive Animation System",
Proceedings of the 1971 International
Federation of Information Processing
Societies Conference, 429-434.

[Papert 73] Seymour Papert, "Uses of
Technology to Enhance Education", MIT
Artificial Intelligence Laboratory Memo 8,
June 1973.

[Shoup 74] Richard Shoup, presentation at
First Annual Conference on Computer
Graphics and Interactive Technique, Boulder
Colorado, July 1974.

[Standish 67] Thomas A. Standish, A Data
Definition Facility for Programming
Languages, Ph.D. Thesis, Dept. of Computer
Science, Carnegie-Mellon University, 1967.

[Standish 70] Thomas A. Standish, "Remarks
on Interactive Computer-Mediated
Animation", Proceedings of the Ninth Annual

Meeting of the Users of Automatic
Information Display Equipment, October
1970, 306-309.

[Tilscn 75] Michael D. Tilson, Editing
Computer Animated Film, M.Sc. Thesis, Dept.
of Computer Science, University of Toronto,
1975.

[Wein 74] Marceli Wein and Nestor Burtnyk,
"Computer Animation", to appear in
Encycopedia of Computer Science and
Technology, Volume 3.

39

