
COMPUTER ANIMATION

by

Charles Csuri*
The Ohio State University

B. GRAPHICS SUPPORT SYSTEM

* Manfred Knemeyer's system for
handling hardware devices,
data structures, management
of transformations and time,
and memory management for the
graphics buffer.

C. ANIMA

* A new graphics programming
language has been designed
and is being implemented.

D. DATA GENERATION SYSTEM

* Some approaches to problems
are briefly discussed.

III. DISPLAY HARDWARE AND GRAPHICS ALGO-
RITHMS

* The problems presented by the
order of transformations in an
algorithm are briefly described.

IV. HIGH PERFORMANCE GRAPHICS

* some speculations

I. STATE OF THE ART SYSTEMS

During the past ten years several state of
the art graphics systems and algorithms
have been used to produce computer animat-
ed films. Some of these involve 3-D
graphics using high performance algorithms
in software and/or hardware and have set a
high standard for computer graphics.
General Electric's multi-million dollar
color display system built for NASA was
the first major example(l). Concave 3-D
objects with 250-300 edges were displayed
in real-time. Rougelot(2) of General
Electric, using some of the same concepts
and technology, developed an "off line"
system to produce color movies. Using
some custom electronic circuits. his

INTRODUCTION

A comprehensive 3-D real-time computer
animation system is based upon a broad
range of research activities in the field
of computer graphics. In many ways the
requirements for such a system are more
challenging and complex than for other
graphics systems. This is particularly
true if one builds a language and a
system which is truly user oriented and
which has viable production capabilities
for researchers and film makers. Too
often systems which are the result of a
research experiment in hardware or soft-
ware design do not go beyond a beautiful
demonstration of potentialities. Such
experimentation is essential to advance
the state of knowledge but if computer
animation is to become a new research
and production instrument we must, in
addition, provide more examples of use-
able systems.

Although each of the following topics
are aspects of a real-time animation
environment deserving a detailed explan-
ation, they will be dealt with in a way
to introduce to the reader basic require-
ments and problems. The topics are:

I. STATE OF THE ART SYSTEMS, AND
LANGUAGES

* Used as references and as a basis
of comparison.

II. AN ANIMATION ENVIRONMENT

* Several systems and languages are
being implemented to run under
RSX-11/D on our PDP-11/45 com-
puter.

A. VISIBLE SURFACE SYSTEM

* Allan Myers' algorithm

* VILAN (VIsual LANguage)

92

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.Siggraph ’75 Bowling Green

system could process a color scene of
about 350 polygons (1400 edges) in one
second. Greenberg(3), using the Rougelot
system, produced a stunning animated film
representing movement through the Cornell
campus. The data for the Cornell campus
had about 12,000 polygons (48,000-50,000
edges) and each movie frame required 20-
30 seconds of calculation time.

The Rougelot system used the Schumacker(4)
algorithm. This algorithm processes
shaded and colored objects but its data
representation requirements place a heavy
burden upon the user. Essentially the
user must organize the data based upon
certain topological properties of the
scene. This involves, among other things,
faces whose fixed priorities can be com-
puted relative to each other. The effect
is to reduce certain computational prob-
lems for the algorithm. With a model of
an entire university campus, this can be
a horrendous task. The preparation of
the data for the 12 buildings represent-
ing the Cornell campus took 12 students
one semester. The algorithm's speed is
dependent upon such data representation
and thus is not so general as most later
algorithms.

Another major system is the Watkins Box
at Case Western Reserve University. The
Watkins(5) solution to the visible sur-
face problem for 3-D concave polyhedra
was hard-wired by the Evans and Sutherland
Corporation so that it can run in real-
time. This system also includes hardware
clipping, smooth shading, perspective
calculation and light source calculation.
The algorithm for clipping was developed
by Sutherland and Sproull(6) while the
one for smooth shading was developed by
Gourand(7). The display system cost
about $500,000 (the computer is extra)
and is capable of displaying shaded
objects in real-time. A real-time image
may contain up to 2000 edges at 512 x 512
resolution. Interesting results based
upon the Watkins algorithm in software
(including routines for clipping, per-
spective and smooth shading) are the
University of Utah films on the "Face"
and the "Hand". The "Face", for instance,
involved about 750 edges. It is inter-
esting to note that although many hours
of computer time were required to make
films several minutes in length tradi-
tional animation would have taken far
longer.

Perhaps the most spectacular single com-
puter picture to be produced is MAGI's
(Mathematical Applications Group, Inc.)
tree. A calculation at 500 x 500 resolu-
tion of a 3-D deciduous tree in color
with hundreds of leaves took nearly three
hours on an IBM 360/65(8). MAGI's(9)
algorithm has been used to produce some
of the best'computer animated films.

Staudhammer's(10) system at North Carolina
State University approaches a real-time
color video display for 3-D concave ob-
jects. Using another implementation of
the Watkins algorithm, he and his asso-
ciates have hard-wired the scan segment
conversion section of the algorithm to
increase its speed. Objects of 2000 edges
complexity typically take about 20-25
seconds with simple objects taking eight
seconds. Staudhammer's system does not
normally provide for clipping, smooth
shading or perspective, but these features
can be introduced at some cost in perfor-
mance. As is the case with all known
systems, the speed is also dependent upon
the type of object selected. Significant-
ly lower in cost than other systems, his
approach has potential for widespread
computer animation.

There have been several attempts at anima-
tion/graphics programming languages with a
concern for naturalness. An experimental
effort of the Computer Graphics Research
Group at O.S.U. produced the Graphics
Symbiosis System (DeFanti) (11), and its
derivative the Animation-Real-Time (ART)
system. Both of these, providing an easy
to use language syntax, are for users who
have little or no programming experience.
One can quickly learn how to build pic-
tures, use picture manipulation commands
(move, scale, rotate, warp, group, hide,
etc.) and to write programs in the lan-
guage. These systems can be easily used
to make film and video-tape. After accom-
plishing these initial goals, it was noted
that it is sometimes difficult for users
to produce animation sequences to their
liking. Analysis indicated that the easy
to use nature of the systems enables users
to go from naive to sophisticated so
quickly that they overreach the systems
capabilities. Thus, the current challenge
is to retain some aspects of naturalness
and real-time response and to build a lan-
guage and system with powerful algorithmic
features.

II. AN ANIMATION ENVIRONMENT

The Computer Graphics Research Group is in
the process of constructing major portions
of an animation environment integrated
under the RSX-11/D multitasking operating
system on a PDP-11/45 minicomputer. Por-
tions selected to be implemented are
either essential or are currently suitable
for research. It seems clear that it is
not yet time for a complete production
system although we will ultimately use the
environment described here as a production
system. This procedure which was also
used with our prior systems (IBM 1130 pro-
grams, GRASS and ART)(11) is guaranteed to
show what significant research problems
remain.

93

A. VISIBLE SURFACE SYSTEM

The essential basis of the best known
real-time graphics systems is a signifi-
cant algorithm which handles the visible
surface problem. The requirements of
complex algorithms such as hidden line
removal and visible surface calculation
are so great that language designers tend
to suggest that such algorithms must be
hard-wired. Since it is so difficult to
obtain a sufficiently efficient implemen-
tation, they sometimes claim that the
super-fast computers have not arrived to

handle such problems in software. For
example, in the particular case of the
visible surface problem, one expert has
stated "hidden surface algorithms take
too long to compute to be useful in a
real-time system"(12). What many people
believe can only be accomplished in hard-
ware, has now been achieved on a mini-
computer in software.

Allan Myers, of O.S.U.'s Computer Graphics
Research Group has designed and imple-
mented a major new visible surface algo-
rithm for concave polyhedra. It is based
on some of the latest programming tech-
niques including structured programming*
and it solves (actually avoids) the sort-
ing problem as expressed by Ivan
Sutherland(13), et al. This algorithm
functions by efficiently accomplishing
the work to be done as opposed to using
time consuming strategies to avoid this
work, as is the case with previous algo-
rithms. Thus, it represents the first
of a new class of algorithms.

Myers' technique does not place a heavy
burden upon the user for data representa-
tion as is the case with the Schumacker
and Newell algorithms. Unlike any other
known algorithm its computation time
grows as a function no worse than linear
as the number of faces increases.

Implemented** on a PDP-11/45 minicomputer
under the RSX-11/D multitasking operating
system in a 32K (16 bit word) main memory
partition, it can manage over 24 frames
per second for small simple concave
objects at 512 x 512 resolution. This
includes clipping, perspective and smooth
shading. The routine can manage over ten
frames per second for multiple simple

94

objects with independent transformations.
The routine is not assisted by any special
purpose hardware and uses only the point
plotting, auto-increment, Z depth cuing
and subroutine stack capabilities of the
Vector General 3-D display. The routine
is capable of displaying an image of up to
ten thousand edges* from the 32K partition
which contains the algorithm, data and
free space**. Although complicated and/or
large objects cannot be displayed in real-
time, an image of five to ten thousand
edges can be displayed in as little as
several seconds. Further, scenes of
reasonable complexity can be displayed in
real-time at 100 x 100 resolution. At
this resolution the user can make basic
judgements about objects in terms of their
position, intensity, speed of motion,
clipping, etc. After achieving the de-
sired visual effects, he can film the
sequence at a higher resolution. Note
that this is practical using Myers' aolo-
rithm because the computation time de-
creases as a function greater than linear
as the resolution decreases.

The routine was designed with the scien-
tific experimenter in mind and includes
the following capabilities:

A. Scene Structure

1. Multiple objects per scene.
2. Multiple surfaces per object.
3. Multiple faces per surface.

B. Image Quality***

1. Clipping on a scene (a new,
efficient method).

2. Perspective on a scene.
3. Smooth shading of surfaces (if

desired).
4. Variable transparency of surfaces

(not in real-time).
5. Three independent gray scales

(each of 2048 levels) for color
during filming (the average is
displayed for direct viewing).

6. Face intensities based on the
angle between the light source
and the face (if desired).

C. Manipulation Capabilities

1. Scaling of objects.
2. Rotation of objects.

3. Translation of objects.
4. User specified face intensities

(if desired).

Although interesting in itself, the algo-
rithm with all of its capabilities does
not satisfy our primary research goal.
This is to make powerful algorithmic
graphics capabilities available to the
scientific research in a natural and
flexible manner. Consequently, the
kernel of a graphics language to be
called VILAN (pronounced 'vl-lan) will
be designed and implemented to allow a
researcher the use of a sophisticated
"solid" object manipulation and display
capability.

B. GRAPHICS SUPPORT SYSTEM

We have a sophisticated graphics support
system consisting of a privileged task
and several device handlers under RSX-11/D.
The graphics subsystem consists of four
major components. These are, (i) the
display driver and interrupt service rou-
tine, (ii) a refresh buffer, (iii) a
communication area, and (iv) a subroutine
library. If required, independent access
is available to the user to each of these
components. The general user, however,
interfaces to the graphics subsystem
through the driver and treats the display
as an I/O device.

This system greatly facilitates hardware
control, data structure manipulation,
memory management for the graphics buffer,
and the management of transformations and
time. It should be noted that the graph-
ics support system in and of itself pro-
vides more graphics capabilities than
most graphics languages.

C. ANIMA

We have completed the detailed design
specifications for a new graphics pro-
gramming language called ANIMA and we are
in the process of implementing it. The
language has been designed for the scien-
tific researcher who can use real-time
animation and film as a research tool.
Our conception of a graphics programming
language is very inclusive with a full
range of facilities, support algorithms,
graphics algorithms, a compiler, power-
ful numeric capabilities, a generalized
list structure for data, and other
features not usually found in graphics
languages. We plan to use 32K* (16
bit words) of main memory for the lan-
guage and support algorithms and we
already use 32K for picture buffer space.

While it is beyond the scope of this paper
to describe details, a few important fea-
tures will be identified. We have devised

a systematic method for the specification
of the common transformations which are
essential for basic object manipulation
capabilities. Our format for handling a
general class of transformations is dif-
ferent from the typical method which is to
develop a package of transformation matrix
generating subroutines. Within our lan-
guage transformations may be specified by
expression definitions which are re-eval-
uated for every regeneration cycle. The
implications of our method are important
relative to reduced overhead costs in
response time, the options and the facil-
ities provided for the user, and the terms
in which the user develops a solution to
his problem. It is extremely difficult to
appreciate the difference this makes with
respect to the user actually being able to
accomplish what he wants to do with a
reasonable amount of effort.

The language is designed so that within a
single "motion command" capabilities
exist which include the following: limits,
and mode. Limits specify the limits of
the motion; mode specifies the action to
be taken upon reaching the limits. Mode
includes such things as repeat action,
reverse action and halt. For instance, a
requirement in a real-time animation
environment might involve a 3-D shaded
butterfly flapping its wings as it moves
in 3 dimensional space. The flapping
might be accomplished by means of a rotate
command per wing with appropriate limits
and with an appropriate mode specification
to indicate whether the movement should
restart, reverse or stop when the limit is
reached.

In a real-time environment there are many
instances where one must re-evaluate the
parameters that modify transformations.
Using analog input devices as well as
variables and invoking programs to make
the necessary changes in the motion se-
quence, the problem is a complex one.
Everything cannot be re-evaluated in real-
time, but we have devised a method of
notation for the specification of contin-
uous motion. For example, ".ROTATE NOSE,5,
@(7*A)" where the picture "NOSE" will be
rotated a constant 5

° about the X axis and
a variable amount about the Y axis speci-
fied by "7*A" which is re-evaluated for
every display regeneration using the
current value of A. Note that including a
local clock in the re-evaluated expression
produces continuous motion. If the above
specifications were ".ROTATE NOSE,5,
@(7*.F)" then the picture "NOSE" will be
rotated about the Y axis by an angle de-
pending upon the current "frame clock" .F.
This expression is re-evaluated on every
regeneration cycle.

TIME MANAGEMENT AND TRACKING FACILITY IN
ANIMA

The scientific researcher in a real-time

95

animation system requires accurate and
repeatable images on the graphics display.
It is necessary for the user to perceive
the dynamics of a model correctly if it
is to be a research tool. There are many
algorithms that exceed the capacity of
the computer to calculate and display
pictures at a real-time rate. Conse-
quently, time management will often be a
significant problem: it will often be
time to display the next "frame" well
before the required computations for the
frame are complete.

Traditional methodology for time manage-
ment involves system clock support. The
usual implementation of such support in-
volves timer queues and communication
between the clock support component and
the task scheduler. A significant short-
coming of most implementations of system
clock support relative to real-time ani-
mation is that there is no time-mapping--
there is no way to correlate "action time"
with film frame number. There is also
significant overhead involved with system
clock support. We developed a technique
for such support which is to be controlled
by our graphics language; and this support
is embedded in the graphics system itself.

A tracking facility, which depends very
heavily on time management, has the fol-
lowing capabilities: (1) the ability to
dynamically record in real-time suffi-
cient information to replay the totality
of the visual effects produced originally;
(2) the ability to dynamically modify in
real-time and under user control the play-
back of a previous track thus producing a
new track, for example, adjust the rota-
tion of one particular object over one
particular span of time; (3) explicit
commands designed to perform often-desired
effects, essentially a superset of editing
and similar operations performed on film;
for example, inserting fades, combining
("splicing") tracks, modifying time rela-
tionships, etc.; and (4) the capability
of putting a track on film with the visual
effects essentially unmodified.

D. DATA GENERATION SYSTEM

One of the major problems remaining in
computer animation is data generation or
data input of three dimensional objects.
One input technique uses a physical model,
for instance, a plaster cast of a head,
covered with lines establishing convex
polygons and then set upon a digitizing
table(14). The user applies an electronic
probe to the vertices of the polygons, in
an order suitable for a shade algorithm,
and the three dimensional coordinate data
is automatically recorded on cards or
tape. Sutherland(15) describes an input
technique using two electronic pens se
lecting coordinate data from a draftsman's
representation of several views of a three
dimensional object. The multiple pens

enable the user to indicate a single point
simultaneously in two such views, thus
defining the three dimensional position of
a point. Provided that one has the blue-
prints, this is very useful for a repre-
sentation of a model to a shade algorithm.
However, in the typical case with animat-
ors the object is usually just something
in their imagination. At best there may
be a few rough sketches of the model on
paper with many details missing.

There have also been research efforts to
use a laser beam scan of a physical model
for the automatic recording of data. This
technique has the problem of excessive
data, and more importantly getting the
system to recognize sub-pictures or bound-
aries, for instance, in a human head--eyes,
ears, or a nostril. Techniques of arti-
ficial intelligence and pattern recognition
are also being applied to the data gener-
ation/input problem. It's an intriguing
approach, but the results at best are
tentative and there are horrendous problems
to be solved before such techniques become
practical. One suspects that some aspects
of the data generation problem are likely
to be solved much sooner using more
straightforward methods.

Other methods employ mathematical tech-
niques to generate basic forms such as
polyhedra or quadric surfaces and planes.
These forms are combined to construct a
model of a car, tree, tank, building, etc.
Although these methods have produced
beautiful representations of various
objects, they are not general enough to
meet the needs of different animators.

We need methods that are somewhat analogous
to the sculptor working in clay to create
three dimensional models. One should have
the freedom to quickly describe arbitrary
surfaces, to smooth one surface into
another one in order to establish conti-
nuity, to add to or subtract from small
sections of surfaces, to stretch, twist or
even squeeze a form with kinesthetic feed-
back--essentially to shape it into the
final form. Then with simple commands one
should be able to specify the color, the
texture and the degree of transparency of
surfaces.

The analogy of the sculptor's approach to
data generation is an artist's fantasy in
working with computers and one which usu-
ally brings gales of laughter from soft-
ware designers and systems programmers
(not ours). Obviously, when the user's
data generation problem involves an inter-
active process and there is no formal
model, then the software requirements
become very complex. The communication
problem between man and machine in an
interactive graphics environment is still
a challenging one. Much of this inter-
action depends upon the kinds of defini-
tions that can be permitted by the soft-
ware. One must be concerned about

96

approaches to data structures, the type
of interactive language to be used, the
relationship between the data structures
and the language and the mathematical and
algorithmic techniques to be used.

Data generation will be another system,
running under RSX-11/D and our graphics
support system, which will exploit a three
dimensional sonic pen with a special
interface. Dr. Leslie Miller of our
group has developed some algorithms to
easily create surfaces. These are tech-
niques to build three dimensional
curvilinear forms and to add surfaces
together and through interpolation tech-
niques provide for smooth continuity.
When the user is finished his forms are
automatically put into a format for visi-
ble surface calculation. Although
Miller's approach has promise for a
reasonably general class of forms, con-
siderable work remains before it might be
considered a system. Eventually, when
files are created with the data genera-
tion system, they will be transferable to
either the ANIMA system or Myers' shade
system (VILAN).

III. DISPLAY HARDWARE DESIGN AND ALGO-
RITHMS

As one considers how to integrate graphics
algorithms into a language, and how to
order transformations to optimize speed
in relationship to a graphics display,
one clearly recognizes that display de-
signers did not have animation in mind
when they built current hardware. Al-
though film is made with these systems,
the dollar market is with customers who
need assistance for drafting problems,
circuit diagram design and other engi-
neering applications. These are usually
applications where there is a requirement
for displaying large amounts of data with
"occasional" small changes to this data.
Typically, the display designer's approach
to transformations has serious drawbacks
for real-time animation. Even the most
general state of the art hardware imple-
mentation (microprogrammed or digital
transformations and read-back) is not
general enough to permit certain algo-
rithms to efficiently use the capabilities
represented by the hardware.

Myers' visible surface routine is a
specific example of an algorithm requir-
ing calculations in an order different
from that assumed by the display designer.
The algorithm needs to do the transforma-
tions of the objects before most of the
processing. In the case of a micropro-
grammed display, there are two ways one
might attempt to use the capabilities it
represents. The first is to use it to do
the transformations. This has the diffi-
culty that transferring the relevant
information back and forth between the
general purpose processor and the display

consumes a significant proportion of the
time that was to be saved. The second way
is to use it to perform the final phase of
the algorithm. There are two difficulties
with this second alternative: the display
was optimized for transformations and is
now being used for something else, and it
may well have insufficient memory or no
memory at all to perform the algorithm
that was intended.

In the case of hardware with digital trans-
formations and read-back, there is one of
the same problems as with the micropro-
grammed hardware. This problem is, once
again, that transferring the relevant
information back and forth between the
general purpose processor and the display
consumes a significant proportion of the
time that was to be saved. Note that for
almost all practical purposes, the display
hardware cannot be used to effectively
implement any algorithm except those for
which it was originally designed.

IV. HIGH PERFORMANCE ANIMATION/GRAPHICS

Advances in computer technology are bring-
ing more powerful minicomputers with
greater memory capacity, relatively low-
cost dynamically-alterable-horizontally-
microprogrammed processors and displays,
and microcomputers. In view of these
developments it is important to re-examine
the basic "black-box" premise under which
high performance graphics has been operat-
ing. It should be possible to increase
the generality and flexibility of graphics
beyond the black-box approach. The black-
box approach to graphics, epitomized by
Sutherland, et. al., has long been the
"right" way to do graphics. In the early
stages of computer graphics it was the
only way to achieve the performance neces-
sary for real-time transformations such as
clipping and perspective.

Now there are minicomputers available
which, in a relatively straightforward
multiprocessor configuration, are capable
of real-time graphic transformations for a
moderate cost. For example, the following
configuration (see illustration, next page)
would, with current technology, provide
performance of the same order of magnitude
as special purpose hardware. Although the
performance on tasks that are traditionally
hard-wired (e.g., rotation, clipping)
would be less, the performance on tasks
that are not hard-wired would be consider-
ably greater than the traditional single
processor system with special purpose
hardware. Note that in the black-box
approach the special hardware is of no use
except in the special cases, whereas a
general purpose system (microprogrammed or
otherwise) lacks only a program to be of
use in any task.

In the not too distant future it should be
possible to equal or exceed the current

97

capabilities of the hard-wired approach
even in the special cases. For example,
the Watkins shading hardware at Case
Western Reserve University is capable of
calculating in real-time the visible sur-
faces described by 2000 edges. The upper
limit of the hardware with severe flicker
is 4000 edges. Since this is a hard-
wired implementation of a particular
algorithm, and since the computation
increases at a rate greater than linear,
there is a fairly restrictive upper limit
on the number of edges this hardware can
handle in a reasonable amount of time.
If, however, the algorithm were not hard-
wired, then there would be the possibility
of increasing the buffer size and replac-
ing the algorithm by a better one.

One can anticipate the "graphics machine"
in the preceeding diagram being expanded
in parallel. By extending the same

organization over and over it would be
possible to allocate one graphics machine
per picture, thus creating "intelligent
pictures". Although such a configuration
is not currently very economical, the
advent of low cost microcomputers and
memory is rapidly making such approaches
possible.

ACKNOWLEDGEMENTS

The author is indebted to Allan Myers,
Manfred Knemeyer, Sam Cardman and Tony
Lucido for their assistance on this
paper, particularly their comments on
the current status of ANIMA and their
ideas on the state of current and future
technology. The work of the Computer
Graphics Research Group mentioned in the
paper is supported in part by the
National Science Foundation grant
number DCR74-00768 A01.

98

MYERS' FANTASY MACHINE

Allan Myers' Visible Surface Algorithm.

The following pictures were produced using Myers'
algorithm. There are several variables which deter-
mine the calculation time of a particular picture.
The most significant of these are the number of
edges, the orientation of the object(s) and the area
of the faces (roughly measured by the size of the
objects). The table gives the average time per
frame for a number of objects.

The average is calculated as

256 256

1 zi+ 1 yi

i=1 i=1

512

where: Zi is the time for one "transform, calcu-
late and display" step of the 256 steps taken for
one revolution about the Z axis. Yi is the time
for one "transform, calculate and display" step of
the 256 steps taken for one revolution about the Y
axis. These times are for 512 x 512 resolution.
The designation large means an object almost the
size of the area displayed and small means 1/4 (in
height) of large.

Timings
(averages for 512 different orientations

at 512 x 512 resolution.)

Smooth Apple

Virtual intersection of two violins.

99

Mask "Mathematical" Surface

Virtual intersection of an apple, mask and violin.

I 100

REFERENCES

1. Rougelot, Rodney S.; Schumacker,
Robert--"G.E. Real-Time Display",
NASA Contract NAS 9-3916, Defense
Electronics Division, General Elec-
tric Company, Syracuse, New York.

2. Wild, C.; Rougelot, R.; and
Schumacker, R. A., "Computing Full
Color Perspective Images", General
Electric Technical Information Se-
ries R71ELS-26, (May, 1971).

3. Greenberg, Donald, "Computer Graphics
in Architecture", Scientific American,
pp. 98-106, April, 1974.

4. Sutherland, Ivan E.; Sproull, Robert
F.; Schumacker, Robert A., "A Charac-
terization of Ten-Surface Algorithms",
Computing Surveys, Vol. 6, No. 7,
March, 1974, pp. 1-55.

5. Watkins, Gary S., "A Real-Time Visi-
ble Surface Algorithm", Computer Sci-
ence, University of Utah, Technical
Report UTEC-CSC-70-101, July, 1970.

6. Sproull, Robert F., and Sutherland,
Ivan E., "A Clipping Divider", Pro-
ceedings of the Fall Joint Computer
Conference, pp. 757-764, Thompson
Publishing Company, 1968.

7. Gourand, Henri, "Computer Display and
Curved Surfaces", University of Utah,
UTEC-CSC-71-113, June, 1971 and IEEE,
TC-20, p. 623.

8. Brooks, Joan, et. al., "An Extension
of the Combinatorial Geometry Tech-
nique for Modeling Vegetation and
Terrain Features", MAGI, Inc., NTIS
report no. AD-782883, June, 1974.

9. Goldstein, Robert A., "A System For
Computer Animation of 3-D Objects",
Proceedings of the Tenth Annual UAIDE
Meeting, 1971, pp. 3-128-3-139.

10. Eastman, Jeffrey F.; Staudhammer,
John; "Computer Display of Colored

Three-Dimensional Objects", The
2nd Annual Symposium on Computer
Architecture (ACM-SIGARCH) Vol. 3,
No. 4, December, 1974, pp. 23-27.

11. National Science Foundation report
1972, "Real-Time Film Animation",
see section I, "Graphics Symbiosis
System", by T. DeFanti and The
Computer Graphics Research Group
(contact C. Csuri for copies).

Csuri, Charles, "Real-Time Film
Animation", Proceedings of the Ninth
Annual UAIDE Meeting, 1970.

"Real-Time Computer
Animation", Proceedings of the IFIP
Congress 74, Stockholm, Sweden, pp.
707-711. North-Holland Publishing
Company.

Gillenson, Mark, "The Interactive
Generation of Facial Images on a CRT
Using a Heuristic Strategy", Ph.D.
Dissertation in the Department of
Computer and Information Science,
The Ohio State University, March,
1974.

12. Clark, James H., "3-D Design of Free-
Form B-Spline Surfaces", University
of Utah, Ph.D. dissertation and NTIS
report no. AD/A-002 736, September,
1974.

13. Sutherland, Ivan E.; Sproull, Robert
F.; Schumacker, Robert A., "Sorting
and the Hidden-Surface Problem",
Proceedings of AFIPS 1973 National
Computer Conference, Vol. 42, pp.
685-693.

14. Sutherland, Ivan E.; Sproull, Robert
F.; Schumacker, Robert A., "A Charac-
terization of Ten-Surface Algorithms",
Computing Surveys, Vol. 6, No. 7,
March, 1974, pp. 1-55.

15. Sutherland, Ivan E., "Three-Dimen-
sional Data Input by Tablet", Pro-
ceedings of the IEEE, Vol. 62, No. 4,
pp. 453-462, April, 1974.

101

