
A Generalization
Drawing

JAMES F. BLINN
Jet Propulsion Laboratory

of Algebraic Surface

The mathematical description of three-dimensional surfaces usually falls into one of two classifica-
tions: parametric and implicit. An implicit surface is defined to be all points which satisfy some
equation F (x, y, z) = 0. This form is ideally suited for image space shaded picture drawing; the pixel
coordinates are substituted for x and y, and the equation is solved for z. Algorithms for drawing such
objects have been developed primarily for fLrst- and second-order polynomial functions, a subcategory
known as algebraic surfaces. This paper presents a new algorithm applicable to other functional
forms, in particular to the summation of several Gaussian density distributions. The algorithm was
created to model electron density maps of molecular structures, but it can be used for other artistically
interesting shapes.

Categories and Subject Descriptors: 1.3.3 [Compute r Graphics]: Picture/Image Generation--display
algorithms; 1.3.5 [Compute r Graphics]: Computational Geometry and Object Modeling--curve,
surface, solid, and object representations; 1.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism--visible line~surface algorithms

General Terms: Algorithms, Performance

1. INTRODUCTION

The technology of creating realistic and visually interesting images of three-
dimensional shapes is advancing on many fronts. One such front is the develop-
ment of algorithms for drawing curved surfaces directly from their mathematical
definitions rather than by dividing them into large numbers of polygons. Two
classes of surfaces which have received attention are the quadric and the bivariate
parametric surfaces. Bivariate parametric surfaces are generated by three func-
tions of two variables (most popularly polynomials), as the variables take on
different values. Algorithms dealing with such surfaces are due to Catmull [2];
Lane, Carpenter, Whitted and Blinn [7]; and Clark [3].

The research described in this paper was carried out by the Jet Propulsion Laboratory at the
California Institute of Technology, under contract with the National Aeronautics and Space Admin-
istration.
Author's address: Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove
Drive, MS 201-209, Pasadena, CA 91109.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1982 ACM 0730-0301/82/0700-0235 $00.75

ACM Transactions on Graphics, Vol. 1, No. 3, July 1982, Pages 235-256.

236 J.F. Blinn

Quadric surfaces, on the other hand, are solutions to second-order functions of
the coordinates:

a x 2 + bxy + cxz + dx

+ ey 2 + f y z + g y

+ h z 2 + iz

+ j = 0 .

This class of surfaces includes such shapes as spheres, cones, hyperboloids of
revolution, and so forth. Algorithms for dealing with such shapes have not been
widely published but have been implemented by MAGI [5], Blinn [1], Duff [4],
and General Motors research labs [10]. While this class of shapes is somewhat
restricted, it can be used to advantage in modeling many useful objects such as
machine tool parts, as long as the modeling system allows a fragment of a shape
to be employed as well as the entire shape.

Quadrics belong to the class of curved surfaces known as "implicit" surfaces,
that is, solutions to some equation

F (x , y, z) = O.

This paper examines a more general solution to the imaging problem for such
surfaces and describes in detail its application to a class of surfaces which are
closely allied to quadrics but have a wider range of shapes.

2. THE MODEL

The problem which motivated this paper is the familiar one in computer graphics
of displaying molecular models. This is most often done with a ball-and-stick
model or a space-filling-sphere model. In either case, the model consists of a
possibly intersecting collection of two basic shapes: spheres and cylinders. To
draw a picture of the model, the spheres and cylinders can easily be broken down
into polygons and passed to a conventional polygon-rendering algorithm. Alter-
natively, any of several curved surface algorithms may be employed, and, in fact,
several special-purpose algorithms [6, 8, 9] have been formulated to handle
efficiently just these two shapes for rapid display of large molecular structures.

In the interests both of artistic variety and scientific accuracy, a new model
was sought that breaks away from the ball-and-stick/space-filling mold. It was
desired to make the bonds between atoms appear more like those shown in Figure
1. This is, in fact, more like what a real electron density cloud might look like for
a covalent bond. In addition, for the purposes of animation, this bond must
stretch and contract in a pleasing manner as it vibrates, ultimately snapping
apart as an atom is pulled completely away from the molecule. This is illustrated
in Figure 2.

A conventional approach might be to model such a shape via the already
familiar bicubic or quadric surfaces. This is moderately feasible for one isolated
bond but becomes difficult for more elaborate molecules with several overlapping
bonds (e.g., ring structures). In addition, the topological changes that must occur
when a bond breaks are difficult to deal with in an automated manner. For these
reasons a basic mathematical model was used which is similar in form to an

ACM Transact ions on Graphics, Vol. 1, No. 3, Ju ly 1982.

A Generalization of Algebraic Surface Drawing 237

. - %

Fig. 1. Desired object appearance.

Fig. 2. Bond s t re tching and breaking.

a c t u a l s i m u l a t i o n o f e l e c t r o n d e n s i t y m a p s . Q u a n t u m m e c h a n i c s r e p r e s e n t s t h e
e l e c t r o n in a n a t o m as a d e n s i t y f u n c t i o n of t h e s p a t i a l loca t ion . A s a m p l e func t ion
for a h y d r o g e n a t o m is

w h e r e

D (x , y, z) = e x p (- a r)

r = ~ / (x - x l) 2 + (y - y 1) 2 + (z - z l) 2

(xl , y l , Zl) = l o c a t i o n o f a t o m

W e c a n r e p r e s e n t t h i s f u n c t i o n for a co l l ec t ion of a t o m s b y s u m m i n g t h e
c o n t r i b u t i o n f rom e a c h a t o m s e p a r a t e l y .

D (x , y, z) = ~, bi e x p (- a i r i)
i

w h e r e ri = d i s t a n c e f rom x, y, z to t h e c e n t e r of a t o m i.

ACM Transactions on Graphics, Vol. 1, No. 3, July 1982.

238 J.F. Blinn

A surface can be defined as those points where this density function equals
some threshold amount:

F (x , y, z) = D (x , y, z) - T.

Note tha t all points inside the sugace have electron densities greater than T. For
the purposes of computat ional eft~ciency, the function actually implemented was
similarly shaped:

D (x , y, z) = ~ bi e x p (- a i r ~)
i

This does not require taking a square root. The exponential t e rm is a simple
Gaussian bump centered at ri, with height bi and s tandard devat ion ai. By
adjusting the ai and bi parameters , different effects can be achieved for the same
a tom arrangement . These effects al ter the "blobbiness" of the object. In fact, for
modeling purposes, it is more useful for a designer to specify these two parameters
in terms of the radius of the a tom in isolation and a blobbiness parameter . Th e
radius of an isolated a tom Ri is found by setting

X 2 T = bi e p (- a i R i) = e x p (- a i R ~ + In bi)

so the ai can be chosen to be

ln(T/b~)
ai = R?

t

We can define the blobbiness pa ramete r to be

so tha t (solving for bi)

bi = T exp(-B /)

The net densi ty contr ibut ion of one a tom in terms of the two shape-defining
parameters Ri and Bi is

D i (x , y , z) = T e x p (B i 2~--~ri-Bi)"

Note tha t B~ must be negative to ensure tha t the desity function goes to zero as
r~ goes to infinity.

Since there is a factor of T in each contributing a tom te rm the value of the
threshold is now irrelevant; we can set it to some canonical value such as 1. One
can get the same effect as changing the threshold by adjusting the scale factors,
bi, of the individual terms (i.e., by adjusting the blobbiness parameters Bi). For
clarity, though, we usually write the threshold as T, with the unders tanding tha t
T = 1. A canonical threshold value of 1 is part icularly convenient since its
logari thm is 0. The surface defined by an isolated atom, defined by setting Di =
T, is then a conventional quadric surface. This is seen by taking the logari thm of
bo th sides of the above equat ion yielding 0 = (Bi /R~)r~ - B/. A sample image
showing a range of such parameters is shown in Figure 3.

ACM Transactions on Graphics, Vol. 1, No. 3, July 1982.

A Generalization of Algebraic Surface Drawing 239

Fig. 3. Object appearance for different blobbiness and radius values.

3. THE RENDERING ALGORITHM

Surfaces defined algebraically are inherently well suited to raster conversion
algorithms. The general structure of such an algorithm is straightforward: for
each (xs, ys) pixel location the defining algebraic equation reduces to a univariate
equation in z. Solutions to this equation {if any) yield the z depth of the surface
at that pixel. In the case of the more common quadric surfaces this solution is
easy to obtain. In the case of the more general surfaces described here, the
solution must be obtained numerically. The important part of the algorithm
described here is a technique for speeding up this computation.

3.1 Coordinate Systems

We begin by defining the various coordinate systems to be used. All atoms are
transformed into a standard viewing space, with the eye looking down the +z
axis, the x axis pointing to the right, and the y axis pointing upward (a left-handed
coordinate system). In this space the sizes and shapes of viewed objects are not
altered, only their orientations and positions are adjusted according to the viewing
direction.

A perspective image is then obtained with the eye positioned at the origin.
This yields a homogeneous perspective matrix in terms of the field of view (Fov)
and the locations of the near and far clipping planes (Zn and zr).

p =

if0001 wherec cosFovj2
C 0 0 S =sin(Fov/2)

0 Q S Q=--Szf/(Zn--Zf)

0 R 0 R - - - Q z n

This transformation will be followed by a scale and translation in x and y (the
"viewport" transformation) which converts from the canonical - 1 to +1 visible

ACM Transactions on Graphics, Vol. 1, No. 3, July 1982.

240 J .F . Blinn

coordinate space into hardware screen (pixel) coordinates. Note tha t the x and y
scale might not be equal if pixels in the screen space are not square. [XwO

V = 0 yw 0
0 0 1

Xc yc 0

These two t ransformat ions are concatenated with the viewing t ransformat ion to
make one net t ransformat ion directly into p e r s p e c t i v e space. In this space, the
shapes of objects have been distorted in such a manner tha t a simple orthographic
project ion onto the z = 0 plane yields the correct perspec t ive picture. I t must be
realized tha t this perspective space is just an efficiency measure. It represents
removing the perspective calculations from the rendering loop; the perspective
project ion {e.g., of polygon vertices) is done simultaneously with the modeling
and viewing t ransformations via one matr ix multiplication. This merging of
t ransformat ions also works for rat ional bicubic and quadric surfaces since these
classes of surfaces are closed under the perspective transformation.

The re are some calculations, however, which must still be done in the undis-
tor ted viewing space (e.g., light reflection calculations) since they depend on
geometric distances and vector dot products. In fact, for the functions used here,
the solution of the function itself can be done about as easily in viewing space as
in perspect ive space. For this reason the merging of the perspect ive/viewport
t ransformat ions and the modeling/viewing t ransformations is not used for this
algorithm. All the a tom centers and radii are t ransformed into viewing space, and
pixel by pixel calculations are done by explicit rays from the origin through the
pixel. A point on such a ray is defined by its z depth and the perspective and
screen parameters . We find this relationship by first t ransforming a point on the
ray into perspective space.

(x y z 1)[P][V] = (x ' y ' z ' w ') = (x C x w + z S x c , y C y w + z S y c , z Q + R , z S)

The pixel coordinates (xs, y~) are formed by the homogeneous division

x~ = x ' / w ' = (x C x w + z S x c) / (z S)

y~ = y ' / w ' = (y C y w + z S y c) / (z S)

solving for the viewing space (x, y) in terms of viewing space z yields

x = z (x s - x ~) S / (C x w) - ZXz (,)

y = z (y s - y c) S / (C y w) =- zyz .

Thus we can define the viewing ray for a part icular pixel as

= (Xz, y z , 1).

Any point on this ray is a scalar multiple of this vector and can be parameter ized
by its z coordinate, yielding

(x, y , z) = z R .

ACM Transact ions on Graphics, Vol. 1, No. 3, July 1982.

A Generalization of Algebraic Surface Drawing 241

r?
I

hhl

Z ~ Zml

Fig. 4. C a u s e of r ound -o f f error .

3.2 Basic Algorithm

For a part icular pixel, the square of the distance from the center of a tom i, P~, to
a point on the viewing ray, z/t, reduces to a quadratic polynomial in z.

r~ = (zR - P i) " (z / ~ - P i)

-- z 2 (R . R) - 2 z (R "Pi) + (P i ' P i)

This expression is algebraically correct but it is unfor tunate ly susceptible to
round-off error. The reason for this can be seen from Figure 4.

The function can be a quite narrow parabola centered possibly quite far back
on the z axis. While commonly encountered values for the coefficients of this
equat ion do not themselves present problems, solution of the equation requires
taking differences of their products. This can easily exceed the accuracy of single
precision ari thmetic. To avoid the necessity of multiple precision ar i thmetic we
adopt a more geometrically meaningful representat ion

r~ = (R . R) (z - z~i) + M i

where

zmi = (R . P D / (R . R)

M~ = (zm~[~ - P i)" (z m i ~ - P~)

Here, zm~ is the z distance of the local minimum, Mi, of r~. Each te rm in the
density function is thus a Gaussian bump function of z centered at zm,. Th e total
function is the sum of several such bumps. Th e visible z depth value is the first
location where this function exceeds the value T. This is shown in Figure 5.

If only one a tom is visible, the z depth can be found analytically by setting the
density t e rm for tha t a tom equal to the threshold value of 1.

T = 1 = e x p (- a i r ~ - B i)

Taking the logari thm of both sides and substi tuting our formula for r~,

= - z m i) + M i] + Bi. 0 a i [(R . R) (z 2

Solving for z (note tha t the negative square root is taken to get the solution

ACM Transactions on Graphics, Vol. 1, No. 3, July 1982.

242 J .F . Blinn

f

A ~

z - - - - ~ I
VISIBLE POINT

Fig. 5. D e n s i t y f u n c t i o n of z dep th . (D o t t e d l i ne is s u m of Di.)

closest to the eye),

"l / a'M'- --+'-BL
z = Zmi-- ~ l - a i (R . R) "

3.3 Iterative Solution

If there is more than one atom, an analytic solution is not feasible and we must
resor t to numerical methods. Two popular methods for the i terat ive solution of
such equat ions are Newton i terat ion and "regula falsi."

Newton i terat ion works by beginning with an initial guess and refining it by.
approximating the function D with a straight line tangent to the function at tha t
point. Solving this l inear equat ion yields a new guess, z

D (z) - T
Znew ~ Z

D ' (z)

Derivat ives are easily obtained from the functional form.

d D
- D ' = ~ - 2 a i (R . R) (z - Zmi) e x p (- a i r ~ - B i)

d z i

Note tha t this calculation uses many computat ions in common with the calcula-
t ion of D, so evaluation of bo th D and D ' is relatively economical.

Regula falsi begins with two initial guesses which are known to bracket the
solution: Zn, where D (z,) < T, and zf , where D (zf) > T. I t generates a new guess
by drawing a line between (z,, D (z n)) and (zf, D (z f)) and solving for T.

z n (D (z :) - T) - z f (D (z ,) - T)

Z.ew = D (z f) - - D (z n)

T h e real value of D (z.ew) is then calculated. If D (Znew) < T then Znew replaces Zn.

Otherwise it replaces zf . Thus the range between z , and z f continually contracts
a round the correct solution.

If the initial guess is close enough to the real solution, Newton i terat ion
converges rapidly. If it is not close, however, it will diverge. Regula falsi is
guaranteed to converge but does so more slowly. We therefore have adopted a

ACM Transactions on Graphics, Vol. 1, No. 3, July 1982.

A Generalization of Algebraic Surface Drawing 243

t i
i

- - ~ l , . - INITIAL
GUESS

Initial guess when D.~ax > T. (Dotted line is sum of Di.)

Z

Fig. 6.

t
r~

/ \

.,'72q%
z ~ I

IN IT IAL
GUESS

Fig. 7. Initial guess when Dmax < T. (Dotted line is sum of Di.)

hybr id solution. A value for Znew is calculated by Newton iteration. I f this value
is outside the range (Zn, Zf) then the value is recalculated f rom the regula falsi
formula. Th is process is r epea ted until the value of lD (Znew) - - T I is less than
some error tolerance t.

To generate the first initial guess range, we rely on some heuristics based on
our knowledge of the functional form. We expect the solution to be at or near
solutions to e i ther the individual a tom b u m p s (Figure 6) or to the local m a x i m u m
of a b u m p if it does not itself exceed the threshold value T (Figure 7).

We therefore make a list of potent ia l initial guess z values and sort t h e m in
ascending order of z. The sorted list is then scanned f rom front to back, and, for
each element , the actual function value (i.e., the sum of all a t o m contributions)
is calculated. I f this is less than the threshold value, it is assumed tha t the local
m a x i m u m of D near here does not reach the threshold and the next list i tem is
evaluated. I f it exceeds the threshold value, t ha t z is used as the initial value of
zf and the previous list i t em is used as the initial value of zn. See Figure 8.

ACM Transactions on Graphics, Vol. 1, No. 3, July 1982.

244 J.F. Blinn

f
N
a / \

/

I I I I
k.1 2 3 4 7

y -

INITIAL GUESSES SORTED ON Z

FIRST TWO SKIPPED SINCE .~ D i < T
I

THIRD USED SINCE .~ DI > T
I

Z --------4~

Fig. 8. I n i t i a l g u e s s l is t .

3.4 Intensity Calculat ions

W h e n a z solution is found, it is subs t i tu ted into eq. (*) to get the x and y locations
of the visible point on the surface in viewing space. To calculate an intensity, it
is t hen necessary to find the surface normal at this point. Th is can be found by
taking the gradient of the surface defining function, F.

For the funct ion we are using here this is readily done. For example, the x
componen t will be

OF
-- ~ - - 2 a i (x -- x i) e x p (- - a i r ~ - - B i) .

Ox i

Finally, we can allow the surface reflective proper t ies (such as color) to vary
over the surface by blending t h e m according to the contr ibut ions f rom each a tom.
This is done by taking a weighted sum of the surface p rope r ty f rom each a tom,
the weight being chosen as the value of Di f rom tha t a tom. (Recall t ha t these sum
to the threshold value of 1.0.) Alternat ively, as in the ease of the d iagrams shown
here, we can find the a t o m with the highest value of Di at the visible point and
use its surface propert ies .

3.5 Optimizing the Algorithm

For images containing more t han a few a toms (up to 4000 in some of the images
required for this project) , the s u m m a t i o n of the D function over all the a toms is
computa t ionaUy out of the question. For tunate ly , for any given pixel, mos t of the

ACM Transactions on Graphics, Vol. 1, No. 3, July 1982.

A Generalization of Algebraic Surface Drawing 245

Q • •

O Q •

Fig. 9. Effect of different e r ror tolerances, t.

atoms are sufficiently far away from the scan ray so that their contribution to the
D function is negligible. We can therefore economize considerably by using in
calculations only those atoms which are "close" to the scan ray. The term "close"
is given precise meaning by enclosing each atom in a sphere defined by

Di (x, y, z) = tT,

where the value t is the same error tolerance used as the convergence criterion.
If the scan ray intersects this sphere, there must be points along it where the
contribution to D is large enough to matter. If, on the other hand, the scan ray is
disjoint from the enclosing sphere, then all points on it contribute less than the
error introduced by the termination conditions of the numeric solution. The atom
can then be skipped.

The value of the error tolerance, of course, determines the quality of the image.
A larger tolerance will be faster but the image will have some noise added. Figure
9 shows the results obtained with different values of t. The halo around each
example indicates those pixels covered by the enclosing spheres of the atoms.
The errors in the surface begin to be apparent with t = 0.03. They show up
initially as a crease through the highlight at the top of the shape.

The process of maintaining a list of "close" atoms during the rendering is
similar to that of maintaining a list of potentially visible polygons in more
conventional poygon-rendering algorithms (or perhaps, more properly, maintain-
ing a list of visible spheres in a sphere-drawing program).

We begin with the outer (y) loop. To initialize the loop, the enclosing spheres
of all atoms are projected into screen space and the maximum and minimum
visible y values are computed. The exact mathematics for this is given in the next
section. The atom list is then sorted on minimum y, forming the "y-enter" list.
During the y scan loop we maintain an additional "y-active" list of all atoms
whose enclosing sphere includes the current scan plane. Additions to and deletions
from this list are done incrementally each time through the loop. That is, each

ACM Transactions on Graphics, Vol. 1, No. 3, July 1982.

246 J .F . Blinn

OLD Ys

NEW Ys

A

F

Y-ENTER

Y-ENTER
Y-ACTIVE

Y-ENTER
Y-ACTIVE

Fig. 10.

AT INITIALIZATION: A, B, C, D, E, F

AT OLD Ys: D, E, F
AT OLD Ys: A, B, C

AT NEW Ys: E, F
AT NEWYs: B, C, D

y-enter~y-active l is ts .

t ime ys is inc remented the top e lement on the y-enter list is examined. I f it is now
above the new ys it is moved to the y-act ive list and the next e lement on the y-
enter list is examined. When the top of the y-en te r list is below the new y8 then
we know tha t all enter ing a toms have been added. Now examine the y-act ive list
for deletions. T h e ymh of each a t o m on the y-act ive list is tes ted against the new
y~, and if it is above it the e lement is removed. See Figure 10.

Inside the y loop there is an x loop which goes across the screen. Here we
ma in ta in an x-act ive list with the candidates coming f rom the y-act ive list. This
is done in a m a n n e r exact ly analogous to the y loop. For each e lement in the y-
act ive list the enclosing sphere is projected onto the screen and the m a x i m u m
and m i n i m u m x value is computed. T h e y-act ive list is then sorted on Xmin and
becomes the x-enter list. Since the y-act ive list is in fact identical to the x-enter
list it is a lways kep t in x-sor ted order, f rom scan line to scan line. Any addit ions
are merged into the list using an exchange sort. As the scan progresses f rom left
to r ight the x-enter list is examined for enter ing a toms to add to the x-act ive list.
T h e x-act ive list is then scanned for any exiting atoms. See Figure 11.

At this point we have, for a given pixel, a list of all a toms whose enclosing
sphere intersects the cur rent scan ray th rough tha t pixel. Th is list represents a
significant culling of the to ta l i ty of a toms to jus t those which are re levant to the

ACM Transactions on Graphics, Vol. 1, No. 3, July 1982.

A General izat ion of A lgebra ic Surface Drawing 247

C ""

OLD Xs NEW Xs

X-ENTER AT OLD Xs: B
X-ACTIVE AT OLD Xs: C, A

X-ENTER AT NEW Xs:
X-ACTIVE AT NEW Xs: C, B

Fig. 11. x-enter~x-active lists.

FIRST SECOND THIRD

A ~

I A I I c I

I B I I D
Z-ACTIVE AT FIRST POINT: A, B

Z-ACTIVE AT SECOND POINT: A, B

Z-ACTIVE AT THIRD POINT: C, D

Fig. 12. En te r ing /ex i t ing f rom z-active list.

current pixel. There is one more level of culling available, however. This is in the
z direction. In Section 3.3 we described the technique for finding an initial point
for the iterative solution as a scan from front to back through a z-sorted list of
potential solution points. If, prior to this zscan, we calculate the Zmin//Zmax values
of the intersections of the enclosing spheres with the scan ray, we can maintain
a z-active list as the zscan progresses. In this case, the z values examined for
entering/exit ing tests are not equally spaced integer values as in the x and y
cases. They are instead taken one at a time from the potential z list. This does
not alter the basic principle, however. See Figure 12.

ACM Transactions on Graphics, Vol. 1, No. 3, July 1982.

248 J.F. Blinn

4,;

• t g ' J

~4

Fig. 13. Image containing 4000 a toms.

W h e n we pe r fo rm the i terat ion loop then the s u m m a t i o n of the Di will be t aken
over only those a toms close enough to the initial guess to mat te r . For example,
for the image containing over 4000 a toms {Figure 13), there were a t mos t 6 a toms
on the z-act ive list for the i terat ion and usually much less.

3.6 Calculating the Range in x, y, and z

In this section we explicitly indicate how to calculate the x, y, and z extents of the
enclosing sphere of an a tom. Such enclosing spheres are defined, as described in
Sect ion 3.5, by the equat ion

t T = Di = e x p (- a i r ~ - B i) .

Taking the logar i thm (and recalling tha t T = 1), we t rans form this into the
equat ion for a quadric surface

0 = air~ + (Bi + in t).

To calculate ZmjZmax for the range tes t of the zscan, we subst i tu te the expression
for r~ in t e rms of z:

0 = ai[(R . R)(z - Zmi) 2 + Mi] + (Bi + in t)

and solve for z:

where

Z m i n ~ Z m i - - Dz

Z m a x ~ Z m i "~ Dz

x / a i M i + B i + In t

T h e r e will be two roots to this as long as the expression under the radical is
positive. T h e curve defined by set t ing this equal to zero will then define the

ACM Transactions on Graphics, Vol. 1, No. 3, July 1982.

A Generalization of Algebraic Surface Drawing 249

project ion of the s i lhouet te outlines of the enclosing sphere onto the screen:

aiM~ + Bi + in t = 0

Subst i tu t ing the definition of Mi and Zmi we can t rans form this into

Bi + In t
A { R . R } - (R .P i) 2 = 0 where A = (Pi .P i) + - -

ai

Recalling t ha t R = (xz, yz, 1) we get

h(x~ + y2z + 1) - (XzXi + yzyi + zg) e = O.

Now for a par t icular scan line, y , is constant. We then have a quadrat ic equat ion
in xz whose solutions give the range in xz for tha t scan line.

x2(A - x 2) + X z (- 2 x i (y z y i + zi)) + (h(yz 2 + 1) - (y z y i + z,) 2) = 0

T h e solutions to this equat ion (X, mm, X) mus t still be conver ted to pixel
coordinates (X~mi,, X) by reference to eq. (*).

T h e above equat ion will have two roots at all values of yz for which its
d iscr iminant is positive. T h e values of yz for which this discr iminant becomes
zero therefore yield the m a x i m u m and m i n i m u m yz for which the enclosing sphere
is visible.

4 x ~ (y ~ y i + z i) 2 - 4 (A x~) A 2 _ - ((y z + 1) (y~yi + z,) 2) = 0

Again, the two solutions for yz f rom this equat ion mus t be conver ted to pixel
coordinates via eq. (*).

In bo th the x and y cases, the pixel range for the enclosing sphere mus t be
in tersected with the pixel range of the display. This effectively means tha t we are
per forming clipping in screen space. I f the range of the sphere is complete ly
outside the screen then it can be el iminated entirely.

4. TIMING

T h e rendering algori thm, while making some quite interesting shapes, is not
terrifically fast. In an effort to see where the t ime is spent within the a lgori thm
it was ins t rumented for t iming measurements . Tab le 1 shows the results for the
calculat ions involved in generat ing Figure 14, containing 64 atoms. Again, the
halo a round the molecule represents the enclosing spheres of the a toms and
indicates the pixel range over which calculations are made.

Note tha t even though the y scan and xscan rout ines take quite a while (since
they have to deal with larger active lists), their net contr ibut ion to the running
t ime is small since they are called only once per image and once per potent ial ly
occupied scan line, respectively. The zcalc routine is where the values of zm,, M~,
and so forth, are calculated for all the a toms on the z-active list. This is wha t
takes mos t of the time. Pa r t of the reason for this is not so much the amoun t of
t ime spent in the rout ine as the very large n u m b e r of t imes it is called. I t is called
once for each pixel covered by any enclosing sphere, while the i terat ion and
shading rout ine are called once per actual ly occupied pixel.

We also present h is tograms of the sizes of the active lists for each of the nested
scans. Each bin of the h is togram counts the n u m b e r of t imes a given size of active

ACM Transact ions on Graphics, Vol. 1, No. 3, Ju ly 1982.

250 J. F. Blinn

Table I. Timing for the calculations involved in generating Figure 14.

N u m b e r To ta l t ime T i m e / c a l l % of to ta l

Rou t ine of calls (seconds} (msec) t ime

xscan 1 0.01 99.34 0.0
yscan 163 9.57 58.69 6.5
zcalc 31036 58.57 1.89 39.5
zscan 17926 22.63 1.26 15.3

I t e ra t ion 16762 25.20 1.50 17.0
Shad ing 16762 32.28 1.92 21.8

To ta l - - 148.25 - - - -

Fig. 14. Sample image for t iming test.

list is passed to the routine. Note that , due to the culling process, the i terat ion
and shading routines were usually called with active lists of length 3 or less. See
Figure 15 (pages 252-253).

5. HIERARCHICAL MODELING

T h e implementa t ion of this algori thm was done on a PDP-11, which allows
l imited address space for user programs. The re is not enough user memory for a
program which does both the modeling and rendering for systems of atoms of the
size desired. Accordingly the process is divided into two programs which com-
municate via a t empora ry file. This file is, in fact, just the y-enter list sorted on
ymax for the enclosing volume of each atom. A general purpose modeling program
accepts commands controlling the positioning and blobbiness parameters of
atoms, global lighting, viewing parameters , and so forth. I t then writes out the
sorted y-enter list into a t empora ry file. The rendering program then reads in this
file, a tom by atom, as the scan proceeds down the screen. This frees the rendering
program from any restrictions on the total number of a toms visible. I t needs only
to read one a tom ahead of itself in the y-enter list Erie to be able to tell when the
next a tom is to enter the y-active list. Internal ly it maintains only the y-active
list and thus has restrictions only on the maximum number of a toms visible on
any one scan line. (This technique has also been used by the au thor in polygon-

ACM Transactions on Graphics, Vol. 1, No. 3, July 1982.

A Generalization of Algebraic Surface Drawing 251

rendering programs and bicubic patch-rendering programs, the lists in those cases
being of polygons or patches.)

The r e are still some limits on the maximum number of atoms which the
modeling program can maintain. These can be relaxed by inserting a separate
sorting module between the modeler and the renderer. The modeler then does
not need to be able to store all the a toms in a scene. It just concerns itself with
command line interpretat ion, setting parameters , and transforming atoms to
viewing space. I t writes out the a tom list as it reads it f rom a molecule definition
file. The sorter then is a small program with a large array. It reads the y-enter list
file, sorts the data, and writes it out again.

For the purposes of modeling large polymerized molecules (like DNA) an
al ternat ive hierarchical modeling scheme was employed. Polymers are made up
of a large collection of a few basic modules. For DNA these modules are the four
nucleotides and a few free radicals used to simulate the replication process. Each
module is modeled as a rigid body at an arbi t rary position and orientation. The
definition of a module lists its const i tuent atoms and the radius of an enclosing
sphere for the entire module. When an image is to be made, the modules are first
sorted in an order based on the minimum y+ of their enclosing spheres. Th en a
scan is made in the y direction to generate the entire y-enter list of atoms directly
in sorted order. For each new y, value the y-module list is examined to see if any
modules have become active. When a module becomes active it is expanded into
its const i tuent a toms which are then t ransformed into viewing space according to
the module 's or ientat ion and position. These atoms are added to a candidate y-
enter pool. When all newly act ivated modules have been expanded, the candidate
y-enter pool is examined. Any atoms which have actually become visible on the
scan line are wri t ten to the y-enter file. The advantage of this process is tha t the
candidate y-enter pool never gets very large and can therefore handle large
structures.

6. EXTENSIONS

The initial algori thm was devised for a special purpose task. We examine here
some simple generalizations of the process to give a wider range of shapes which
can be modeled.

6.1 General Quadric Seeds

One obvious extension to the shapes defined so far is to provide for nonspherical
primitive shapes. Recall the original defining equation consisted of terms

e x p (- a i r ~ - B i) .

The exponent of e is just a special case quadric:

- a i r ~ - B i = - a i ((x - x i) 2 + (y - y i) 2 + (z - z i) 2) - B i ! 0 0 - x t r x 1
1 0 -Y, l lY l

= (x y z l) (- a i) 0 1 -Z / l /Z /

x i - Y i - z i PJL 1 J

ACM Transactions on Graphics, Vol. 1, No. 3, July 1982.

2 5 2 J . F . B l inn

30 - -

20 - -
<
U

O

10 --

Z

0

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0 3 2 3 4 3 6

NUMBER OF ELEMENTS IN Y-ACTIVE LIST
UPON ENTRY TO X -SCAN

Z
. <

O
:2::
I--- v

,q,

U
I.l_

O

::D
Z

11 -

1 0 -

9 -

8 - -

7 -

6 -

5 -

4 -

3 -

2 -

1 -

0 I I

1 2 3 4 5

NUMBER OF ELEMENTS IN Z-ACTIVE LIST
DURING ITERATION

Fig. 15. Histograms of lengths of active lists.

ACM Transactions on Graphics, Vol. 1, No. 3, July 1982.

Figure 15 continued on next page.

A G e n e r a l i z a t i o n o f A l g e b r a i c S u r f a c e D r a w i n g 2 5 3

Z
<

0
"r-
l - - v

(.9
u_

0

z

11 -

1 0 - -

9 - -

8 - -

7 -

6 - -

5 - -

4. -

3 -

2 -

1 -

0 j h .
3 4 5 6 7 8 9

NUMBER O F ELEMENTS IN X - A C T I V E LIST
U P O N ENTRY TO Z - S C A N

C~

z
. <

O
"r"

. .J

U
i t .

O

z

10 - -

9 - -

8 --

7 --

6 --

5 - -

4

3

2

I

0 |

2 3 4 5 6 7 8

NUM~,ER O F ITERATIONS REQUIRED
FOR C O N V E R G E N C E

ACM Transact ions on Graphics, Vol. 1, No. 3, Ju ly 1982.

254 J .F . Blinn

where

p x ~ 2 z ~ Bi = ~ + y i + l + - - . ai

By allowing general quadrics here, we can have ellipsoids, cylinders, planes, and
so forth, as modeling primitives. This is done by beginning with a canonical unit
sphere at the origin defined by

0 0 ijlil 0 = (x y z l) 0 - B i 0
0 0 - B i

0 0 0

This is then scaled, rotated, and t ranslated to the desired location by the s tandard
t ransformat ion techniques for quadrics [1], tha t is, mult iply on the left by the
inverse of the t ransformat ion matr ix and on the right by the transpose of the
inverse.

Q' = T - 1 Q T - i t where T is t ransformat ion such tha t

(x ' y ' z ' w ') = (x y z w) T

This expression is chosen to preserve the relationship:

if (x y z w) Q (x y z w) t = 0

then (x ' y ' z ' w ') Q ' (x ' y ' z ' w ') t = 0

T h e reader can verify tha t by scaling the matr ix by Ri and translating it to (xi, yi ,
zi) one obtains just the special case formulat ion we used above for pure spheres.
The generalization of most of the other equations in the preceding discussion can
be performed by making the following replacements:

a i (R . R) becomes R Q ' R t

a i (Pi . R) becomes . ~ Q , ~ t

a i (P i . P i) + Bi becomes WQ'V~ rt

where

Q' = t ransformed (4 × 4) quadric matr ix
W = (0 0 0 1)
R = {xz yz 1 O)

A sample picture appears in Figure 16.
For shapes of infinite extent, such as cylinders, the calculation of m ax /m in

values in x, or ys may yield an infinite range. This occurs when there are no
solutions to the range determining quadratic equations of Sect ion 3.6. To handle
these si tuations properly we must recall tha t we are solving these equations not
so much to find their zeros as to find the region where the quadrat ic polynomial
is positive (since its square root is required later). In the general case this may
yield one finite span (for ellipsoids), one infinite span (the axis of a cylinder) or
two semiinfinite spans (hyperboloids). With proper care in examining the poly-
nomial these cases can be readily distinguished.

ACM Transac t ions on Graphics, Vol. 1, No. 3, July 1982.

A Generalization of Algebraic Surface Drawing 255

Fig. 16. Image generated using general quadric exponents.

Fig. 17. Effects of negative volumes.

6.2 Negative Volumes

Another extension is to allow negative values for bi. This effectively gives negative
volumes. They are not visible themselves, but when placed near normal objects
they make dents. This is because their density contributions are being subtracted
from the summation. A sample image appears in Figure 17.

In fact, with some adjustments to the algorithm it should be possible to allow
complex values for the bi. This would prove useful for molecular simulations since
quantum wave functions are actually complex valued functions. We could there-
fore represent antibonding orbitals.

6.3 Hyperellipsoids

A more general surface shape can be provided by allowing exponents other than
2 on the terms of the exponent.

\

ACM Transactions on Graphics, Vol. 1, No. 3, July 1982.

256 J.F. Blinn

6.4 Other Bump Functions

The final extension considered here involves alterations to the exponential
function. We can use any shape that has the same general form. In fact, the
implementation of the algorithm here uses a table lookup procedure with inter-
polation for rapid evaluation of the exponential function. By placing different
values in the table we can easily change the shape of the bump function. Care
should be taken not to defeat the heuristics for the selection of initial guesses for
the numerical solution. Basically the function must equal 1 at f(0) and increase
monotonically over the range used.

7. CONCLUSIONS

We have presented an algorithm which simultaneously models and renders a
class of surfaces which have an interesting visual appearance and should prove
useful for a variety of applications. Some simple extensions to this process show
promise of generating other interesting shapes.

All raster scan image synthesis algorithms must address the problem of anti-
aliasing (e.g., area sampling). Algorithms based on algebraic surfaces are fairly
entrenched in point sampling. This creates problems mostly at silhouette edges
since the main body of the surface shape does not have any high frequencies to
alias. No explicit anti-aliasing has yet been attempted on the images presented
here. This would be a fruitful topic for further research.

REFERENCES

1. BLINN, J.F. Geometric representations in computer graphics. Workshop on representation of
three-dimensional objects, Univ. of Pennsylvania, Philadelphia, Pennsylvania, May 1979.

2. CATMULL, E.E. Computer display of curved surfaces. In Proc. of the Conf. on Computer
Graphics, Pattern Recognition, and Data Structure (Los Angeles, Calif., May 14-16), 1975, IEEE,
New York, pp. 11-17.

3. CLARK, J.H. A fast scan-line algorithm for rendering parametric surfaces. Unpublished.
4. DUFF, T. The soid and roid manual. New York Institute of Technology, Sept. 1980.
5. GOLDSTEIN, E. AND NAGLE, R. 3D visual simulation. Simulation 16, 1 (Jan. 1971), 25-31.
6. KNOWLTON, K. AND CHERRY, L. Atoms, a 3D opaque molecule system. Comput. Chem. 1, 3

(1977), 161-166.
7. LANE, J.M., CARPENTER, L.C., WHITTED, T., AND BLINN, J.F. Scan line methods for displaying

parametrically defined surfaces. Commun. A C M 23, 1 (Jan. 1980), 23-34.
8. MAX, N.L. Atom LLL:--Atoms with shading and highlights. Computer Gr. 13, 2 (Aug. 1979),

165-173.

9. PORTER, T. Spherical shading. Computer Gr. 12, 3 (Aug. 1978), 282-285.
10. ROTH, S. Ray casting as a method for solid modeling. Comput. Gr. Image Process 18, 2 (Feb.

1982), 109-144.

Received March 1982; revised May 1982; accepted May 1982.

ACM Transactions on Graphics, Vol. 1, No. 3, July 1982.

