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Abstract 

Simulating flexible models can create aesthetic motion for computer an- 
imation. Animators can control these motions through the use of con- 
straints on the physical behavior of the models. This paper shows how 
to use mathematical constraint methods based on physics and on opti- 
mization theory to create controlled, realistic animation of physically- 
based flexible models. Two types of constraints are presented in this pa- 
per: reaction constraints (RCs) and augmented Lagrangian constraints 
(ALCs). RCs allow the fast computation of collisions of flexible models 
with polygonal models. In addition, RCs allow flexible models to be 
pushed and pulled under the control of an animator. ALCs create ani- 
mation effects such as volume-preserving squashing and the molding of 
taffy-like substances. ALCs are compatible with RCs. In this paper, 
we describe how to apply these constraint methods to a flexible model 
that uses finite elements. 

KEYWOKDS: Elasticity, Modeling, Dynamics, Constraints, Simula- 
tion 
CK categories: G.1.6 -- Constrained Optimization; 1.3.7--Three- 
Dimensional Graphics and Realism (Animation) 

1 I n t r o d u c t i o n  

A primary goal of simulating flexible models is to animate physically 
realistic motions. Examples include simulating the musculature of a 
human body to create realistic walking; simulating the flow of viscous 
liquids, such as lava over volcanic rocks; or simulating a sculptor mold- 
ing clay. 

This paper takes a step towards these goals, by adding constraint 
properties to flexible models; and other properties, such as moldability 
and incompressibility. Using these properties, we can now simulate 
materials, such as clay, taffy, or putty, that have been very difficult to 
simulate using previous computer graphics models. 

1.1 D e s i r a b l e  P r o p e r t i e s  o f  F l e x i b l e  M o d e l s  

In order to create pleasing and supple motions discussed above, we 
incorporate many of the following properties for our flexible models: 

• Phys i ca l  R e a l i s m  - -  Flexible models should be able to move in 
natural, intuitive ways. Using the theory of elasticity to animate 
flexible models is very helpful in creating natural motion. 
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• Contro l lab i l i t y  - -  Flexible models should be able to follow an 
animation script. Models should be able to follow pre-defined 
paths exactly, while still wriggling in an interesting manner and 
interacting with other models. 

• N o n - i n t e r p e n e t r a t i o n  - -  Flexible models should be able to bounce 
off other models while using a small amount of computer time. 

• L i m i t e d  C o m p r e s s i b i l i t y - -  Flexible models should be able to have 
constant volume, even while being squashed. Models that squash 
without retaining their volume look as if they are made of sponge: 
they do not bulge out enough at the sides. 

• Moidabil i~y ~ Flexible models should be moldable: external 
forces should mold the rest shape of the model. Models should 
follow the theory of plast ic i ty ,  which describes materials that do 
not return to their rest shape after large deformation. 

1.2 F o r c e - B a s e d  C o n s t r a i n t  M e t h o d s  

Constraint methods that add external forces to physical systems yield 
physically realistic motion and allow simulation with simple, commer- 
cially available, differential equation solvers. 

I constraints I 

constraints I (RCs) 

Figure 1: A hierarchy of constraint methods 

There are at least three force-based constraint methods that allow 
the creation of flexible models with the properties listed in the last 
section. 

• D y n a m i c  cons t ra in t s  [3] use inverse dynamics to create critically 
damped forces which fulfill the constraints. Dynamic constraints 
are easy to use on systems which have simple dynamics. Elastic 
models have many state variables, however; this makes the dy- 
namics hard to invert. We do not apply dynamic constraints to 
elastic models in this paper. 
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• Reaction constraints, presented in this paper, use a modified pro- 
jection method  for simple constraints,  such as guiding flexible 
models along a pa th  and preventing flexible models from pene- 
trat ing a polygon, l~eaction constraints supply reaction forces 
tha t  cancel other forces tha t  would violate the  constraint.  Reac- 
tion constraints require no extra  differential equations,  but  they 
are limited in scope. 

• Optimization constraints use ideas from optimization theory to 
constrain physical systems.  Physical sys tems perform optimiza- 
tion, because the total energy of any physical sys tem with dissi- 
pation decreases. 

There are two types of optimization constraints.  The  simplest kind 
of optimization constraint  is the well-known penalty method, where an 
extra energy tha t  penalizes incorrect behavior is added to the physical 
system. The penalty method  is analogous to adding rubber  bands tha t  
a t t ract  the  physical sys tem to the constraints• One large disadvantage 
of the penalty method  is tha t  the  constraints  are enforced in the pres- 
ence of external forces only as the ratios of the  s t rengths  of the  rubber 
band to the external forces increases to infinity• 

The  ALC method is a constrained optimization method  tha t  adds 
differential equations tha t  compute  Lagrange multipliers of  the physical 
system. These additional differential equations cause the  sys tem to 
eventually fulfill multiple constraints,  even in the  presence of external 
forces• 

1.3 P r e v i o u s  Work 
As discussed in the  last  section, this  paper combines physically-based 
modeling techniques with constrained optimization methods• 

There has been a growing interest in physical models in the  field of  
computer graphics. Elastic models have been proposed previously [7] 
[11] [15] [17] tha t  s imulate deformable models quite well. Of these, [7] 
and [15] were based directly on variational principles, which are easily 
modified by constrained optimization techniques. 

The physically-based elastic models are based on classical elastic- 
ity theory• A recommended explanation of elasticity may  be found in 
Truesdell [16]; Fung [8] is another  useful reference for bo th  elasticity 
and plasticity. 

In order to make controllable modeling and animation,  researchers 
in computer graphics have previously studied constraint methods  [2] 
[9] [18]. Witkin,  et al. [20] applied the penal ty method  to parametrized 
constraints.  Barzel and Burr [3] and Isaacs and Cohen [13] developed 
dynamic constraints.  We extend their work to flexible models• 

RCs are related to techniques tha t  enforce boundary  conditions of 
partial differential equations [21]. 

ALCs are based on the method  of multipliers first developed by Ar- 
row, et al. [1]. A comprehensive review paper was writ ten by Bertsekas 
[4]. 

1 . 4  P r e v i e w  

Sections 1- 5 of this paper discusses optimization and various constraint 
methods.  Section 2 explains why optimization theory is applicable to 
flexible models• Section 3 discusses the penal ty method.  Section 4 
presents ~Cs  and section 5 presents ALCs. Section 6 shows the appli- 
cation of the general constraint methods  in the first part  of the  paper 
to flexible models• Section 7 shows various animat ion effects made by 
the constraints.  

The  appendices of  this paper contain the mathemat ica l  details of 
how to apply RCs and ALCs to flexible models. The appendices de- 
scribe the finite element flexible model, the equations necessary for an- 
imation control and collision, the equations for incompressibility and 
plasticity, and an explanation of why ALCs work. 

2 F l e x i b l e  M o d e l s  M i n i m i z e  F u n c t i o n s  

This  section illustrates tha t  s imulat ing physically-based flexible models 
is an optimization procedure. An optimization procedure finds a vector 
.T. to 

locally minimize f ( x )  (1) 

where z_ is a position in a high-dimensional space; and f(~_) is a scalar 
function, which can be imagined as the  height of a landscape as a 
function of position ~ (see figure 2). In figure 2, the arrows represent 
the action of an optimization procedure, where ~_0 is the  s ta te  of the 
sys tem before the optimization procedure and .~min is the  s tate  of  the  
sys tem afterwards. 

~0 Xmln 

Figure 2: An optimization landscape 

Physically-based flexible models minimize a part icular function f .  
Consider the simplest  flexible model,  a spring. The  energy of the spr ing 
comes in two forms: kinetic energy (the energy of motion) and potential  
energy (the energy stored in the  tension of a spring). As a spring 
oscillates, the  kinetic energy turns  into potential  energy, and back into 
kinetic energy. Because of friction, however, a spring eventually slows 
down and stops, with all of the  energy having been converted into heat.  
The total  energy of the spring always decreases. In general, any physical 
sys tem with dissipation always loses energy, yet the total  energy is 
always bounded below• Hence, physically-based flexible models will 
minimize their total  energy as t ime increases. Even non-dissipative 
physical sys tems extremize energy over all pa ths  in space-time. 

~ince s imulat ing a flexible model is an  optimizat ion procedure, we 
can use optimization concepts to modify the  flexible model. A useful 
concept is tha t  optimization procedures, like computer  graphics models,  
can be constrained. 

A constrained optimizalion procedure finds a m i n i m u m  of a function 
on a specified subspace. The  prototypical constrained optimizat ion 
problem can be s tated as 

locally minimize f(~_), subject  to g(~) = 0, (2) 

where g(z)  = 0 is a scalar equation describing a subspace of the s tate  
space. Dur ing constrained optimization, the  s tate  vector z should be 
at t racted to the subspace g(z)  = 0, then  slide along the subspaee until  
it reaches the locally smallest  value of f (~ )  on a(~_) = 0 (see figure 9). 
Solutions to a constrained optimization problem are restricted to a 
subset  of the solutions of the  corresponding unconstrained optimizat ion 
problem. 

Since physically-based flexible models minimize a function, we use 
constrained optimization algori thms as physical constraint  methods .  
Applying constrained optimization algori thms to a physical sys tem still 
decreases the  total  energy of the system,  while enforcing external  con- 
straints;  thus,  optimization constraints do not  destabilize physical sys- 
tems.  

There are other optimization procedures than  simply s imulat ing 
a physical system. The  simplest  optimization algori thm is gradient 
descent, where the  values of  ~ ski downhill, in the opposite direction 
of the gradient Uff (see figure 3). ~Yf points  in the  direction of the  
m a x i m u m  increase in f .  

0.f 
5:i - -  0 z i  ( 3 )  
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model 

i) 
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Figure 3: Both Gradient Descent and Flexible Models Minimize a Func- 
tion 

3 T h e  P e n a l t y  M e t h o d  

This section discusses a traditional constrained optimization technique 
called the penalty method;  the method has previously been used in 
constraining computer  graphics models [15][20]. 

The physical interpretation of the penalty method is a rubber band 
that  a t t racts  the physical s tate to the subspace g(~) = 0. The penalty 
method adds a quadratic energy te rm that  penalizes violations of con- 
straints  [12]. Thus,  the constrained minimization problem (2) is con- 
verted to the following unconstrained minimization problem: 

minimize ~penalty(.~) = f(.ff~_) q- e(g(~)) 2. (4) 

Figure 4: The penalty method makes a trough in state space 

The penalty method can be extended to fulfill multiple constraints 
by using more than one rubber band. Namely, the constrained optl- 
mization problem 

minimize f ( z ) ,  subject to ga(.~.) = 0; a = 1 , 2 , . . . ,  n; (5) 

is converted into unconstrained optimization problem (see figuTe 4) 

minimize Ep~l ty (x )  = f ( ~ )  + f i  c ~ ( g ~ ( ~ ) )  ~. (6) 
ce~i 

The penalty method has a few convenient features. 

• I ne rac ~  C o n s t r a i n t s  - -  There are si tuations in which it is not 
necesssary to exactly fulfill constraints; sometimes it is desirable 
to compromise between constraints. 

• E a s e  o f  Use - -  .Adding a rubber band to a physical sys tem is 
simple and requires no extra  differential equations. 

However, the penalty method has  number  of disadvantages. 

I n e x a c t  C o n s t r a i n t s  - -  Forofinite constraint s t rengths  ca, the 
penalty method does not  fulfill the constraints precisely. Un- 
der many circumstances, however, constraints should be fulfilled 
exactly. Using multiple rubber band constraints is like building 
a machine out  of  rubber bands; the machine would not  hold to- 
gether perfectly. 

S l i f f n e s s  o f  E q u a t i o n s  - -  Second, as the constraint s t rengths  i~- 
crease, the  differential equations become sti1~, tha t  is, there are 
widely separated t ime constants.  Most numerical methods  must  
take t ime steps on the order of the fastest t ime constant,  while 
most  modelers are interested in the behavior at the slowest t ime 
constant.  As a result of stiffness, the numerical differential equa- 
tion solver takes very small t ime steps, using a large amount  of 
computing time without gett ing much done. 

4 R e a c t i o n  C o n s t r a i n t s  

When flexible models are constrained to be on the outside of another 
model, or when they are constrained by an animator,  they should fulfill 
these constraints quickly and exactly. As discussed in the last section, 
the penalty method has  difficulties with swiftly fulfilling precise con- 
strMnts. 

RCs are a constraint method tha t  retains the advantages of the  
penalty method while avoiding many  of the disadvantages. RCs can 
force a point to follow a path,  or to lie on the  outside of a polygonal 
model. RCs are fast and simple to use, and do not  require additional 
differential equations to be added to the physical system. However, 
only one RC can be applied to a mass  point at any time. 

RCs cancel forces tha t  violate constraints and add forces tha t  would 
critically damp the distance from the state to the constraint surface. 
RCs are a combination of the projection method  [12] and dynamic 
constrainta. 

RCs work on individual mass  points. Since elastic models are fre- 
quently discretized into mass  points, RCs are applicable to constraining 
elastic models on a polnt-by-point basis. 

_P_ 

\ /  

_F_un~onstr~in~ 
• > 

/ 

F constrained _~output 

Figure 5: The reaction constraint cancels undesirable force components.  

A reaction constraint is a procedure tha t  processes the net  force at 
a point, .K-input created by physics or other constraint techniques, in 
order to yield a constrained force at a point F output, needed to fulfill 
a particular constraint.  The RC first projects out  undesirable compo- 
nents  of.if_input to yield _~unc~nstralned (see figure 5). Next, _~_constrained is 
computed to yield critically damped motion tha t  fulfills the constraint.  
Finally, the  control force routput  is the  sum of the constrained and 
unconstrained forces: 

~o~tput = Eeon~tr~nea + Eunconstr~i~d (7) 

To fulfill Newton's  second law, the  reaction force _~_inptt~--~Fouepue should 
be applied to the  object tha t  is interacting with the  flexible model. 
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Let the vector D be the deviation in the position of the mass point. 
That is, the vector D points from the mass point towards where the 
mass point should be. The constrained force that  eventually sets ._~ to 
Zero is 

d 

where k is the strength of the constraint and c is the damping. If 
c = x/2k, then the mass point fulfills the constraint with critically 
damped motion. If the damping is too low, then the constraint force 
overshoots. For critically damped motion, if k is increased, then the 
time needed to fulfill the constraint is decreased. 

In the appendices, we describe the equations necessary for imple- 
menting two useful reaction constraints (see figure 6): 

• Path Following -- In constraining flexible models, we frequently 
want to constrain a mass point to follow a specified spatial path 
parameterized by time, without speeding up or slowing down. 
The pre-defined path is a useful constraint in animation, where 
flexible models need to be picked up and moved around. If only 
a few mass points of the flexible models are constrained, then 
the rest of the model is free to wriggle in a physically realistic 
manner. The equations for the path-following reaction constraint 
are contained in Appendix A. 

• A t t r a c t i o n  ~o a P l a n e  - -  Another useful constraint is to force a 
mass point to lie on a plane. A mass point inside of a polygonal 
model can be forced outside of the polygonal model by using a 
planar reaction constraint. The equations for the planar reaction 
constraint are contained in Appendix B. 

path following 

S 
plane repulsion 

Figure 6: Examples of Reaction Constraints 

Using reaction constraints is an easy way to implement simple con- 
straints. Similar to the penalty method, no extra differential equations 
are required. Unlike the penalty method, the constraint is fulfilled in 
the presence of outside forces. If  a flexible model is being lifted by a 
reaction force against gravity, then the lifting path is followed, even if 
gravity increases by a factor of ten. The reaction constraint thus re- 
duces the amount of parameter adjustment needed in modeling elastic 
objects. 

Reaction constraints are an extension of the projection method of 
constrained optimization, where any motion outside an allowed region 
is projected back into the region. Keaction constraints are more ap- 
propriate for physical models than the projection method, because the 
projection method needs to manipulate the physical state variables 
directly. Reaction constraints manipulate only forces, hence are com- 
patible with both dynamic constraints [3] and with ALCs. In addition, 
reaction constraints do not need special numerical routines. 

Reaction constraints are much faster than the penalty method for 
collisions. The penalty method tries to cancel a large penetration force 
by adding a force that  is a rapidly changing function of position. Small 
numerical step sizes are needed for the penalty method in order to pre- 
vent unstable oscillation. However, reaction constraints cancel a pen- 

etration force, independent of the depth of the penetration. Reaction 
constraints, therefore, can take much larger step sizes. 

5 Augmented Lagrangian Constraints 
In the animation of flexible models, more than one constraint per mass 
point is needed. Constraints may be more complex than simple path  
following or repulsion from a plane. In addition, we wish to enforce real 
properties of flexible models, such as incompressibility and moldability. 

This section presents a type of constraint, called an augmented 
Lagragian constraint, that  enforces the complex, multiple constraints 
needed for flexible models. The differential equations used in ALCs 
were first developed by Arrow in 1958 [1]. 

5 .1  L a g r a n g e  M u l t i p l i e r s  

Lagrange multiplier methods, like the penalty method, convert con- 
strained optimization problems into unconstrained extremization prob- 
lems. Namely, a solution to the equation (2) is also a critical point of 
the energy 

6L~rnn~e(g) = f(~_) + Ag(z). (9) 

A is called the Lagrange multiplier for the constraint g(x) = 0 [12]. 
A direct consequence of equation (9) is that  the gradient of f is 

coltinear to the gradient of 9 at the constrained extrema (see Figure 7). 
The constant of prgportionality between V f  and Vg is - A  : 

V£La~r~ge = 0 = V/+ AVg. (I0) 

We use the collinearity of Vf and Vg in the design of the ALC. 

/ 

contours o f f /  

)= / 0 

Figure 7: At the constrained minimum, V f  = -AVg 
] 

A simple example shows that  Lagrange multipliers provide the extra 
degrees 'of freedom necessary to solve constrained optimization prob- 
lems. Consider the problem of finding a point (x, y) on the line x - - b y  = 1 

that  is closest to the origin. Using Lagrange multipliers, 

gLa~range = Z 2 + y2 + A(z  ÷ y -- I) ( I i )  

Now, take the derivative with respect to all variables, z, y, and A. 

3gLa~r~n~e = 2x + A = 0 (12) 
0= 

~gLagr~nge = 2 V + A = 0  03) 
0y 

0~La~ran~e = Z + y -- 1 = 0 (14) 
0A 

With the extra variable A, there are now three equations in three un- 
knowns. In addition, the last equation is precisely the constraint equa- 
tion. 
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5 .2  G r a d i e n t  D e s c e n t  D o e s  N o t  W o r k  w i t h  L a -  
g r a n g e  M u l t i p l i e r s  

Applying gradient descent in equation (3) to the energy in equation (9) 
yields 

coSLagrange Of COg (15) 

co~Lagrange 
= - 0A = --g(:e_). (16) 

Note that  there is an auxiliary differential equation for X, which is 
necessary to apply the constraint g(x) = O. Also, recall that  when the 
system is at a constrained extremum, XTf _-- --A~Tg, hence, dei = 0. 

Solutions to the constrained optimization problem (2) are saddle 
points of the energy in equation (9), which has no lower bound [1]. If 
the vector x_ is held fixed where g(x) -~ 0, the energy can be decreased 
to - o o  by sending A to +oo or -oo .  

Gradient descent does not work with Lagrange multipliers, because 
a critical point of the energy in equation (9) need not be an attractor for 
equations (15) and (16). A stationary point must be a local minimum 
in order for gradient descent to converge. 

, . , 

5 .3  T h e  B a s i c  L a g r a n g e  C o n s t r a i n t  

Figure 8: The sign flip from equation (16) to equation (18) makes 
Lagrange multipliers stable 

We present an alternative to differential gradient descent that  estimates 
the Lagrange multipliers, so that the constrained minima are attractors 
of the differential equations, instead of "repulsors." The differential 
equations that  solve (2) are 

Of (9g (17) 

= +g(~_). (18) 

Equations (17) and (18) are similar to equations (15) and (16). 
As in equations (15) and (16), solutions to problem 2 are stationary 
points of equations (17) and (18). Notice, however, the sign inversion 
in the equation (18), as compared to equation (16). The equation (18) 
is performing gradient ascent on X. The sign flip makes the method 
stable, as shown in Appendix G (see figure 8) 

The system of differential equations (17) and (18) gradually fulfills 
the constraints. Notice that  the function g(x) can be replaced by kg(x_), 
without changing the location of the constrained minimum. As k is 
increased, the state begins to undergo damped oscillation about the 
constraint subspace g(x) = 0. As k is increased further, the frequency 
of the oscillations increase, and the time to convergence increases. 

5 .4  E x t e n s i o n s  t o  t h e  A l g o r i t h m  

One extension to equations (17) and (18) is an algorithm for constrained 
minimization with multiple constraints. Adding an extra differential 

constraint subspace N 

o ~ o f  algorithm 

initial state 

- -  % f i n a l  s t a t e ' ~  

Figure 9: The state is at tracted to the constraint subspace 

equation for every equality constraint and summing all of the constraint 
forces creates the energy 

~multiple : f(~_) + E ~aga(_X_), (19) 

which yields differential equations 

a f ~ Og. 
_ a o ~ - ,  (20) 

L~ = +go(z_). (21) 

Another extension is constrained minimization with inequality con- 
straints. As in traditional optimization theory [12], one uses addi- 
tional slack variables to convert inequality constraints into equality 
constraints. Namely, a constraint of the form h(z)  _> 0 can be ex- 
pressed as 

g(~_) = h(~_) - ? .  (22)  

Since z 2 must always be positive, then h(_z) is constrained to be posi- 
tive. The slack variable z is treated like a component o f z  in equation 
(17). An inequality constraint requires two extra differential equations, 
one for the slack variable z and one for the Lagrange multiplier ~. 

Alternatively, the inequality constraint can be represented as an 
equality constraint. For example, if h(x_) is constrained to be greater 
than zero, then the optimization can be constrained with 

{[h(x)]  2, if h > 0  
g(~) = 0, otherwise. 

(23) 

Combining the basic Lagrangian constraints with the penalty 
method yields augmented Lagrangiart constraints (ALCs). ALCs have 
better convergence properties than basic Lagrangian constraints, as 
shown in Appendix G. The basic Lagrangian constraints are com- 
pletely compatible with the penalty method. If one adds a penalty 
force to equation (17) that  corresponds to an quadratic energy 

e 2 Epenalty : ~(g(.x)) , (24) 

then the set of differential equations for an ALC is 

o~°/ --.°g eg~,Og (25)  
x ~ - a b~ S - 

The extra force from the penalty does nat change the position of the 
stationary points of the differential equations, because the penalty force 
is zero when g(x) = 0, independent of the value of c. 

There is a minimum necessary penalty strength c required in some 
cases for the ALC to converge (see appendix G). The minimum penalty 
strength in the ALC is usually much less than the strength needed by 
the penalty method for an accurate solution [4]. ALCs are applicable 
to more general constraints than RCs, especially when more than one 
non-linear constraint is associated with each mass point. 
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6 C o n s t r a i n i n g  F l e x i b l e  M o d e l s  w i t h  

A u g m e n t e d  L a g r a n g i a n  C o n s t r a i n t s  

The complete differential equation for an incompressible element is 
given in Appendix E. 

_r7 

Es 

r l 

Es 

Figure 10: An element of flexible material 

ALCs are ideal for the non-linear constraints that  arise from adding new 
properties to flexible models. The augmented Lagrangian constraints 
are applied to the differential equations that govern an element of ma- 
terial. Flexible models are created by aggregating these elements in a 
grid, which may be difficult in the case of complex rest shapes [19]. 

The internal forces on a element are fully derived in Appendix C. 
The forces depend on the average metric tensor, Gq( r_ l , r~ , . . . r s ) ,  
which describes the current shape of an element, and is computed for 
each element of material using the finite element method (see figure 10) 
[19]. Each element of material also has a rest state, which is described 
by Rq.  For a Hookean elastic material, the internal force encourages 
the metric tensor of each element to be close to the metric tensor of 
the rest state [15]. 

rest state 

motion 

~ force 

I force 

motion 

Figure 11: Incompressibility preserves the volume of an element 

Hookean elasticity, however, does not fully describe the range of 
materials that  are desirable to animate. For example, a Hookean elastic 
model can be easily compressed. If an elastic model undergoes violent 
deformation, as is common in computer graphics, then it will behave 
more like ~. sponge than like gelatin. If an incompressible material is 
desired (see figure 11), then ALCs are added to the equations for an 
elastic element. 

The volume squared of one element is the determinant of the metric 
tensor G~j of that element [6]. To constrain the volume of an element 
to be a constant Vo, we apply the augmented Lagrangian method, using 
the constraint 

g = det Gij -- V02 = 0. (27) 

deformations of elastic object 
do not change rest state 

deformations of a moldable object 
change the rest state 

Figure 12: The rest shape of plastic materials changes after strong 
deformation. 

Many materials, such as taffy and putty, are moldable. Moldable 
materials do not return to their rest shape after being strongly deformed 
(see figure 12). Augmented Lagrangian constraints can be applied to 
each element's rest s tate  so that  it roughly approximates the theory of 
strongly deformed materials. 

A moldable element has a rest metric .R/j that  is constrained to 
be close to the metric Gij [8]. Mathematically, there is an inequality 
constraint, based on the von Mises ~ yield criterion from the theory of 
plasticity [8], 

P = (c,~ - P~)(a,j - R~) - P0 < 0. (2S) 

Using the method described in equation (23), we use the constraint 
function 

[ 1/2P2; if P > O, (29) 
7/= L0; if P_< 0. 

For plasticity, there are differential equations for R/i derived from ap- 
plying equations (20) and (21) to the constraint in equation (29). The 
general differential equations for ~ moldable element are given in Ap- 
pend/x F. 

The general equations for applying an ALC to a flexible model are 
given in appendix D. To apply an ALC to a flexible model, forget that  
the position and velocity are related, and simply apply equations (25) 
and (26) directly. In general, using ALCs on flexible models.results in 
equations of the form 

:~ = vl - ud=_,v_) (30) 

6i = Fi - ~ ,  - ~,~(~,~_) (31) 

where ui and vi are functions determined by applying various ALCs. 
Equations (30) and (31) do not appear to be in the form of a standard 
physical system. However, we can change the differential equations in 
(30) and (31) into one second-order differential equation: 

d 
~i "4- ¢~i ---- Fi - eui - w ( z ,  ~. + U) - ~ u i ( z ,  v ) .  (32) 

The left-hand side of equation (32) is a s tandard form for a physical 
system; therefore, ALCs add only forces to flexible models. 

7 R e s u l t s  

We have simulated all of the constraints discussed in this paper using 
standard differential equations solvers [14]. Since differential equations 
are simulated over a time interval, the results are in the form of anima- 
tion. The figures in this section are individual frames from a sequence. 

Figures 13 and 14 show frames from an animation of a compressible 
elastic cube of gelatin which is lifte d up and then bounced off a table. 
The lifting of the cube is done with a path-following reaction constraint, 
and the table is implemented with a reaction constraint that  keeps the 
cube above a plane. Notice that  since the cube in compressible, its 
volume can vary through the course of the simulation. 

Figure 15 shows a compressible seat cushion being squashed with 
a sphere. The sphere is a physical model with mass. An RC prevents 
the sphere from penetrating the cushion. 

Figure 16 shows an incompressible moldable cube striking a surface. 
Instead of bouncing off the surface, the moldable cube sticks to the 
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surface, with its sides near the surface bulging out. Incompressiblity 
forces the sides to bulge, and the moldability updates the rest shape so 
that the shape is no longer a cube. Both the incompressibility and the 
moldability are enforced with augmented Lagrangian constraints. 

Figures 17-20 illustrate the moldability of the models. A sphere 
squashes the model in figure 17; but the elastic models bounces back 
to its rest shape in figure 18. In figure 19, a moldable model starts with 
the same rest shape, and is squashed by the sphere; but in figure 20, 
the moldable model has a dented edge. 

8 C o n c l u s i o n s  

In the past, researchers have made models that  simulate the behavior 
of flexible materials. These models automatically move in a physically 
realistic way, without specifying the exact positions and velocities of 
the model at all times. The "hands-off" nature of the physically-based 
models, however, makes them hard for an animator to control. 

By adding physical modeling constraints to the elastic models, a 
compromise can be reached between completely specifying the motion 
of a model and allowing a simulation package to run freely. Constraint 
methods are useful for controlling the flexible models, while retaining 
the physically realistic motion created by the physics. 

This paper presents two constraint techniques, based physics and 
optimization theory, for constraining the physical simulation of flexi- 
ble models: reaction constraints and augmented Lagrange constraints. 
Both reaction constraints and augmented Lagrange constraints even- 
tually fulfill specified constraints exactly, unlike the penalty method. 

Reaction constraints, based on the projection method, are a simple 
way of enforcing path following or repulsion from a polygon. Reaction 
constraints require no extra differential equations, because they project 
away undesirable components of the force. Only one reaction constraint 
can be applied to a mass point at a time. Reaction constraints are useful 
for guiding flexible models along a path and for reducing the amount 
of computation time needed for collisions. 

ALCs are a differential version of the method of multipliers from 
optimization theory. ALCs are a general technique for constrained op- 
timization. In this paper, we use ALCs for constraining flexible models 
to be incompressible and moldable. 

Compressible elastic models look as if they are made out of sponge. 
To simulate other materials, such as rubber, an augmented Lagrange 
incompressibility constraint should be added to the elastic model. 

Many natural substances, such has clay and taffy, do not return to 
their rest shape after strong deformations. Purely elastic models are in- 
adequate for these substances. Using ALCs to keep the rest shape near 
the current shape is an effective model for these moldable substances. 
In addition, by applying forces to these plastic substances, we can mold 
interesting shapes without numerically specifying the rest shape. 
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A p p e n d i c e s  

A Equa t ions  for a P a t h  F o l l o w i n g  R e  

The deviation vector D to a path is the difference between where the 
mass point is and where it should be on the path at that  time. Let 
(_x(t), v_(t)) be the current position and velocity of the mass point, and 
(x*(t),v_*(t)) be the desired position and velocity of the mass point. 
Then, 

__D = ~_*(t) - r(t)  (33) 
d 

~._O_ = v*(t) - v(t) (34) 

Since we want to control the velocity along the path,  we do not 
allow any unconstrained force: 

F . . . . . .  trained = O (35)  

The final control force is: 

F o.tput = e(~*(t) - ~_(t)) + k(~_'(l) -~_(t)), (36) 

Notice how the control force in this case is independent of the input 
fo rce ,  F input. 
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B Equations for a Planar R C
Consider the plane with normalized plane equation P(x(t)) = Ax(t) +
By(t) + Cz(t) + D = 0 . Let the homogeneous operator be Q(x(t)) _
Ax(t) + By(t) + Cz(t) . The normal, n, to the plane is (A B C)T . We
want the distance of the mass point to the plane to be zero :

D = — nP(x) ,

	

dtD

	

—n Q(v) •

where the vector x is the position of the mass point and the vector v_
is the velocity.

The components of the input force normal to the plane need to b e
controlled . The force tangent to the plane should be unconstrained .

	

Funconstrained = Finput — (Finput ' ?O n-

	

(39 )

Using equation (8) yields

	

Fconstrained = — ( kP (x) + cQ(v))n .

	

(40 )

The output of a planar RC is

	

F' output = Fnput — (kP(x) +cQ(v) + Fiaput . n) n .

	

(41 )

To constrain a point to lie on one side of the plane, P(x) < 0, we
apply the reaction constraint only if the mass point is on the wrong
side of the plane and if the input force is not lifting the point away
from the plane :

	

P(x) < 0 and F_''input . n > F'' constrained

	

( 42 )

The one-sided planar RC can be extended to prevent any mas s
points from entering a solid polygonal model . From inside of the model ,
choose the closest polygon, then apply the one-sided planar RC to forc e
the mass point to the surface of that polygon .

C Finite Elements for Elasticity
Following [15], there is a potential energy for each flexible element that
encourages the metric tensor to be near the rest metric :

i] — P+j)
z ,

	

(43)

where s is the stiffness of the material . The energy in equation (43 )
describes an isotropic material with a Poisson ratio of zero . The forc e
on the the points that make up the element is the derivative of th e
potential energy [10] :

F+k antic = s > (Gt.i. _ Ri7) aGija r k
i d

where r k is the position of the kth corner . In addition, there is a viscous
damping force that , resists changes in the metric tensor :

SCOUe _

	

aG ij _

	

aGij

	

aG i j
Fk'

	

1E G
ij

	

-ark

	

1

	

ar,, v,n a rk ,

	

(45)
i,j

where vv—,,, is the velocity of the mth corner, and 1 is the viscous damping
of the element . If s >> 1, then the material acts like a solid . If 1 >> s ,
then the material acts like a fluid [16] . Using Newton's Second Law ,
the differential equations for an unconstrained viscoelastic element i s

d
dtri

	

= vi (46)

dt v'

	

= F elastic + (viscous (47)

The viscoelastic forces and the constraint force depend on G ij . Fol-
lowing the finite element method, the G ij in each element is assume d
to be the integrated average of G ij over the entire element . Leta be

the material coordinates of a point in the element and let r(a) be th e
position of the points a . Then, from the definition of metric tensor ,

ar ar dV

	

(48)Gij — f aa i aaj
Assuming a position in the element is a linear interpolation of the
positions of the corners of the element (see figure 11), the average G ij
can be analytically computed from the positions of the corners . To
compute G ij , estimates of the spatial derivatives are required :

i = 1,2,3,4

	

(49 )

N3 = r7 -725,114 =

	

rs, (50 )
7i=ri+4 — ri,

	

i=1,2,3,4

	

(51 )

Averages of the spatial derivatives are also required :

4

	

4

	

4
a=Eai, b = E3i, c= E7i .

	

( 52 )
i .1

	

i =1

	

i. 1

Finally, the various components of Gij can be computed, assuming the
element has unit length, width, and height in material coordinates .

Goo • a — mil - a4 -12 •13) (53 )
18 (2a

Gil (54 )
18 (

26 .6 -/91/34-Qz . $3 )

G22 (2c •c — 7i

	

74 — 72 . 73) (55 )
1 8

Gol = G1a 24[1'6 — (crl

	

(/j1+ )
R
+02)

q+(Cr3 + a4) • (Y3 + Q4)] (56 )

G 02 = G2o —(al+a3)•(Yi+72 )24 ~
+022 + (14) ' ( ')'3

R

+ 74)] (57 )

G12 = G21 C—(N1+13)(7'1+)3 )Z4 ~
+(i32 + /24)

	

(72 + P4)] (58 )

As in the continuous case, the diagonal terms of the metric tensor Gij
in equations (53)—(58) depend on various distances in the cube, while
the off-diagonal terms depend on angles . Also, the Gij are quadratic
functions of the r i . Thus, aGij/ari are complicated, although linear ,
functions of ri .

The finite element is equivalent to a set of mass points with non -
linear springs between them .

D Equations for a Flexible Model ALC
This appendix illustrates how to apply ALCs to physical systems . A s
stated in section 2, physical systems perform optimization, but no t
gradient descent . ALCs, however, are easily added to physical systems .

Consider a typical flexible model, with forces Fi (x) and damping e .
The differential equation for this system is

xi = vi,

	

(59 )
Vi = F,1 —ev i .

	

(60)

Let us constrain the flexible model in equations (59) and (60) to lie
on the subspace g(x) = O . There are 2N optimizing state variables :
x i and We can apply an augmented Lagrangian A to the equatio n
for x to fulfill g(x) = O . We can also add a penalty term (dg/dt) 2 to
the v equation to provide extra damping in the direction of violation of
the constraint . (Notice that this extra damping force is zero when the
constraint is fulfilled.) The final form of an ALC applied to a physical
model is

xi

	

= vi - (A+kg)-x , (61 )

Vi

	

= F,• — ev i — c -2 8g v
"axi axj

(62 )

a = g(x) . (63 )

(37 )

(38 )

(44)

ai = r2i — r2i-1 ,
Q1 = r3 — T' I,N2 = r 4
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As section in 4, multiple constraints are performed by creating an 
auxiliary differential equation for each constraint and summing all of 
the constraint forces. 

E Equat ions  for Incompress ib i l i ty  

The constraint for an incompressible element is 

g = d e t ( a f f )  - Vg = 0. (64) 

The derivative of the constraint g with respect to the spatial variables 
r i is needed for an ALC. Let Cij be the matrix of cofaetors of Gij. 
Then, the derivative is 

Og 
= c,~ °o--~ (65) 

Then, the differential equations for an incompressible element with 
other forces F t  are 

d Og (66) ~_~, = v_~ - (~ + ~g)~, 
d ~ 03g Og 

~v_~ = ~ _ , - ~ b ~ , ,  (67) 

i = ~. (68) 

F Equat ions  for a Moldabi l i ty  

The constraint for a moldable element is: 

P = (Gij - Rij)(Gij - Rij) - P0 < 0 (69) 

1/2P2; if P > 0, (70) 
r /=  / 0 ;  if P_< 0. 

Again, the derivative of the constraint function with respect to the 
state variables is needed by an ALC. For stretchable models, however, 
the rest metric is also a function of time. We thus need the derivative 
of o with respect to Rij. Let Q = P i f P  > 0 and Q = 0 ,  otherwise. 
Then, 

Or/ OGij 
Or--'~ = Q(Vi~ - Ri~) ~r  I (71) 

Or/ - -Q(Gi j  - RO). (72) 

Using these derivatives yield the differential equations for a mold- 
able element with other forces Et: 

d ¢9r/ (73) 
~_~z = _~_t - (~+er / )b-  ~ 

d Or/ O~ 

&~ _ or/ (75) 

= ~, (76) 

G W h y  ALCs W o r k  

The damped oscillations of equations (20) and (21) can be explained 
by differentiating equation (20) and then substi tut ing (21): 

Og~ 

Equation (77) is the equation for a damped mass system, with an inertia 
term, xi; a damping matrix, 

02f 02g~ - - -  ~ ,  (7s) Aij -- OxiOgxj q- 

and an internal force, ~ a  gaOge,/Oxi, which is the derivative of the 
internal energy, 

_ _  I70) 

If the system is damped and the state remains bounded, the state falls 
into a constrained minima. 

As in physics, we can construct a total energy of the system, which 
is the sum of the kinetic and potential energies. 

If the total energy is decreasing with time, and the state remains 
bounded, then the system will dissipate any extra energy, and will settle 
down into the state where 

go(x) = 0, (81) 

, ~ ~ = o, (82) 

which is a constrained extremum of the original problem in equation 
(2). 

The time derivative of the total energy in equation (80) is 

Oga ~. = 
/ ~ =  ~ x , x , +  ~ g ~ ( x _ ) ~ z i  , - - ~  xiA,,.~,. (83) 

If damping matr ix  Aij is positive definite, the system converges to fulfill 
the constraints [1]. 

ALC always converges for quadratic programming, a special case 
of constrained optimization. A quadratic programming problem has 
a quadratic function f ( x )  and pieeewise linear continuous functions 
ga(z) ,  such that  

_ _  b2g~ 
d2f  is positive definite and ~ = 0. (84) 

0xi0~j 

Under these circumstances, the damping matrix Aij is positive definite 
for all z_ and A, so that  the system converges to the constraints. 

It is possible, however, to pose a problem that  has contradictory 
constraints. For example, 

gx(z) = x = 0 and g2(x) = x -  1 = 0. (85) 

In the case of conflicting constraints, the ALC compromises, trying to 
make each constraint g~ as small as possible However, the Lagrange 
multipliers Aa go to ±o~ as the constraints oppose each other. It is 
possible, however, to arbitrarily limit the A~ at some large absolute 
value. 

For a given constrained optimization problem, it is frequently nec- 
essary to alter the ALC to have a region of positive damping surround- 
ing the constrained minima. Arrow [1] combines the multiplier method 
with the penalty method to yield a modified multiplier method that  is 
locally convergent around constrained minima [1]. 

The damping matrix is modified by the penalty force to be 

~gga Og,~ 02ga (86) 
dxiOzj Ox~ Ozj + cg oz~.Ozj " 

Arrow [1] proves a theorem that  states that  there exists a c* > 0, 
such that  if c > c*, the damping matr ix in equation (86) is positive 
definite at constrained minima. Using continuity, the damping matr ix is 
positive definite in a region/: /surrounding each constrained minimum. 
I f the  system starts in the region R and remains bounded and in R, then 
the convergence theorem is applicable, and the augmented Lagrangian 
method converges to a constrained minimum. 
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[ 

Figure 13: A compressible gelatinous cube is picked up with an RC. Figure 17: An elastic model is squashed. 

Figure 14: A compressible gelatinous cube hits the table. Figure 18: An elastic model returns to its rest shape. 

Figure 15: A sphere squashes a seat cushion. 
Figure 19: A moldable model is squashed. 

Figure 16: A lump of moldable incompressible clay hits the table. 
Figure 20: A moldable model assumes a new rest shape after strong 
deformation. 
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