SI MULATI ONOF WRI NKLED SURFACES

James F. Blinn
Cal tech/ JPL

Abst ract

Conput er generated shaded i mages have reached an
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This process yields images with realistic
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surface winkles wthout the need to nodel each winkleas a
separate surface el enent. Several sanples of images made with
this technique are incl uded. . f | X
RODUCT These two vectors define a plane tangent to the
1o INT 'O surface at that point. Their cross product is
Recent work in conputer graphics has been thus avector normal to the surface.
devoted to the developnent of algorithns for N=Pux Pv
maki ng pi cturesof objects model | ed by other than -
the conventional polygonal facet technique. In ; : .
particul ar, several algorithms [4,5,7] have been These vectors are illustratedinfigure 1. Before
devised for making images of paranetric surface
patches. Such surfaces are defined by the val ues
of three bivariate functions:
X = X(u, v)
Y = Y(uv)
Z =Z(u,v)
as the parametersvary between 0 and 1. Such
algorithms basically consist of techniques for
inverting the Xand Y functions. That is, given
the X and Y of a picture elenent, the
correspondi ng u and v paraneter val ues are found.

This paranmeter pair is then used to find the Z
coordinate of the surface to perform depth
conparisons with other objects. The intensity of
the resultant picture elenment is then found by a
simulation of the light reflecting off "the
surface. Functi ons for perform ng this
conputationare described in [3].

The prime conponent in the cal cul ationof the
intensityof apictureelenent isthe direction of
the surface normal at that picture elenent. To
calculate the surface normal we first exanine the
derivatives of the surface definition functions.
If the coordinates of a point onthe patchis
represented by the vector P

= (X\Y,2)

The partial derivativesof these functions
two newvectors whichwe will call Pu and Pv.

form

Pu = (Xu, Yu, Zu)

Pv = (Xv, Yv, Zv)
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using the normal in intensity calculationsit nust
first be scaledto alength of 1.0 by dividing by
its length.

Figure 1 - Definition of Norma Vector

Images of smooth surfaces made directly from
the patch description do not have the usud
artifacts associated with polygonal facets, they
do indeed look smooth. In fact they sometines
look too smooth. To make them 1look |ess
artificial it is necessary to simulate some of the
surface irregularitiesof real surfaces. Catnull
[5] made some progress in this directionwth
process cal | ed texture mapping. Ef fectively the

color of the surface was
bi variate function, C(u,v),

the intensity of the generatedpicture at each
point. This technique was good a generating
pi ctures of objectswith patternspainted on them
Inorder to sinulatebunpy or wrinkly surfaces one
mght use, as the defining texture pattern, a
digitized photograph of a bunpy or winkly

defined as a fourth
and was used to scale



surface. Attenpts to do this were not very
sucessful. The images usual |y | ooked |ike snooth
surfaces with photographs of wrinkles glued on.
The main reason for this isthat the light source
direction when nuking the texture phot ogr aph was
rarely the same as that used when synthesizing the

image. In fact, if the surface (and thus the
maepped texture pattern) is curved, the angle of
the light source vector with the surface is not

even the same at different locations on the patch.
2. NORMAL VECTOR PERTURBATION

To best generate images of macroscopic
surface  wrinkles and irregularities we must

actually nodel them as such. Modelling each
surface winkle as a separate patch woul d pr obabl y
be prohibitivelyexpensive. W are saved from
this fate by the realizationthat the effect of

wrinkles on the perceived intensity is primrily
due to their effect on the direction of the
surface norml (and thus the light reflected)
rather than their effect on the position of the
surface. We can expect, therefore, to get a good
effect from having a texturing function which
performs a small perturbation on the direction of

the surface normal before using it in the
intensity formla. This is simlar to the
techni que used by Batson et al. [1] to synt hesi ze
aerial picutres of rmountain ranges from
t opogr aphi ¢ dat a.

The normal vector perturbation is defined in
terms of a function which gives the displacement
of the irregular surface from the ideal smooth

one. We will call this function F(u,yv). On the
wrinkled patch the position of a point is
displaced in the direction of the surface normal

by an amount equal to the value of F(u,v).

The
new position vector can then be written as:

P =P+ FN/IN|

This i sshown in cross section i nfigure 2.

F
+

smooth sartace wrinkle fFunction

wrinkled surlface

Figure 2 - Mapping Bump Function

is derived
its partial

The normal vector to this new surface
by taking the cross product of
derivatives.

N' = Bu' x Bv'
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The partial derivativesinvolved are eval uat ed by
the chainrule. So

Pu' d/du P = d/du(P +F NIN)

Pu + Fu N/IN| + F (N/IN|)u

Pv' d/dv P = d/dv(P +F N/INI)

Pv + Fv NIN +F (NIN)v

The formulationof the normal to the wrinkled
surface is now in terms of the original surface

definitionfunctions, their derivatives, and the
bunp function, F, and its derivatives. |t is,
however, rather conplicated. W can sinplify

matters considerably by invoking the approximation
that the value of F is negligably smal. This is
reasonable for the types of surface irregularities
for which this process is intended where the
height of the wrinkles in a surface is small
compared to the extent of the surface. With this
simplification we have

Pu' Pu + Fu N/IN|
Pv' Pv + Fv N/INI
The new norma is then

N" = (Pu+FuN/NI) x (Pv+Fv NN)

= (Pu x Pv) +Fu (N x Pv)/INI
+Fv (PuxN)/INI + Fu Fv (NxN)/IN]

The first termof this is, by definition, N. The
last term is identically zero. The net expression
for the perturbed norma vector is then

N' =N+
where D = (Fu (Nx Pv) - Fv (N x Bu) ) / NI

This can be interpreted geometrically by observing
that (Nx Pv) and (Nx Pu are two vectors in the
tangent plane to the surface. An amount of esch
of them proportional to the u and v derivatives of
F are added to the original, unperturbed normal
vector. See figure 3

Figure 3 - Perturbed Normal Vector

Anot her geometric interpretationis that the
vector N cones fromrotating the original vector
N about sone axis in the tangent plane to the

surface. This axis vector can be found as the
cross product of N and N .



Nx® =Nx (f4D) =N x B

_Fu (Nx (8 x Pv)) - Fv (N x (N x Bu))

INT
I nvoki ng the vector identity x(RxS) = R(QS) -
S(QR) and the fact that NPu= NPv =0this axis
of rotation reduces to
NXKN = IN(Fv Pu - FuPv) = INA

This vector, A, is just the perpendicular to the
gradi ent vector of F, (Fu,Fv)when expressedin
the tangent plane coordinate system with basis
vectors Pu and Pv. Thus the perturbed nornal
vector will be tipped "downhill" from the slope
due to F. Note that, since NxD=|N| A and since
N is perpendicular to D then

INxD| = IN| DI

DI = |A\

Next, since the vectors N, Dand N' form a
right triangle, the effective angle of rotation is

tan®= IDI/INI
this is illustrated in figure 4.

Figure 4 - Rotated Norma Vector

In summary, we can now calculate the
perturbed normal vector, N, at any desired u and
v paranmeter value. This vector nust still be
scaled to alength of 1 by dividing by its length.
The result is then passed to the intensity
lt\:lal culationroutines in placeof the actual nornal

3. TEXTURE FUNCTI ON DEFI NI TI ON

The formulation of the perturbed nornal
vector is in ternms of the positionfunctions X Y,
and Z and the bunp di spl acement function F. To
perform calculations we only need a neans of
eval uating the u and v derivatives of F(u,v) at
any requiredparaneter value. In this sectionwe
di scuss sone ways that such functions have been
defined, means of evaluatingthemand show some
resul tant pictures.

The function F coul d, of course, be defined
analytically as a bivariate polynomal or
bivariate Fourier series. Inorder to generate a
functionwith a sufficient anbunt of complexity to
be interesting, however, an excessive nunber of
coefficients are required. A rmuch sinpler way to
define conplex functions is by a table |ookup.
Since F has two paraneters, this table takes the
formof a doubly indexed array of values of F at
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various fractional paraneter val ues.
is 64 by 64 elements and the paraneters are
between 0 and 1 a sinple neans of evaluating F
(using Fortran style indexing) at u and v woul d be

| f the array

FUNCTI ONFVAL( U, V)
U = | FI X(64*U)
IV = | FI X(64*V)
FVAL = FARRAY(1 U+1, | V+1)

(Vewi Il duscuss the probl emof overflow of the
i ndi ces shortly). This will yield a functionmade
of a checkerboardof constant val ued squares 1/64
on a side. A smoother functioncan be obtained by
i nterpol atingval ues between table entries. The
sinplest interpolation technique is bilinear
interpolation. Such an algorithmwould | ook |ike

FUNCTION FVAL(U,V)
IU=IFIX(64*U)

DU=64*U - IU

IV=IFIX(64*V)

DV=64* - IV

FO00 = FARRAY (IU+],IV+1)
F10 = FARRAY (IU+2,1IV+1)
FO01 = FARRAY (IU+], IV+2)
F1ll = FARRAY (I1U+2,1IV+2)
FUO = FOO + DU*(F10-F00)
FUl = FO1 + DU*(F11-FO1)
FVAL= FUQ + DV*(FU1-FUO)

This yields a function which is continuous in
val ue but discontinuousin derivative. Since the
function F appears in the calculation only in
terms of its derivative we should use a higher
order interpolationschene which is continuous in
derivative. Oherwi sethe lines between function
sanpl es may showup as creases in the surface.

Third or der i nterpolation schenes  (e.qg.

B-splines) are the standard solution to such a
situation, but their generality is not really
needed here. A cheaper, continuous interpolation
schenme for derivatives consists of differencing
the (bilinearlyinterpolated) function along the
parametric directions. The increment between
whi ch di fferencingoccurs is the di stance between
function sanpl e val ues. The function generated by
this interpolation schene has continuity of

derivative but not of value. The values of Fare

not used anyway. Thus

E = 1/64.
FU=  (FVAL(U+E, V)-FVAL(U-E V)) /

(2*E)
FV = (FVAL(U, V+E) - FVAL(U, V-E)) /

(2*E)

This is the formused i n the pictures shown here.
It is about as sinple as can be obtained and has
proven to be quite adequate.

In the above exanples, the integer part of
the scaled up paraneter val ues were used directly
as indices into the F array. In practive, one
shoul d protect against array overflowoccurring
when the paraneter happens to be slightly less
than O or greater than 1. In fact, for the
bilinear interpolationcase, all parameter values
bet ween 63/64 and 1 will attenpt to interpolateto
atable entry at index 65. The question of what
is the function value at paranetersoutside the
range of the table can be answered in a variety of
ways. A sinple nmethod isto make the function
periodic, with the table defining one period.



This is easily acconplished by masking off all but
the low 6 bits of the IU and IV values. This also
makes it easy to have'the table represent a unit
cell pattern to be replicated many times per
patch.  The function values U and V are nmerely
scaled up by the replication count before being
passed to FVAL.

Now that we know what to do with the table
entries we turn to the question of how to generate
themin the first place. Some sinple geometric
patterns can be generated aldgorithrrically. One
such is a gridwork of high and |w val ues. The

table entries of the F function for such a grid
are shown plotted as a 3D line drawing in figure
5  The result when mapped onto a flat patch with
one corner bent back is also shown.

Figure 5 - Sinple Gid Pattern

Enbossed letters can be generated by using a
bit-map character set as used to'display text on a
raster scan display. Such a texture array aEpears
in figure 6. This pattern was used to make the
title on the ribbon on the logo of the cover of
these proceedings.

- Enbossed Letter Pattern

Another nethod of generating bump functions
derives from imge synthesis algorithms which use
Z-buffers or depth buffers to perform the hidden
surface conparisons [5]. The actual Z values left
in the depth buffer  after running such an
algorithm can be used to define the table entries
for a bunp function. In figure 7 an imge of a
SEhere was generated usi n?_such an algorithm and
the resultant Z-buffer replicated several times to
generate the rivet-like pattern. This is the
pattern mapped onto the cube on the cover |Iogo.
Simlarly, a 3D character set was used with a
Z-buffer algorithmto generate the pattern show ng
the date also in figure 7. This was used on the
ribbon on the cover.

Figure 7 -

Z-Buffer Patterns

The nmost general nmethod of generating bunp
functions relies on video frame buffer technol ogy
and its standard tool, the painting ?rogram
Briefly, a frame buffer is a large digital nenory
with one word per picture elenent of an image. A
video signal i's continually synthesized fran this
nmenory so that the screen displays an inmage of
what is in memory. A painting program utilizes a
digitizing tablet” to control the alferation of the
values in the nmemory to achieve the effect of
painting on the screen. By utilizing a region of
the frame buffer as the defining table of the F
function, a user can actually paint in the
function values. The interpretation of the image
will be such that black areas produce small val ues
of F and white areas produce large values. Since
only the derivatives of F are used in the nornal
vector  perturbation, any area of constant
intensity will look smooth on the final image.
However, places where the imge becones darker
will appear as dents and places where it becones
brighter will appear as  bunps. (This
correspondance will be reversed if the base patch
is rotated to view the back side). The generation
of interesting patterns which fit ~ together
end-to-end to forma continuous join between
pat ches then becomes primarily an artistic effort
on the part of the drawer. Figure 8 shows some
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sample results that can be achieved with this
technique. The first pattern, a hand drawn unit

cell of bricks was mapped onto the sphere on the
cover.

Figure A- Hand Drawn Bump Funtions
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4. DEPENDANCE ON SCALE

One feature of the perturbation calculation
is that the perturbation amount is not invariant
with the scale at which the object is drawn. I f
the X Y, and Z surface definiton functions are
scaled up by 2 then the normal vector length, IN[,

scaled up by a factor of 4 while the
perturbation ampunt, DI, is only scaled by 2.
This effect is due to the fact that the object is
being scaled but the displacement function F is
not. (Scale changes due to the object noving
nearer or farther fromthe viewer N perspective
space do not affect the size of the winkles, only
scal e shanges applied directly to the object.) The
net effect of this is that if an object is scaled

up, the winkles flatten out. This is illustrated
in figure 9

A sy

stretched

v

norma |

Figure 9 - Stretched Bunp Texture

~This effect might be desirable for sone
applications but undesirable for others. A scale

invariant perturbation, D, nust scale at the sane
rate as N An obvious choice for this is

D = a oINl/ID]
so ip'l=a [Nl
where a is independent of scales in P. The value

of |a is then the tangent of the effective rotation
angle.

tans' = [D'|/IN] = a

One
from the sinple,

This can be defined in various ways.
choice is a generalization
unit square patch

sinple
flat

X u,v; = u
Yuv) =v
Z(uv) =0
For this patch the original normal  vector
perturbation gives
N = (0,0,1)
D = (-Fu,-Fv,0)

tan® = sqrt(Fu’+Fv?)

Here the value of a is purely a function of F.

Use of the same function for arbitrary patches
corresponds to a perturbation of

a = sgrt (Fu*+Fv?)

D'=a b IN|/IDI

N'=N +D

The texture defining function F is now no |onger
being used as an actual displacenent added to the
position of the surface. It just serves to
provide (in the formif its derivatives) a means
of defining the rotation axis and angle as
functions of u and v.

5.  ALIASING

In an earlier paper 121, the author described
the effect of aliasing on inmages made with color
texture mapping. The sane problens can arise with
this new form  That is, undesirable artifacts can
enter the image in regions where the texture
pattern maps into a snall screen region. The
solution applied to color textures was to average
the texture pattern over the region corresponding
to each picture element in the final imge. The
bunp texture definition function, however, does
not have a linear relationship to the intensity of

the final image. |f the bunp texture is averaged
the effect will be to snooth out the bunps rather
than average the intensities, The correct

solution to this problem would be to compute the
intensities at some hifg_h sub-pi xel resolution and
[

average them Sinply filtering the bump function
can, however, reduce the nore offensive artifacts
of* aliasfng. Figure 10 shows the result of such

an operation.

Before

i

Figure 10 -
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After

Filtering Bunp Texture



6. RESULTS

Surfaces appearing in images nmade with this
technique look quite convincingly winkled. An
especially nice effect is the interaction of the

bumps W th  calculated highlights. W nust
realize, however, that the winkles are purely
illusory. They only come from some playing with

the parameters used in intensitk/ cal cul ati ons.
The do not, for exanple, alter the smooth
sil%quette edges of the object. A useful test of
any image generation algorithmis to see how well
the objects [ook as they nove in animtion

sequences. Sane sanple frames from such _an
animtion sequence appear 1In figure 11. The
illusion of wrinkles continues to be convincing

and the snoothness of the silhouette edges is not
overly bot hersone.

Sonme sinple timng measurenents indicate that
bunp mapping takes about 4 times as long as Phong
shading and about 2 tines as long as color texture
mapping.  The pictures in this paper took from 3
to 7 mnutes each to produce.

The author would like to thank Lance WIIians
and the New York Institute of Technol ogy Conputer

Graphics Laboratory for providing some of the
artwork and assistance In preparing the lTogo on
the cover made with the techniques described in

this paper.

Figure 11 -
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