
SIMULATION OF WRINKLED SURFACES
James F. Blinn
Caltech/JPL

Abstract

Computer generated shaded images have reached an impressive
degree of realism with the current state of the art. They are
not so realistic, however, that they would fool many people into
believing they are real. One problem is that the surfaces tend
to look artificial due to their extreme smoothness. What is
needed is a means of simulating the surface irregularities that
are on real surfaces. In 1973 Ed Catmull introduced the idea of
using the parameter values of parametrically defined surfaces to
index into a texture definition function which scales the
intensity of the reflected light. By tying the texture pattern
to the parameter values, the texture is guaranteed to rotate and
move with the object. This is good for showing patterns painted
on the surface, but attempts to simulate rough surfaces in this
way are unconvincing. This paper presents a method of using a
texturing function to perform a small perturbation on the
direction of the surface normal before using it in the intensity
calculations. This process yields images with realistic looking
surface wrinkles without the need to model each wrinkle as a
separate surface element. Several samples of images made with
this technique are included.

1. INTRODUCTION

Recent work in computer graphics has been
devoted to the development of algorithms for
making pictures of objects modelled by other than
the conventional polygonal facet technique. In
particular, several algorithms [4,5,7] have been
devised for making images of parametric surface
patches. Such surfaces are defined by the values
of three bivariate functions:

X = X(u,v)
Y = Y(uv)
Z = Z(u,v)

as the parameters vary between 0 and 1. Such
algorithms basically consist of techniques for
inverting the X and Y functions. That is, given
the X and Y of a picture element, the
corresponding u and v parameter values are found.
This parameter pair is then used to find the Z
coordinate of the surface to perform depth
comparisons with other objects. The intensity of
the resultant picture element is then found by a
simulation of the light reflecting off the
surface. Functions for performing this
computation are described in [3].

The prime component in the calculation of the
intensity of a picture element is the direction of
the surface normal at that picture element. To
calculate the surface normal we first examine the
derivatives of the surface definition functions.
If the coordinates of a point on the patch is
represented by the vector P:

= (X,Y,Z)

The partial derivatives of these functions form
two new vectors which we will call Pu and Pv.

Pu = (Xu,Yu,Zu)

Pv = (Xv,Yv,Zv)

These two vectors define a plane tangent to the
surface at that point. Their cross product is
thus a vector normal to the surface.

N = Pu x Pv

These vectors are illustrated in figure 1. Before
using the normal in intensity calculations it must
first be scaled to a length of 1.0 by dividing by
its length.

Figure 1 - Definition of Normal Vector

Images of smooth surfaces made directly from
the patch description do not have the usual
artifacts associated with polygonal facets, they
do indeed look smooth. In fact they sometimes
look too smooth. To make them look less
artificial it is necessary to simulate some of the
surface irregularities of real surfaces. Catmull
[5] made some progress in this direction with
process called texture mapping. Effectively the
color of the surface was defined as a fourth
bivariate function, C(u,v), and was used to scale
the intensity of the generated picture at each
point. This technique was good a generating
pictures of objects with patterns painted on them.
In order to simulate bumpy or wrinkly surfaces one
might use, as the defining texture pattern, a
digitized photograph of a bumpy or wrinkly

286

surface. Attempts to do this were not very
sucessful. The images usually looked like smooth
surfaces with photographs of wrinkles glued on.
The main reason for this is that the light source
direction when making the texture photograph was
rarely the same as that used when synthesizing the
image. In fact, if the surface (and thus the
mapped texture pattern) is curved, the angle of
the light source vector with the surface is not
even the same at different locations on the patch.

2. NORMAL VECTOR PERTURBATION

To best generate images of macroscopic
surface wrinkles and irregularities we must
actually model them as such. Modelling each
surface wrinkle as a separate patch would probably
be prohibitively expensive. We are saved from
this fate by the realization that the effect of
wrinkles on the perceived intensity is primarily
due to their effect on the direction of the
surface normal (and thus the light reflected)
rather than their effect on the position of the
surface. We can expect, therefore, to get a good
effect from having a texturing function which
performs a small perturbation on the direction of
the surface normal before using it in the
intensity formula. This is similar to the
technique used by Batson et al. [1] to synthesize
aerial picutres of mountain ranges from
topographic data.

The normal vector perturbation is defined in
terms of a function which gives the displacement
of the irregular surface from the ideal smooth
one. We will call this function F(u,v). On the
wrinkled patch the position of a point is
displaced in the direction of the surface normal
by an amount equal to the value of F(u,v). The
new position vector can then be written as:

P' = P + F N/INI

This is shown in cross section in figure 2.

The partial derivatives involved are evaluated by
the chain rule. So

Pu' = d/du P' = d/du(P + F N/INI)
= Pu + Fu N/INI + F (N/INI)u

Pv' = d/dv P' = d/dv(P + F N/INI)
= Pv + Fv N/INI + F (N/INI)v

The formulation of the normal to the wrinkled
surface is now in terms of the original surface
definition functions, their derivatives, and the
bump function, F, and its derivatives. It is,
however, rather complicated. We can simplify
matters considerably by invoking the approximation
that the value of F is negligably small. This is
reasonable for the types of surface irregularities
for which this process is intended where the
height of the wrinkles in a surface is small
compared to the extent of the surface. With this
simplification we have

Pu' Pu + Fu N/INI

Pv' Pv + Fv N/INI

The new normal is then

N' = (Pu + Fu N/NI) x (Pv + Fv N/NI)

= (Pu x Pv) + Fu (N x Pv)/INI

+ Fv (Pu x N)/INI + Fu Fv (NxN)/lNI

The first term of this is, by definition, N. The
last term is identically zero. The net expression
for the perturbed normal vector is then

N' =N +

where D = (Fu (N x Pv) - Fv (N x Pu)) / INI

This can be interpreted geometrically by observing
that (N x Pv) and (N x Pu) are two vectors in the
tangent plane to the surface. An amount of each
of them proportional to the u and v derivatives of
F are added to the original, unperturbed normal
vector. See figure 3

Another geometric interpretation is that the
vector N' comes from rotating the original vector
N about some axis in the tangent plane to the
surface. This axis vector can be found as the
cross product of N and N'.

287

Invoking the vector identity Qx(RxS) = R(Q.S) -
S(Q.R) and the fact that N.Pu = N.Pv = 0 this axis
of rotation reduces to

NxN' = INI(Fv Pu - Fu Pv) - IN A

This vector, A, is just the perpendicular to the
gradient vector of F, (Fu,Fv) when expressed in
the tangent plane coordinate system with basis
vectors Pu and Pv. Thus the perturbed normal
vector will be tipped "downhill" from the slope
due to F. Note that, since NxD=INI A and since
N is perpendicular to D then

INxDI = INI IDI
so

DI = IA

Next, since the vectors N, D and N' form a
right triangle, the effective angle of rotation is

tan-= IDI/INI

this is illustrated in figure 4.

Figure 4 - Rotated Normal Vector

In summary, we can now calculate the
perturbed normal vector, N', at any desired u and
v parameter value. This vector must still be
scaled to a length of 1 by dividing by its length.
The result is then passed to the intensity
calculation routines in place of the actual normal
N.

3. TEXTURE FUNCTION DEFINITION

The formulation of the perturbed normal
vector is in terms of the position functions X, Y,
and Z and the bump displacement function F. To
perform calculations we only need a means of
evaluating the u and v derivatives of F(u,v) at
any required parameter value. In this section we
discuss some ways that such functions have been
defined, means of evaluating them and show some
resultant pictures.

The function F could, of course, be defined
analytically as a bivariate polynomial or
bivariate Fourier series. In order to generate a
function with a sufficient amount of complexity to
be interesting, however, an excessive number of
coefficients are required. A much simpler way to
define complex functions is by a table lookup.
Since F has two parameters, this table takes the
form of a doubly indexed array of values of F at

288

This yields a function which is continuous in
value but discontinuous in derivative. Since the
function F appears in the calculation only in
terms of its derivative we should use a higher
order interpolation scheme which is continuous in
derivative. Otherwise the lines between function
samples may show up as creases in the surface.
Third order interpolation schemes (e.g.
B-splines) are the standard solution to such a
situation, but their generality is not really
needed here. A cheaper, continuous interpolation
scheme for derivatives consists of differencing
the (bilinearly interpolated) function along the
parametric directions. The increment between
which differencing occurs is the distance between
function sample values. The function generated by
this interpolation scheme has continuity of
derivative but not of value. The values of F are
not used anyway. Thus

E = 1/64.
FU= (FVAL(U+E,V)-FVAL(U-E,V)) / (2*E)
FV = (FVAL(U ,V+E)-FVAL(U ,V-E)) / (2*E)

This is the form used in the pictures shown here.
It is about as simple as can be obtained and has
proven to be quite adequate.

In the above examples, the integer part of
the scaled up parameter values were used directly
as indices into the F array. In practive, one
should protect against array overflow occurring
when the parameter happens to be slightly less
than 0 or greater than 1. In fact, for the
bilinear interpolation case, all parameter values
between 63/64 and 1 will attempt to interpolate to
a table entry at index 65. The question of what
is the function value at parameters outside the
range of the table can be answered in a variety of
ways. A simple method is to make the function
periodic, with the table defining one period.

various fractional parameter values. If the array
is 64 by 64 elements and the parameters are
between 0 and 1 a simple means of evaluating F
(using Fortran style indexing) at u and v would be

FUNCTION FVAL(U,V)
IU = IFIX(64*U)
IV = IFIX(64*V)
FVAL = FARRAY(IU+1,IV+1)

(We will duscuss the problem of overflow of the
indices shortly). This will yield a function made
of a checkerboard of constant valued squares 1/64
on a side. A smoother function can be obtained by
interpolating values between table entries. The
simplest interpolation technique is bilinear
interpolation. Such an algorithm would look like

This is easily accomplished by masking off all but
the low 6 bits of the IU and IV values. This also
makes it easy to have'the table represent a unit
cell pattern to be replicated many times per
patch. The function values U and V are merely
scaled up by the replication count before being
passed to FVAL.

Now that we know what to do with the table
entries we turn to the question of how to generate
them in the first place. Some simple geometric
patterns can be generated algorithmically. One
such is a gridwork of high and lw values. The
table entries of the F function for such a grid
are shown plotted as a 3D line drawing in figure
5. The result when mapped onto a flat patch with
one corner bent back is also shown.

Figure 5 - Simple Grid Pattern

Embossed letters can be generated by using a
bit-map character set as used to'display text on a
raster scan display. Such a texture array appears
in figure 6. This pattern was used to make the
title on the ribbon on the logo of the cover of
these proceedings.

Figure 6 - Embossed Letter Pattern

239

Another method of generating bump functions
derives from image synthesis algorithms which use
Z-buffers or depth buffers to perform the hidden
surface comparisons [5]. The actual Z values left
in the depth buffer after running such an
algorithm can be used to define the table entries
for a bump function. In figure 7 an image of a
sphere was generated using such an algorithm and
the resultant Z-buffer replicated several times to
generate the rivet-like pattern. This is the
pattern mapped onto the cube on the cover logo.
Similarly, a 3D character set was used with a
Z-buffer algorithm to generate the pattern showing
the date also in figure 7. This was used on the
ribbon on the cover.

Figure 7 - Z-Buffer Patterns

The most general method of generating bump
functions relies on video frame buffer technology
and its standard tool, the painting program.
Briefly, a frame buffer is a large digital memory
with one word per picture element of an image. A
video signal is continually synthesized fran this
memory so that the screen displays an image of
what is in memory. A painting program utilizes a
digitizing tablet to control the alteration of the
values in the memory to achieve the effect of
painting on the screen. By utilizing a region of
the frame buffer as the defining table of the F
function, a user can actually paint in the
function values. The interpretation of the image
will be such that black areas produce small values
of F and white areas produce large values. Since
only the derivatives of F are used in the normal
vector perturbation, any area of constant
intensity will look smooth on the final image.
However, places where the image becomes darker
will appear as dents and places where it becomes
brighter will appear as bumps. (This
correspondance will be reversed if the base patch
is rotated to view the back side).
of interesting patterns

The generation
which fit together

end-to-end to form a continuous join between
patches then becomes primarily an artistic effort
on the part of the drawer. Figure 8 shows some

IDTC

IDTC
289

IDTC

IDTC

IDTC

IDTC

sznple results that can be achieved with this
technique. The first pattern, a hand drawn unit
cell of bricks was mapped onto the sphere on the
cover.

Figure 8 Hand Drawn Functions

IDTC

IDTC
Figure A- Hand Drawn Bump Funtions

IDTC

IMAGING IDTC XEROX

4. DEPENDANCE ON SCALE

One feature of the perturbation calculation
is that the perturbation amount is not invariant
with the scale at which the object is drawn. If
the X, Y, and Z surface definiton functions are
scaled up by 2 then the normal vector length, INI,

scaled up by a factor of 4 while the
perturbation amount, IDI, is only scaled by 2.
This effect is due to the fact that the object is
being scaled but the displacement function F is
not. (Scale changes due to the object moving
nearer or farther from the viewer in perspective
space do not affect the size of the wrinkles, only
scale shanges applied directly to the object.) The
net effect of this is that if an object is scaled
up, the wrinkles flatten out. This is illustrated
in figure 9.

norma l stretched

Figure 9 - stretched Bump Texture

This effect might be desirable for some
applications but undesirable for others. A scale
invariant perturbation, D', must scale at the same
rate as N. An obvious choice for this is

D' = a D INI/IDI

50 ID’1 = a INI

where a is independent of scales in P. The value
of a is then the tangent of the effective rotation
angle.

tan+' = ID'l/lNl = a

This can be defined in various ways. One simple
choice is a generalization from the simple, flat
unit square patch

X(u,v) = u
Y(u,v) = v
Z(u,v) = 0

For this patch the original normal vector
perturbation gives

N = (0,0,1)
D = (-Fu,-Fv,0)

tan+ = sqrt(Fu'+Fv')

Here the value of a is purely a function of F.
Use of the same function for arbitrary patches
corresponds to a perturbation of

a = sqrt(Fu'+Fv.')
D' = a D lNl/lDl
N" = N + D'

The texture defining function F is now no longer
being used as an actual displacement added to the
position of the surface. It just serves to
provide (in the form if its derivatives) a means
of defining the rotation axis and angle as
functions of u and v.

5 . ALIASING

In an earlier paper 121, the author described
the effect of aliasing on images made with color
texture mapping. The same problems can arise with
this new form. That is, undesirable artifacts can
enter the image in regions where the texture
pattern maps into a small screen region. The
solution applied to color textures was to average
the texture pattern over the region corresponding
to each picture element in the final image. The
bump texture definition function, however, does
not have a linear relationship to the intensity of
the final image. If the bump texture is averaged
the effect will be to smooth out the bumps rather
than average the intensities. The correct
solution to this problem would be to compute the
intensities at some high sub-pixel resolution and
average them. Simply filtering the bump function
can, however, reduce the more offensive artifacts- -.o f aliasing. Figure 10 shows the result of such
an operation.

Before
:

After

Figure 10 - Filtering Bump Texture

291

6. RESULTS

Surfaces appearing in images made with this
technique look quite convincingly wrinkled. An
especially nice effect is the interaction of the
bumps with calculated highlights. We must
realize, however, that the wrinkles are purely
illusory. They only come from some playing with
the parameters used in intensity calculations.
They do not, for example, alter the smooth
silhouette edges of the object. A useful test of
any image generation algorithm is to see how well
the objects look as they move in animation
sequences. Sane sample frames from such an
animation sequence appear in figure 11. The
illusion of wrinkles continues to be convincing
and the smoothness of the silhouette edges is not
overly bothersome.

Some simple timing measurements indicate that
bump mapping takes about 4 times as long as Phong
shading and about 2 times as long as color texture
mapping. The pictures in this paper took from 3
to 7 minutes each to produce.

The author would like to thank Lance Williams
and the New York Institute of Technology Computer
Graphics Laboratory for providing some of the
artwork and assistance in preparing the logo on
the cover made with the techniques described in
this paper.

REFERENCES

[1] Batson R. M., Edwards, E. and Eliason, E.
M. "Computer Generated Shaded Relief
Images", Jour, Research U.S. Geol. Survey,
Vol. 3, No. 4, July-Aug 1975, p. 401-408.

[2] Blinn, J. F., and Newell, M. E., "Texture
and Reflection in Computer Generated Images",
CACM 19, 10, Oct 1976, pp 542-547.

[3] Blinn, J. F., "Models of Light Reflection for
Computer Synthesized Pictures", Proc. 4th
Conference on Computer Graphics and
Interactive Techniques, 1977.

[4] Blinn, J. F., "A Scan Line Algorithm for
Displaying Parametrically Defined Surfaces",
Proc. 5th Conference on Computer Graphics
and Interactive Techniques, 1978.

[5] Catmull, E. E., "Computer Display of Curved
Surfaces", Proc. IEEE Conf. on Computer
Graphics, Pattern Recognition and Data
Structures, Los Angeles (May 1975111.

[6] Whitted, J. T., "A Scan Line Algorithm for
Computer Display of Curved Surfaces", Proc.
5th Conference on Computer Graphics ond
Interactive Techniques, 1978.

Figure 11 - Rotating Textured Sphere

292

