
A HIDDEN-SURFACE AIC43RITHM WITH ANTI-ALIASING

Edwin Catmull
C~mputer Graphics Lab

New York Institute of Technology
Old Westbury, New York 11568

ABSTRACT

In recent years we have gained understanding about
aliasing in computer generated pictures and about
methods for reducing the symptoms of aliasing. The
chief symptoms are staircasing along edges and ob-
jects that pop on and off in time. The method for
reducing these symptoms is to filter the image be-
fore sampling at the display resolution. One
filter that is easy to understand and that works
quite effectively is equivalent to integrating the
visible intensities over the area that the pixel
covers. There have been several implementations of
this method - mostly unpublished - however most al-
gorithms break downwhen the data for the pixel is
cc~plicated. Unfortunately, as the quality of
displays and the complexity of pictures increase,
the small errors that can occur in a single pixel
become quite noticeable. A correct solution for
this filter requires a hidden-surface algori~ at
each pixel! If the data at the pixel is presented
as a depth-ordered list of polygons then the aver-
age visible intensity can be found using a polygon
clipper in a way similar to that employed by two
known hidden-surface algorithms. All of the po-
lygons in a pixel are clipped against some front
unclipped edge into two lists of polygons. The al-
gorithm is recursively entered with each new list
and halts when the front polygon is clipped on all
sides, thereby obscuring the polygonsbehind. The
area weighted colors are then returned as the value
to be added to the other pieces in the piyel.

Key words: aliasing, clipping, computer graphics,
filtering, hidden-surface removal, sampling.

CR classification: 8.2

INTRODUCTION

Aliasing is now being recognized as an impor-
tant factor in analysis of image synthesizing algo-
rithms. Attention has turned to anti-aliasing
partly because of the need to refine pictures but
mostly because the complexity of scenes has in-
creased and with it the need to have pictures free
of aliasing symptoms.

A polygon hidden-surface algorithm is presented
here with the focus of attention on anti-aliasing.
One goal has been to produce a "correct" image for
the anti-aliasing technique used. Speed, while im-
portant, has played a secondary role.

The techniques for hidden-surface elimination
have improved in the last few years with the Suth-
erland et al [7] paper providing coherence to the
development. Several new algorithms have come
along [3,8,9], each adding new insight into the
ways that we can take advantage of coherence for
some class of objects to facilitate display.

Progress for anti-aliasing has been slower. In
general pictures have not been extremely complicat-
ed and the more obvious effects of aliasing, like
jagged edges, could be fixed up with ad hoc tech-
niques. Methods for anti-aliasing have been
presented in [1,2,4]. Frank Crow's dissertation
was devoted to the topic and the results were pub-
lished in [2].

ANTI-ALIASING

In general, the aliasing problem has been
grossly underestimated in computer graphics. Its
symptoms include:

i. jagged edges
2. small objects popping on and off the screen in

successive frames
3. moire patterns in rendering periodic images
4. fine detail breaking up.

The problem occurs chiefly because image space is
sampled at discrete points corresponding to the
pixels.

There are several unpublished schemes for al-
leviating the problem for simple cases - in partic-
ular the symptom of jagged edges. They are unpub-
lished because either they are incidental to some
other algorithm or they are proprietary.

Frank Crow has written about anti-aliasing in
[2]. From his study we can extract some key ideas:

i. The image space objects have sharpness and de-
tail that cannot possibly be reproduced on a
raster display. It is the attempt to sample
that detail at discrete points in the image
that causes the problem.

2. Point sanpling of an unfiltered object is never
correct at any resolution. It is frequently
thought that the symptoms of aliasing will not
be noticeable if the resolution is high
enough. Unfortunately, this is not true.

3. The image should be filtered to eliminate detail
that is too fine. After filtering the image
can be sampled.

One simple filter is to integrate the visible
intensities over the area of each pixel. In other
words we take the average visible intensity over
the square area represented by each pixel if the
image is divided into a rectangular grid. This
corresponds to convolving the continuous image with
a two-dimensional Fourier (box) window. While
there are better filters, this one is easy to
understand and easier to implement analytically
than other filters. The use of this filter will be
called "area sampling."

The difference between point sampling and area
sampling is qualitative while the difference
between area sampling and better filters is quanti-
tative. The s~n of all intensities for a point
sampled picture will vary as the object is
translated, ie. for a fine picket fence the picture
can be all white in one picture and all black in
the next. The s~n of all intensities for an area
sampled picture will be constant under translation
because area sampling integrates all the intensi-
ties. The difference between area sampling and
better filters is quantitative since most reason-
able filters would also integrate the intensities.
The difference between filtered pictures is lowered
as the resolution is increased since the sum of in-
tensities in a local area will be the same or near-
ly so. We cannot say this when comparing point
sampling with sampling of filtered images at high
resolution. A line that is much thinner than a
pixel will appear dotted using point sampling and
jagged using area sampling. As the resolution is
increased, point sampling will still produce dots
but area sampling will produce a nice line.

In order to truly filter the image before sam-
pling, an analytic continuous solution to both the
hidden-surface problem and the filter convolution
must be found. The magnitude of this problem grows
dranatically with the order of the filter employed.
There are several approaches or simplifications
that one might take to implement filtering. This
paper presents an approach that uses an analytic
solution for area sampling.

The problem then is to correctly integrate the
intensities of all visible objects at a single pix-
el. This seems to require some kind of hidden-
surface algorithm at every pixel!

As an exanple where some algorithms might fail
see figure i.

top view

green

• . blue

black

'l 1
S iblack , /

~ i

,

j I

Figure 1

The correct integration would be 25% green, 25%
black, 50% blue and no red. A simple minded algo-
rithm that did not properly take into account what
was hidden might distribute the intensities in-
correctly and may even let some red show through.
Unfortunately for computer graphics our eyes are
quite capable of seeing errors like these even
though they maybe only one millionth of the area
of the screen.

AN AIC43RITHM WITH ANTI-ALIASING

In terms of the Sutherland et al criteria the
algorithm presented here:

i. sorts all polygons in y.

2. sorts all active polygons for a scanline with an
x-bucketsort.

3. sorts in z by searching a z-list for each enter-
ing edge.

4. does not use scanline-to-scanline coherence be-
cause an x-bucket is used.

5. Uses point-to-point coherence since order in the
z-list does not change.

While this order of techniques probably has not
been used before, it is not new in any spectacular
way. However, care has been taken to ensure that
everything necessary for anti-aliasing is available
and to a much higher precision than the display.

The last step is to determine the intensity at
the pixel given the z-list. An integrating algo-
rithm is presented here that determines which
pieces of polygons in the pixel are visible and
then analytically calculates the average intensity.

Finding which pieces of polygons in the pixel
are visible is not unlike the original hidden-
surface problem except that we have two simplifica-
tions: i) we are only interested in the stun of the
intensities of each piece weighted by its area and
2) the higher level hidden-surface algorithm may
have already determined the order of the polygons.

CLIPPING

Clipping is an important part of the algorit/ml.
The clipping algorithm used was originally intro-
duced in [6]. A variation is presented here for
completeness.

When a polygon is clipped against a line it is
divided into two polygons. See figure 2.

After clipping

; cl ipl ine

Figure 2

We can determine if a point is on side A or side B
by inserting the coordinates of the point into the
equation of the line:

d = ax + by + c.

If d is less than zero then the point is on side A,
otherwise it is on side B. We are going to gen-
erate an A and a B polygon.

The Clipping Algorithm

I. A polygon is a list of points PI, P2,...Pn.

II. Call Pn the previous point. Determine which
side it is on.

current III. Loop through each point, called the
point.

A. If current point on A side then:

I. If previous point on A side then:

Copy current point to A polygon.

2. If previous point on B side then:

Calculate intersection of line with
edge formed from current point and
previous point.

Copy calculated point to A and B po-
lygons.

Copy current point to A polygon.

B. If current point on B side then:

i. If previous point on B side then:

Copy current point to B polygon.

2. If previous point on A side then:

Calculate intersection of line with
edge formed from current point and
previous point.

Copy calculated point to A and B po-
lygons.

Copy current point to B polygon.

C. Call the current point the previous point.

FINDING VISIBLE SURFACES

The image space polygons handled by this algo-
rithm are of the following form:

i. There is a list of vertices on the left and the
right.

2. The first vertex of each list is the highest in
Y.

3. Each succeeding vertex is lower in y than the
preceding one.

4. The edge formed by the left vertices does not
cross the edge of the right.

This form of polygon definition (see figure 3) is
optimized for polygons with large numbers of edges.
See figure 8 where the colored areas and the black

line are both specified with polygons.
lines are long thin polygons.

left
i ist

t

Figure 3

The black

All other polygons in various stages of the al-
gorithm are in the more conventional form of a list
of vertices. It is ass~ed that an edge connects
the first and last vertex. This form is necessary
for the clipping algorithm presented above.

The purpose of the first level of the algorit|~n
is to find all polygons that overlap a particular
scanline and then to clip away everything that
doesn't overlap it. Since the scanline has the
width of one pixel we are left with a list of very
narrow horizontal polygons.

The next step is to find which of those narrow
polygons on the scanline overlap a particular pixel
and then clip away those not over the pixel. If
the closest polygon completely covers the pixel
then its intensity value can be put into an array
for the scanline, otherwise the list of polygons
needs to be passed to the integrater.

Of course one objective is to do the above very
quickly. To do so requires that we take advantage
of coherence and sorting techniques to quickly
reduce the n~nber of items for consideration at
each step.

The algorithm proceeds sequentially to each
scanline beginning at the highest. At each scan-
line there is a list of active polygons that over-
lap that scanline. Note that a scanline is really
a strip with width. At each scanline a horizontal
strip is clipped off of each active polygon leaving
only that port of the polygon which lies below the
scanline. (See figure 4.)

~-hor izontal polyqon

 roainin
polygon

Figure 4

scan-
i ine

Similarly at each pixel, the horizontal strip is
clipped at the right edge of the pixel to determine
the polygons within the square pixel area.

For efficiency it is worth noting that the mid-
dle of most horizontal polygons completely covers
the respective pixels. It would be wasteful to
clip at each pixel in that case. We treat the mid-
dle as a solid run or segment and only need to
count the pixels that it covers (see figure 5).
The ends can be clipped off at the boundary of a
solid segment and treated as indicated above. '

The depth ordering is maintained with a sorted
z-list. The first item in the list is the closest.
When a new edge is encountered in the x-bucket it
is entered into the z-list in order. If intersec-
tions are allowed, each item in the z-list must be
checked against the incoming item over its full ex-
tent to check for possible intersection which would
require splitting a polygon.

The Hidden-surface Al~orithm

I. Sort all polygons on highest y value.
II. Initialize active polygon list to be empty.
III. Repeat for each scanline:

A. Add polygons from y-list that enter
this scanline to active polygon list.

B. Initialize the x-bucket to be empty
the scanline array to background.

C. Loop through each polygon in active
lygon list
i. Clip off of each polygon the piece

that lies on the current scanline.
See figure 5.

2. Replace polygon in list with polygon
that has piece clipped off.

3. If there are pixels under the piece
that are completely covered, then for
efficiency reasons we can break the
piece into three pieces: the center
solid piece and two polygons clipped
off at the ends at the pixel boun-
daries. The two end polygons are
called irregular pieces.

4. The pieces are sorted into the x-
bucket according to the leftmost pixel
covered.

D. Initialize the z-list to be empty.
E. Repeat for each pixel across the scanline:

i. Sort every entry at the current x po-
sition of the x-bucket into the z-
list.

2. Evaluate the z-list if not empty:
a. If a solid piece, get its color

else if an irregular piece is in
front of a solid piece then find
the area of the irregular piece
over the pixel to weight the two
colors

else call the pixel integrater to get
color

b. Write the color into scanline array.

on

and

po-

THE PIXEL INTEGRATER

Given a list of polygons in the z-list, it is
necessary to find the area of each visible polygon
piece in order to determine its contribution to the
pixel intensity. The polygons in the z-list are in
sorted z-order with the first polygon being the
closest.

One of the key ideas of this algorithm is that
the list of polygons can be divided into two lists

with an edge of a polygon being used as the divid-
ing line. A generalization of this idea based on
using planes for dividing polygon lists is due to
Ivan Sutherland [5] and in fact is part of a com-
plete hidden-surface algorithm that he invented.
This technique was used in another hidden-surface
algorithm subsequently developed at Cornell[9].

Since the polygons are already in sorted order,
we pick an edge of the first polygon to use as the
dividing line. If this algorithm is recursively
applied to both of the resulting lists of polygons
then very shortly the front polygon of a list will
cover all polygons behind it since everything else
will have been clipped away. The area of the front
polygon can then be found to weight the intensity.
The sum of the weighted intensities from all the
lists gives the final average intensity.

irregular middle irregular
piece piece piece

points ~ pol~:: 1

Figure 5

For this algorithm we make the following obser-
vations:

i. Since z order is implied in the list, there is
no need for any z calculations. We may there-
fore think of the polygons as two-dimensional;
they will be clil~ped against a line and not a
vertical plane.

2. A pixel pol~gon for this algorithm is a list of
vertices with implied connection of the first
and last vertices.

3. A vertex consists of x, y, and clipflag, where
clipflag is used to indicate whether or not the
edge connecting that vertex and the next one has
been clipped.

4. A pixel polygon that completely covers a pixel
will be called a "solid polygon."

To

i.

2.

3.

prepare the z-list for the algorithm:

Each polygon will be transferred to a pixel po-
lygon list in order until a solid polygon is
reached. If there is no solid polygon, a d~may
solid polygon is added with the background as
its color.

All polygons are clipped to the pixel boun-
daries.

All edges that lie concurrent with the pixel
boundaries are marked as clipped, ie. the last
polygon should cover the pixel and all four
edges are marked as clipped.

The Basic AlgoritTm for Integratin~

i. Consider the first polygon in the list (which is
also the closest).

2. Look for the first unclipped edge.
If there is no unclipped edge or there is only
one polygon in the list then return the color of
the polygon weighted by its area.

3. Clip all polygons in the list against the edge
and put them in two lists, one for each side of
the edge.
Set clipflag for each edge that lies along the
clipping line as it is clipped.

4. Reenter this algorithm for each of the two
lists.

5. C/]nbine and return the two results.

IMPLEMENTATION

The hidden-surface algorithm and pixel in-
tegrater were implemented by the author at the Com-
puter Graphics Iab at the New York Institute of
Technology. The polygons to be rendered were flat
colored with many edges to satisfy the needs of
cartoon animation. These pictures are character-
ized by a large nt~nber of pixels that have more
than two polygons. See figure 6. The hashed po-
lygon C covers the boundary between polygons A and
B. The pixel pointed at by P has four polygons in
it, three of which are visible.

/

Boundary between
/~f'polygonsB A and B

/ j

J

I

~7~thin polygon

~,pixel

~thin polygon which
covers boundary

Figure 6

The ability to call the pixel integrater is
under user control. The user can request jagged
edges with the result that the progrem runs approx-
imately three times faster for complicated pic-
tures. Full anti-aliasing is only required for
quality recording. Figure 7 shows a picture with
aliasing.

We have been able to use and evaluate the algo-
rithm. See figure 8,9, and I0 which were made at
512x512 resolution with 8 bits each for red, green
and blue. Movies generated using this algorithm
have not shown any aliasing symptoms for the class
of images created. This has made the effort
worthwhile.

ACKNOWLEDGMENT

The Computer Graphics Lab was conceived and spon-
sored by Dr. Alexander Schure, President of New
York Institute of Technology. Lance Williams pro-
vided critical reading of the first draft.

REFERENCES

I. Catmull, Edwin, A subdivision algorithm for
computer display of curved surfaces, Technical
report UTEC-CSs-74-133 University of Utah,
1974

2. Crow, Frank, The aliasing problem in Computer-
generated~haded images, CACM November 1977

3. Myers, Allan J., An efficient visible surface
program, Ohio State University, Computer
Graphics Research Group, report to NSF, July
1975

4. Shoup, R.G., Some quantization effects in
digitally-generated pictures, Society for In-
formation Display, 1973 proceedings.

5. Sutherland, I.E., Polygon sorting by subdivi-
sion: A solution to the hidden-surface prob-
lem, Unpublished manuscript, October 1973,
Also public lecture at University of Utah
1973.

6. Sutherland, I.E., and Hodgman, G.W., Reentrant
polygon clipping, CACM January 1974.

7. Sutherland, I.E., Sproull, R.F., and SchLm~acker,
R.A., A characterization of ten hidden-surface
algorithms, ACM Computing Surveys, March 1974.

8. H~nlin, Griffith Jr., and Gear, C.W., Raster-
scan hidden surface algorithm techniques, Sig-
graph 1977 proceedings.

9. Weiler, K. and Atherton, P., Hidden surface re-
moval using polygon area sorting, Siggraph
1977 proceedings.

I0

figure 7 figure 8

figure 9 figure i0

ii

