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ABSTRACT

This thesis presents a method for producing computer shaded pictures of curved
surfaces. Three-dimensional curved patches are used, as contrastad with conventional
methods using polygons, The method subdivides a patch .nto successivety} smaller
subpatches until a subpatch is as small as a raster-element, at ‘which time it can bé
displaycd. In general this mothod could be very time consuming because of the great
number of subdivisions that must take place; however, there is ;’ least one very useful
claze of patches -- the bicubic patch -- that can be subdivided very uickly. Pictures
produced with the méthod accurately poriray the shading and silhouetie of curved
surfaces. In addition, photographs can be "mappsd” onto patches thus providing a

means for putting texture on computer-generated pictures.



CHAPTER ONC

INTRODUCTIN

A method for creating shaded picturss of curved surfaces is presented in this
thesis. A motivation for the method is that we wish to produce nigh ~uality
computer-generated images of surfaces and curved solid objects on a rasier-scan
output device. We would not only like the images to accurately represent the surfaces
we choose but In addition we would like control over shading and texture. There has
already been signifi;ant research directed toward these ends, especially on the
hidden-surface [1,2] and shading [3,4] aspects of the problem. All such methods must

rust address the questions of how to mode! objects and then how to render them.

Poiygons, and snmetimes quadric patches, are used to 'mcda! objects in current
shaded-picture methods . There are some difficullies with using these simple pisces to
model or approximate free-form curved surfaces. Approximation with polygons gives
a faceiec cifect and 2 sithouette made up of straight-line segments. Quadric patches
[5,6), while smooth in appesrance, are not suitable for modelling arbitrary forms, since
thoy don't provide enough degrees of freedom ‘o satisfy slope continuity between

patches,

There are two significant methods used for reducing or eliminating i+ undesirable
visual effects that occur when polygons are uzed to approximate curved surfaces. The

first method for getling rid of the faceted efieci is that ¢ Henri Gouraud [3} With



tﬁis method a scalar light intensity value is associaled with each vertex of a polygon.
Gouraud ¢es linear interpolation of the intensity value betwgen vertices and then
subsequently acrocs scan-lines. If adjoining polygons have the same intensities at the
common vertices then this method yields continuous shading across the surface;
howaver, the first derivative of the shading is discontinuous. Gouraud’s method has
been implemented by different groups making shaded-pictures. It is « simple and
successful method but has a few shortcomings: the discontinuity of the derivative is
noticable (the "Mach band effect”), it is ditficult to do highlights, the shading is affected
by the orientalion of the polygen in the picture, and the silhouelte is still made up of

straight-line segments.

The second method deveioi:ed to improve the appearance of the polygon
approximation is that 6f Phong [4). Since current me heds of generating intensities for
polygon surfaces include calculating a surface noriral - the vertices,'}"hong decided to
interpolate the entire surface normal vector between vertices and edges instead of ths
scalar intensity values that Gouraud used. This yields 2 normal at every display point
which can be uced to calculate the intensity. Although this normal may not be the
mathematically correct one, it is close encugh to .se for iniensity and highlight
calculations. As Phong has noted, although there is st.: 4 discontinuity in the first
derivative of the shading, the disconunuity is s.ialler than for Gouraud’s method and
hence iess noticeabls. Phong’s method has been used to make some visually attractive

photographs, but the problem of straight-line segments at the silhouette still remains.

Curved surface segments or “palches” can be ue~d inztead of polygons to model

free-form curved surfaces. If such patches can .- joined together with slope



continuity across the boundaries then a picture of a surface can 5: made to appear
"smooth® both in shading and at the silhouette. For patches to be useful in modelling a
curved surface, techniques must be found ¢or dnscribing and manipulaling the patches
and for connacting them togeiner with siope continuity across boundaries. One such
patch is the bicubic patch, which is widely used (see Appendix A). Most of the idea; in
this thesis will be applied to the bicubic patch, but this is not intended to imply a

limitauon on generality.

Generating pictures of curved patches requires techniques for
1) establishing a correspondence between points on the surface and the elements of
the display rasier,

2) removing hidden or, more generally, the "not seen” parts cf patches, and

3) calculating light intensities to be displayed on the raster.
Chapter two wili deal with the first item: it will present a technique for estauiishing the
correspordence between points on the surface and the raster elements, Chapters
three and four will describe a specific method for quickly making the correspondence
when bicubic patches are used. Chapler five * Il deal with item two: it will discuss the
"hidden-suriace™ problem for patches. Item three -~ calculating light intensities -~ will

ba diccussed in chapters six and sevan,



CHAPTER TWO

A GENERAL ALGORITHM FOR DISPLAYING CURVED PATCHES

An algorithm for establishing a corresponcencs between points on a patch and
raster elements is described in this chapter. It applies to patches and surface sesctions
in general, hence the algerithm presenied will not be specific at the outset. Later on,
when a specific kind of patch is used, more detail will be given. Before presenting

that algorithm, however, some terms must be defined.

DEFINITIONS

A "raster~scan Jevice™ or “raster-display” is the device that we will consider for
finol output of an imago. The rectangular array of “dots" that is produced .on &
raster-display is called ths ‘“raster." Each dot will usually be culled a
"raster-eiement.” The raster element covers a very small area of the raster; however,
It should not be thought of as a point. A row of raster-elemants is a "scan-jine.”
Scan-lines are usually produced in sequential order, termed "scan-line-orJer.” Each
raster-element has a brightness that is determined by the intensity value for ‘hat
raster-element. The process of taking the int.ensity values and putting the dots on the

raster with the corresponding intensities is called “displaying.” .
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A “frame-buffer” is a memory large enough to store all of the intensity values
prior to displaying. An intensity value in the frame-buffer can be addressed in a way
that correspends to the position where the value will be displayed on the raster.
Locations 1n the frame-buffer will also be called "raster-elements™ since there is a
strong one-to-one correspondence between thoss locations and the geometric
locations of ihe raster-elements and because the distinction between the two is not
important here. For our purposes, the frame-buffer is made with random-access
memory so that values can be writtsn into it in any order, as opposed to scan-line
crder only., The size of the frame-buffer is determined by the resolution of the
réster—-dis;aiay and the number of "bits* used to store intensity values. For examp!'s, it
the raster has 512 scgn-lines and 512 rastar-elements per line and each element has 8
bits for the intensity value, then the frame-buffer requires a storage capacity of
512x512x8 bits. For the most part we will ignora the raster-display and address
ourselves to the issue of putting ths right intensity values in the rastei-clemants of

the frame-huffer.

The terms relating the original description of an object to its image will now be
defined. “Object-space” is the throe-dimensional space in which objects will ordinarily
be described. In order to generale realistic pictures of objects we make a perspeclive
transformation [1,7,8] of the object from object-space to “image-space.” Image-space
is also three-dimensional but the objects have undergone a perspective distortion so
that an orthogonal projection of the object onto the x-y plane would result in the
expected perspective image. We want the image-space io be three-—&imensional in

order to preserve depth information whicn will iester be used to solve the



Y Threo-dimensional
object l’

! 1@ 7 Perspective

transformation

> \ Projected image
eyo X

Ortliogonal projection

Obicct—sgace

Three-dimensional
image-space cbject

L

Intensity
values

~ €~ Raster-element
squares

lmage-—sgace

Sample-points
e a s ..

Intensity B
values wois or

- raster-clemente

R Raster-

4 elements
Frame-buffer

Raster-disglax

Figure 2~1



hidden-surface problem. The orthogona' projection of the image-space object onto
the x-y plane is called the "projected image.” That part of the x-y plane which will be

associated with the raster is called the “screen.”

We must define the relationship between ‘he image-space and the raster in order
to transfer information from the projected image to the raster. Reca'l that the scresn
is the portion of ths x-y plane of the image-space that corresponds to the raster. The
area of the screen is divided into small squares called "raster-eiement squares.” There
is, of course, a one-to-one correspondznce between rasier-eiement squarec and rastor .
eloments. The center of each raster-element zquare will be called a “sample-point.”
A diagram depicting the relationships of the above terms is shown in figure 2-1.

THE SUBDIVISION ALGORITHM

The algorithm for establishing the correspondence between a patch and the
raster-elements will now be pressnizd.  The algorithm, hereafier called .the
"subdivision algorithm,” works for either palches or segments of patches, called
"subpatches." Figure 2-2 iliustrates a portion of the screen where the dots represent
the sample-points. (The outlines of the raster-element squares are not shown.) The
curved lines represent the edges of a projected patch. Even though only the
projection is shown, we assume that snough information about the patch is maintained

so that the light intensity for any location on the patch can be calculated.

A staiement of ihe aigorithm is:

I the patch (subpatch) is smal! sncugh so that its projection covers only



one sample-point, then compute the intensity of the patch and writs it

into the corresponding elemant of the frame-buffer; otherwise, subdivide

the patch inte smaller subpatches; and repeat the process for each

subpatch.
Figure 2-3 shows a pateh subdivided into four subpatches where 'ﬁost of the
subpatches still cover more than one sample-point. In figure 2-4 the subpatches that
are loo large are again subdivided. Subdivision continues until no subpalch covers

more than one sample-point.

Readers familiar with other computer-ge..iated :shadzd-picture aftorts will
recognize a similarity between the method presented here and Warnock’s hidden
surface algerithm [9] Warnock solved the hiddan surface probler for polygons by
recursively subdividing the screen space into successively smaller sections until al!
questions about the ordering of polygons left in & section were easy to answer.
Warnock's algorithm ditfers from the one pre;ented here in that the former subdivides

the screen, while the latter subdivides the surface being rendered.

The paten subdivision algorithm as stated i very simple but some questions
remain: How is the subdivision process terminated? What if a palth covers no
sample-points? What if part of the patch intersects the edge of the screen or is
behind the eye? How many times must a patch be subdivided? Finally, what kinds of
problems does the discrete sampling introcuce? Each of thesa issues will be discussed

in turn,
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TERMINATION

The decision as to whether c¢r not a subpatch should be subdivided is based on
termination conditions. Two termination conditions will be discussed -- size and
clipping. For the purposc of this discussion we note that the iterms “patch™ and

"subpatch” can be used interchangeably, hence we will usually use the word “patch,”

As specified in the elgorithm, subdivision terminates when a patch covers only one

sample-point. Since the edges of a patch are curved, the test as to whether or not a

Sample-
polnt

Approximating
polygon

Figure 2.8

patch covers only one sample-point may be time consuming. However, for the purpose
of this test, a patch can be appreximated by a polygon tormed by cennecting the four
cornars of the patch with straight line ségmants. The size of that polygon can tﬁen be
checked tc determine whether or not it covers at most one sample-point. This

approximation shou'd usually be adequate for patches that are approaching the size of
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the raster-eiements. It may not be adequate if the patch is very curved (see figure
2-5). If this case can be detected because of special characteristics ¢f the patch
geometry, :hen the patch can be subdivided again. If it cannot be delected then a

local error may oceur.

CLIPPING

A second termination condition might be a check tc see if the patch is on the
screen. |f part ot the prejcction of a pateh in imaée-snace onto the x-y plane lies: off
the screen or the patch is behind the eye then that pzrt of the projection should not
be displayed. The process of eliminating the portion of the projection that should not
be on the screen is called clipping(7,8] A clipping termination condition requires that
there he come mnthad far determining if a patch is totally on or totally off the screen.
If the patch is totally on the screen then subdivision may proceed for that patch with
no further need of clipping checks for the subpatches generated from that patch. [f
the patch ie totally off the scraen ihen that patch may be discarded. If it cannot be
determined that the patch is totally on or totaily off thz screen then that patch should
be subdivided and the clinping check should be made for each new patch resulting from

the subdivision.

NUMBER OF SUBDIVISIONS

The numker of times a patch nust be subdivided to get down to the size of a
rastar-element is proportional to the area of the patch on the screen. Consider ths

best case: a square two-by-two raster-elements needs only one subdivision, or 4% a
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square 22 by 2% needs 4'+4° subdivisions; a square 2" by 2° needs T8 subdivisions.
This is a geometric seriss equivalent to (4"-1)/3 which is approximately 4"/3. The
area of the square is 2 or 4" Tharofore, the ratio of number of subdivisions to area
Is about 1/3, This analysis is most accurate for nearly square patches. For curved

patches and skewed orientations the ratio may be somewhat larger.

THE SAMPLING FROBLEM

There are so'rne problems encountered when using sample points, The most
obvious Is the “staircase-effect” or "jaggics® seen on the silhouettes of objects. In
addition, a patch might be so small that it doesn’t cover any sample-psint, causing it to
disappear, The latter problem can be solved by assigning a patch to the nearest
sample~-point h it uoesn cover any sample~point. The problems of sampling are
inherent with the use of a raster display. Chapter seven will discuss the problems

" further as well as a means v alleviate them.

APPLICATION

The subdivision algorithm presented above wes first applied to bicubic patches.
Bicubic patches are convenient on several counts: they are widely used, they can bes
compactly specified in several different ways (see Appendix A), they can be easily
joined with first derivative conlinuity at the boundaries and they can be subdivided -
very easily, The next two chapters wil! uresent a method for fast subdivision of such
patches. It should be emphasized at this point however that the subdivision algerithm

is by no means limited *o bicubic patches but can be apnlied {0 other kinds of surfaces.



CHAPTER THREE

SUBDIVIDING A CUBIC CURVE

A method for quickly subdividing a cubic cur_vé is presented in this chapter; the
extension {0 patches is developed in the next chapter. The method uses a new kind of
difterence equation for obtaining the midpoint of a curve segment. The resulting
ability to quickly subdivide a curve makes the application of the subdivision algorithm

practical.

SUBDIVIDING THE CUBIC CURVE

Subdivision is easy because, as we shall see, the midpoint of a cubic curve is the
average of its two endpoints minus a correction term. One result of this is that the
tubic can be subdivided with only three adds. A similar method can be used to find

the derivative at the midpoint,

Considor the cubic:
f(t) = 2t + b2 & ¢t + d.

The preblem is to find (1) when f(t+h) and f(t-h) are aiready known. Note first that:
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f(tzh) = a(izh)® + b(tih)® + c(tth) + d

» a{t* £ 3ht? + 3h% & h?) + b(? £ 2th + &Y + c{t £ h) +d.
It the points f(t+h) and f(t-h) are added then:

f(t+h) + f{t=h}) = 2a(t? + 3h%) + 2b(* + h?) + 2¢ct + 2d

= 26(t) + 2h¥(3at + bY;
therefore {(D=[f(l+h) + i{t-h)}/2 - h¥3at + b).

The midpoint then is the average of the two endpoints minus the correction term,
h*(3at+b). The correction-term is a linear function of t and h. If h=1/2" then since h

is a power of two it car be calculated on a computer with a simple binary shift.

Tho corraction ‘erm at ¢ can similarly be found frem the correction terms at t+h
and t-h, If gt} = h¥3at + b) then g(tth) = K*(Ba(tzh) + b). Again by adding:
gt+h) + pt-h) = 2n%(3at) + 2bh? = 2g(t) | ‘
and so

(3-1) g(t) = [g(t+h) + glt-h))/2.

Lot hy = 1/2" where n can be considered a level of subdivision. Then hy,, = h,/2 and

W, = hio/8 and since g(t) = ¥(3at + b) then

(3-2) gnat) = galt)/4.

and (3-1) can be rewritten as
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(3-3) gnlt) = [gn(tehy) + golt-hy)l/2
Therefore:
(3-4) f(t) = [f(t+h) + H(t-h)}/2 - [galt+h) + golt-h))/2.

Equation (3-4) is the subdividing difference equation for a cubic and equations (3-2)
and (3-3) are used *o get the right correction term as hy, is made smaller by powers of

two.

Equations 3-2, 3-3, and 3-4 can be exprested diagrammatically as as shown in
flgure 3-5. At each end point there are two values -- the values of the function and
the coriection term.  Those values can be put into two registers. The contents of the
registers for the midpoint can be found by the indicated combination of the registers at
the endpoints. In order to subdivide one of the new halves it is necessary to update

“the correction term at the end points sincs hy will be half as big and the correction
terms are functions of hp. In terms of the diagram in figure 3-1, the subdivision
process cascades downward. The correction {erms are functions of the level of

subdivision. The initial values in the registers can be found by solving f(t) and glt)

Since n=0 then h?=1 and f(0)=d, g (0)=b, f(1)=a+b+c+d, and g(1)=3a+b.

it may be useful sometimes to compute the derivative. The derivative can be
found as a simpie function of the endpoints and a correction term that is dependaent

only upon the depth of subdivision. Instead of adding f(t+h) and {{t-h), subtract tham:
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'/f(O)
..
(1)
! !
0. i t
£(0) gn(O) 1) gul}
. /\ leveln
/ |
f(O) Bnn(o) f(1/2) Bn.x(1/2) f(l) bn..(l\)

f ieval n+l

Figura 3-1

f(t+h) - f(t-h) = 2a(3ht* + h?) + 2b(2th) + 2ch

= 2h3at? + 28k’ + 3h2bt + 2he
Note that the derivative is: f1(t) = 3at* + 2bt + ¢
therefore f(t+h) - f(t-h) = 2hf{t) + 2ah*so
(3-5) f4t) = [f(t+h) ~ f(t-h)]/2h - ah?

Note that ah? is a function only of the level of subdivision.

16
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A MATRIX REPRESENTATION

The subdivision matihod can be put in matrix form and hence related to the matrix
methods for generating bicubic patches presented in Appendix A. Tie matrix form of

a simple cublc Is:

f(t)y =[t> t* t 1]

G0 gw

The correction terms and function values for the simple cubic can also be put in matrix

form. Let that matrix be caiied the correction matrix C and it contents be:

f(t-h)

C= |8n(t-h)
f(t+h)
gnlt+h}

Recall that the correction factor is ga(t)=h’(3at+b). At the zeroth lavel of subdivision
h*=1/2""=]1, So f(0)=d, g{0)=b, f(1)=a+h+c+d, and gll)=3ask. If we. put thess

values that fit in C then

d |
Cr b
+b+ced

L 3a+b J

Next let

A=

OO o

We can get the values in C by using the matrixs
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0 001
S«=10 1 0 0
1111
3100

Tha relation is

(3-5} C = SA

The object of subdivision is to find the C matrix for each half of a segment. _Let
those two matrices be C and Cg for C left and C right. There are matrices L and R
such that Ci = LC and Cg = RC. The operation on the values ~¢ C have already been
defined. They require that:

i~ 0 ¢ 0
=0 1/4 O 08]

1/2-1/8 1/2-1/
0 '1/8 0 1/8)

1/2-1/8 1/2-1/8
Re|O 1/8 0 1/8

0 0o 1.0}

o 0 o 1/{5
As an axample, the second quarter C’ of a segment can be found by C’ = RLC. Note
that aii entries in the L and R matrices are powers of two. The bicubic subdivision

method is merely a fast way of doing 2 matrix multiply taking advantage of the values

inlL and R,
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SUBDIVISION APPLIED TO POLYNOMIALS

The subdivision netion can be extended to polynomials in general. A polynomial of

degree n can be written as:

f(t) = Jihoat

therefore

f(tzh) = Zicaftzh)

The binomial expansion for (tzh) is

(tzh) = 3,50 th)

Again, as in the cubic case, add i(t+h) and f(t-h). Consider just one term (tth)'
(t+h) + (t-h)! = 2Z 01 ht  (k even)

Since a, are onl} coefficients,

t(t+h) + f(t-h) = ZZF.Qa,Eylo(Q)i“h‘ (k even)

but Jeat! = f(t)
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50 wo can take the first eloment ou.t of ths series:
f(t+h) + f(t=h) = 2f(t) + 23h,a, S L(tHhE  (k even)
and finally

f(t) = [f(t+h) + f(t-B)12 ~ T8 Teh(H-ht  (k even)

The correction ferm is a polynomiz! of degrce n-2. One can apply the same

method to the correction term to reduce it to a function of the endpoints and their

separation, h.

TAYLOR SERIES

A further extension of the cubdivision concept applies to Taylur series. This last
discussion should point the way to finding appropriate solutions for functions other
than simple polynomials, Recall that the Taylor series is:
- f(x) = f(a) + (x-a)f{e) + (x~a)’f"(a)/2! + ... + (x-a"/n! + R,

and if Ry-0 as n=o then

f(x) = 3f™aXx-a)"/n! ;
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Let a = {(xin)
then
f{x) = T(th)f"™xzh)/nl
Again h, can ke of the form 1/2% f for some k the truncated series is a good
approximation to f(x) in the intérva! of h, then the function car. be found in any

subinterval of h, This differs {rom the polynomial case in “hat information jor a

segment can be thought of as being at one end rather that at both ends.



CHAPTER FOUR

EXTENSION OF CUBIC SUBDIVISION TO SURFACES

The method of subdividing cubic curves can be extonded to bicubic surfaces, With
a cubic curve there is a value and a correction term at each end; with a bicubic patch
thara la 3 valus and threa enrraction terms at each corner. Subdivision of the patch
into four pieces means finding the midpoint of each of.the sides and the midpoint of the

patch.

There may be several components to the vector that describes a ‘hree dimensional
patch, The csurface has threab purely geometric components X(uy), Y(u,v), and Z(u,v).
There may be additional componentz for other information such as shading and color.
Each component := treated the same so we need only consider one component of the

patch here.

Since we are considering only one component of the surface let that component be:

fa, Ay 2y 3‘ va
fuw) = [0 o u 1|6, by by bl

C; C; C, C‘ v
d, d; d, d, i

It we multiply the u matrix by the éoeflicient malrix this eguation becomes



V’
Fluv) = [F, F, F, FJ|V?
\4

1

where .
F,=au'+bu® +¢,u+d,
Fyo a;u’ + but +cu +d, |
Fy = a;u? + byu? + ¢u + dg

Faomau +bu? +cu+d,

Since each Fp is a cubic we observe that there is a correction term for each Fu Cail

this correction term G,

The final value of the component is
fluv) = v3.F, + viF, + vF; + F..
Consider v3.F s
VIF, & (avu® + (bvu? + (cviu + (dv).
So v? can be considered as a coefficient in the u equation. !n that case VG, is a
correction term for vF, Similarly, V2.G. is the correction term for VZ.F,, efc. If we
sum the F, and G

f = viF, + v3F, +' v-Fy + Fe

g = V3G, + vi.G, + v.G, + G,

Now g is th- cerrection term for f along constant v. This reduction to iwu numbsrs
when v is constant is exactly as expected since the curve along constant v is simple
cubic. There"ve, for any v, the function and its correction terms along u can bs

found.
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Next suppose v changes while u is constant. In this case F, and G, are constants
and can be thought of as just coefficients in the above equations. Let the correction
term for f be ¢; and the corraction term for g be ¢z, Since g is a correction term for f,

then cg is a correction term for ¢4

These four numbers can be arranged in & square as shown in figure 4-1. This

reiezantetion wili pe called a "register-square.”

f g
C Cg
Figure 4-1

In the register-square, f is the value ‘of the function at uy, and g, ¢, and cg are
correction terms, If we move in the v direction then ¢4 corrects f and cg corrocte g If-
we move In the u direction, g corrects f and ¢; corrects ¢q. Inserting u, v, and the

coefficients yislds:

v¥(uda, + ub, + l..lc, +d) Ty
+v¥{us, + ulb, + uc, + d,) " E:?g:': :- :‘;
+ v(u®ay + uthy + uc, + dy) +v(3a :.l +b ;
+ (u’a. + U:b. +uc, +dg) |, + ((Ba"u + b::)]

K 3v(u?a, + U, + uc, +d,) hk*[3v(3a,u . h)
+(u'a, + U'b, + uc, + dy)] +(3a,u + b))
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where h? and K? apply 1o the u and v directions respectively and have the sama
meaning as h in chapter thre2. As in the cubic polynomial case they can be calculated

on a computer with a shift.

A register-square makes it easy to think about an algorithm for subuividing a
patch. A register-square can be associated with each corner of a patch (see figure

4-2).

0l H
Register-
square
T Patch
- 1
8 s— 18

Figure 4-2

The subdivision algcrithm can be applied to the register squares either vertically
or horizontally depending on whether u or v is constant. Figure 4-3 shows a notation
for horizontal subdivision. The top two values of the left and right register-squares
are used to crezts the top two values of the middle square usirg the samc suhdivision
zigorithm prasanted in chapter three. The same applies to the bottom two values of
each square. Vertica! subdivision works in a similar manner. The notation of figure
4-3 can be used for the entire palch as shown in figure 4-4. The center square can
be derived from two of the newly created edgp squares. There are now four sgquares

for each quarter of the patch so subdivision can again take place for each quarter.
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It is important to note that the caicept of level of subdivision stiii applies. This
means that the correction terms must be adjusted each subdivision. One could think of.
each square as extending in two directions. When two squares are combined to create
a new one then its correction terms in that direction are divided by four as required
by the subdivision algorithm. The extension in the other direction is the same for the
new square as for the two end ones and is unatfected by subdivision. This depth

curraction will be called "reduction.”

A full patch subdivision can ke clarified with figure 4-5. The letters in the four
small hoxes represent the initial vaiues in the register-squares. The next nine boxes

depict the subsequent values in each register-square after subdivision.

if the initial values of u and v are (0,0, (1,0), (1,1), and (0,1) then the initiAal square

values are as shown in figure 4-6.

PERSPECTIVE

Perspective presents a prouiom for patch subdivisisn since the above method
works only for components that are simple bicubics and the persnect: e 1 -an-farmation
resuits in rational bicubies. In ordar to disploy a perspective view of a surface the
mathematical definition of a paich must go througﬁ a parspective transformation which
results in a surface equation of Fluy) = [X(uv) Y(uv) Zluy) Wiuv)l W(uyv) is called
the homogenaous coordinate [7,8] and is Agenerated by the perspective transformation.

Three ways of displaying a perspective surface ara:
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dl b‘
u=0  v=0
d' bl
d,+dy+dstt, | by4b,ebyeh,
u=0 v=i
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(sum of all [3(a,+a,+a,+a,)
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uwi vm}
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8.+b.+c.+a. 33‘+b.
u=] vs
a?*’bf‘cl*d! saz'.'b,
Figure 4-6
1. Get the equation of the perspective su:face by dividing by the homogencsus

coordinate. This results in a rational cubic wich does not fit into the
subdividing schems.

Subdivide X, Y, Z, and W and do the perspective division at every point. This
requires extra space for subdividing W and time to do the subdivision ar;d
perspective division,

Take oniy ihe defining points of the natch (See appendix A) through the
perspective transformation and recreate the cubic in perspective spacs. The

defining points are correctly recreated, although the surface they now define is
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not the "correct” surface (as defined in (1)) but, in the subjective opinion of
the author, is a very ¢lose approximation, The pictures in this thesis were

made using this method.
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CHAPTER FIVE

THE HIDDEN SURFACE PROBLEM

In order to disp!éy surface patches it is necessary to determine wiich surfaces are
visible. Twe metinods that can be used to solve the hidden surface problem for bicubic

patches are the "modified Newell algorithm” and the “z-buffer algorithm.”

THE MODIFIED NEWELL ALGORITHM

Newell, Newell, and Sancha [10] havs devised an algorithm for displaying polygons
that sorts the polygons in z order and paints the polygons in that order into a frame
buffer; the polygon farthest away from the eye is written first. Subsequent polygons
may be written over those already in the buffer. thus eliminating obscured polygors. it
two polygens intersect or are situateq so that it is not easy to sort them in z order,

they are split into smaller picces uniii they can be correctly sorted.

There are two parts to the z sort in the Newell algorithm. The frst is a simple,
quick z sort of all the polygons based on their farthest vertex. It does not guarentee
that the polygons are in the corract order to be written into the bulfer. The second is

a time-consuming sort that guarentees that tke polygons are in the right order.

Martin Newell of the University of Utah has noted in private discus:ion that that

algorithm can be axtended to patches and that the Bezidr control points (see appendix
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A) can be used for ordering. Since a patch is constrained to lie within the caoivvax hull
of its defining points, the defining points can be u-.d to sort the patches. |f the ordqr
botwesn two patches can noi be determined then the patches can be subdivided until
tho correct sort can be done. With the fast subdivision of bicubic patches one can
keep subdividing the patches until the z order is resolvad and then render the curved
pieces as shown earlier. The relationship between Bezier control points and the

correction factors is shown in Appendix B.

THE Z-BUFFER

The z-buffor is an extenszion of the frame-buffer idea in that the z value from the
image-spaca of the viéiblo object is stored at every raster-eclement as well as the
intensity. The z value of any new point to be written into the buffer is compared with
the 2 vaiue of the point already there. If the new point is behind, it is discarded. If it

. is in front it replaces the old vaius.

There are several advantages to using the z-buffer. Hidden surface problems and
intersection of arbitrary surfaces are handled trivially. Pictures can he of any
complexity. Except as noted below, surfaces may be wriiien into the buffer in any

order, thus saving the timz-ccnsuming sorling of highly complex surfaces.

There aro of cnurse some disadvartages to the z-buffer. A 512 by 512 buffer
with 8 bils of intensity and 20 bits of z uses a quarter of a million 28 bit words, At
the current cost of memory this means an expensive implementation. A more serious

problem is that of "anti-aliasing,” ar getting rid of the "staircase effect” (see Chapter
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7). Any algorithm for getting rid of the staircase effect requires that on the silhoustte
of objects the intensity at the corresponding raster-elements will be some combination
of intensitios from at least two objects -- namely, the object being displayed and the
object being partially obscured, which may of course be simply hackground. if all of
the objects have been rendered in r<andom order then it is possible that the intensities
from the wrong objects will be combined, giving a locai error. This means that it may

sometimes be necessary to sort the objects to eliminate the staircase effect.

The author implemented the z-buffer algorithm by paging the z-buffer onio disk.
Thirty-two pages could be residen! in core whera each page contained a 16 by 16
square section cf the raster. The time needed for swapping was small compared to
the time spent by ti's software imaslementation of the subdivision algorithm. All of the

pictures in this thesic were made using the z-buffer.

A combination z-buffer-Newell algorithm could be developed where a simple z sort
puts the palches in approximately the right o‘rder and the z-buffer guarentees that
they are in the right order. Thz only error that would occur woyld be 2 lncal
".staircase error” on an edge if the assoziated patch were written in the wrong order,
We have traded off the time-consuming sort for the in-reased memory and the

possibility of a small error.



CHAPTER SIX

INTENSITY

When a patch has been cubdivided into subpatches small enough to cover only one
sample point it is necessary to =zzcziate an intensity with the corresponding point.

There are several ways of getting the intensity at each point.

[
.

Use the normal to the surface to calculais intensity.

2. Use some intensity function of u and v.

)

Map the intensilies from soma picture.
4. Modify existing intensities for shadows or transpa ancy,
There are good examples where each of the above might be applicable, so they will

each be discussed,

USING SURFACE NORMALS

The normal to a surface is fraquently nesded to calculate the intensity. Phong has
already shown [4] several ways of calculating intensity if the surface normal and the
light sources are known. A typical way c;f doing it would be to use as the inteﬁsity
tho dst product of a light vector and the surface normal. One needs to uss the normal
from tho object-space surface before the perspective transformation is performed
instead of the Image-space surface because perspect ve distorts the surface and hence

falsifies the intensity. Unfortunately, finding the normal is complicated by the fact that



the equation of the normal to a bicubic patch is a fifth depree polynomial,

Three ways of finding the normal are:

1.

Use a fifth degres sutdivision equation to solve the normal surface equation.
This seems impractical because of the increasad space, time, and complexity
required.

Approximate the normal equation with a cubic equation and then subdivide the
components of that aquation just as the surface equation is subdividad.
Appendix C exolainz “cw 13 approximate the normal equation. This method
was used to make the pictures for this thesis. Six components of the patch
were subdivided to make the pictures -~ the three components of the surface
and the three components cf the normal.

Take the cross product of the tangents at every point to get the surface
normal. We havo already shown in chapter three that the tangen! at the
midpoint of a line can readily be found. Thereiore the three components of
the object-space patch can be subdivided (in addition to the perspective patch)
and the normal can be found by taking the cross produst of the u direction
tangent and the v direction tangent at each sample point. This method
requires a little extra information in order to get the tangents and, of coursae, it

requires the sxtra work involved in taking a cross product at every point.

USING AN INTENSITY FUNCTION

The intensity at a raster elemcnt is represented by a number and any usaful way

of deriving that number is legitimate. Instead of being a function of the orientation of



the surface, the intensity might be a function of pressure, strain, height, density,
artictic whim, etc. If these can be expressed in a bicubic equation then they fit into
the subdividing scheme. Color components could also be calculated as bicubic

equations.

One must use care to ansure that the calculated intensity values stay within
reguired bounds for the display. Three ways of doing this are:

1. Check each calcuiaied value and elin it if t6o jarge or too small.

2. If using ncrmals, renormalize at every point. |

3. Solve for the Bezie'} control points of the patch (see Appendix A) and normalize
those points so that none of tham are out of range, then recalculate the patch.
Since the pafch is contrained to lie within the convex hull of *he points they
will be in the required bounds. First derivative continuity across patch

boundaries may be lost with this method.

MAPPING

Photographs, drawings, or any picturs can be mapped onto bivariate pai~hes. This
is one of the most interesting consequences of the patch splitting algorithm. It gives a
method for puiting texture, drawings, or photographs onto surfssas, 1t alss allows ono

{6 hiave reiieciions in pictures, as in fiat or curvad mirrors.

One can make a correspondence between any point on a patch and an intensity on
a picture. If 2 photograph is scanned in at a resolution of x times y then every

. element can he referenced by ux and vy where Oguyvsl, In gerera!, cne csuld think
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of the intensily as a function luv) where | references a picture. In keeping with the
bicubic method, the picture does not need to be rectangular but can have edges that

are cubic curves.

in practice the above method for getting intensities from pictures can tall afoul of
campling errors. This will occur when the number of points to be displayed on a patch
is less than the number of elements in the stored nicture, resulting in less information

being put on the patch than is in the picture.

One way to alleviate this is to map areas onlo areas rather than points onto points,
Cvery time the patch is subdividzd, the picture is also subdivided. When the algorithm
determines that a subpatch is to be displayad, the corresponding area on the picture is
known. The average intensity of that srea can be found and used as the intensity of
the piece. While this reduces considerzbly the sampling problem it does . nrot

completely solva it.

The sampling problem can be better undarstood by considering figure 6-1,
Suppose that the algorithm subdivides the patch up as shown and that the squares in
the figure represent raster-element squares. Since in general the pieces of the patch
do not mesh well with the raster grid there will be times when more than one pieua‘ of
the patch logically belong;: to one display element, ie., pieces a, b, and ¢ would be
painted in element one. However, a, b, and ¢ are not usually created in time sequential
order 5o combining them would be difficult. If oniy one of the pieces is chosen for
display then séme information would be lost, A solution to the problem is presented in

chapler Seven.
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INTENSITY MODIFICATION

Once an int~nsity is in the buffer there may be several reasons to modify it;‘for
example, transparency and shodows. If a new surface is transparent [10] then the
intensity to be put into the buffer is some combination of the new intersii. ‘and the
one already in the buffer. A typical formula might be New + (Olg ~ wew) ¢ T
~where T is the transmittance which ranges from O for cnaque to 1 for tranparent. Ad
hoc variations on this fcrmula can be made to get acceptable looking transparency.
Transparent objects must be written inlo the buifer in the corract order, ie., close

objects are written last.

Shadewe #&n bs mada w.th the 2 buffer using "shadew- patchas” A shadow-~-patch

can be made by finding the silhouette of an otject from the noint of view of the light.
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(See figure 6-2) The silhouette can be used to create shadow-patches that extend from

Light contour

Shadow patches

Flgure 6-2

the silhouette away from the light. Front and back shadow-patches can then ke paired
up. Any cobject that lies beiween the two shadow-patches is in the shadow of the
object. After the picture' has been created the shadow-patch pairs can be :plit as
bicubic patches with x, y, z-front, and 2-back cqmponents. if the visible element in the
z buffer lies in the shadow range tnen its intensity can be attenuated. The ¢ifficulties
with this mcthod are that one must find the silhouette, that the front and back
shadow-patches must be matched up, and that diminishing the intensity coes not
correctly eliminate a highlight that should not appear in a shadow. It should be clear

that although shadows can be made, it is not an easy problem.



CHAPTER SEVEN

SAMPLING, RASTERING, AND ALIASING

There are some inherent limitations with using a raster-display. The raster display
cannot produce imsges with clean sharp edges or small (compared to the
raster-element size) detail. Unfortunately, these limitations frequently lead to
disturbing visual effects., We shall try to explain here the nature of ih-ese limitations
and show stepc that can be taken to alleviate the undesirable effects, especially with

regard to the subdivision algorithm.

ALIASING

“hare are two different kinds of unwanted'visual effects that result when using a
raster-dispiay -- "aliasing” and "rastering.” The first -- aliasing -- is used to denote
efiects that result from sampling. Five manifestations of cliasing are

1. A “staircase effect” appears at the silhouettes of objects.

2. Small objects fall between the sample pointe and disappear.

3. In a motion picture, the clow smooth movement of an object appears as discrete
Juinps,

4, An image of a picket fence or similar regular pattern causes a moird pattorn_to
appear, |

5. If a picture is mapped onto a surface then all of the ahove occur over the entire
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surfacs.
As noted previously, a raster display cannot produce images of sharp edges or small
detail. Alissing occurs because we are sarﬁpting an image' which has irformation that

the rester-display cannot possibly reproduce.
Sy

The phenomenon of aliasing can be better understood by considering a stagecoach
movig . Nolc first that 2 movie camara ran «:annpln tha raal werld 24 times a second.
Suppose the camara views a stage coach as it starts and accelerates; the wheels
moving faster and faster. Most readers will have witnessed that when the coach
begins to move, the wheel appears to rotate in the right direstion but as the wheé%
rotates faster it appears to go backwards, then stop, and finally to rolaie jorwards
again even though the coach is always moving forwards. It is easy to understand that
the wheel has a frequency of rotation. The movie film can accurately reproduce a
rctational frequency of not more than twelve spokeé per second. As the wheel
rotates faster than that, the highér frequency is "aliased” as a low frequency which can
be reproduced. The analog with sampled images is that an image may have intensity

undulations thai vary faster than the sampling rate and hence alias themselves as

undulations that can be reproduced.

The field of signal-processing helps us understand aliasing even better. i a
two-dimensional fourier transform of an: image is taken pricr to sampling, the result is a

“piciure™ oi ihe frequencies present in the image. Sharp edges and small objects
P ]

1. This imoge wec are sampling exists only as a high resoiuiiun descripiion in the
computer, as contrasted with an actual photograph.
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result in high frequancies. The r%ster dicplay can reproduce only low frequencies; the
upper limit on the frequency is determined by the resolution of the raster dispiay.
During the process of sampling, frequencies that are higher than those that can be
reproduced are "folded™ back onto those that can be and become indistinguishable from

them; henca the term "sliasing.”

"Anti-aliasing” will te uced here tc denote the process of reducing or eliminating
the aiiasing effects. An effective method for anti-aliasing is to eliminate from the
image, prior to sampling, those components that cannot be reproduced or, in terms of
signal processing, to filter cut the high frequencies with a “low-pass filtar.® This
filtering of an image could be thought of as a "smearing” operation. Sharp edges are
smoared so that they are no longer sharp and therefore won't cause severs aliasing
problems. The filtered image can ther be sampled. The filtering and sampling process

can be expressed in a diagram (see figure 7~1).

. Filtered - ' raster-
Original "’@"‘9‘ or - display
image . Smeare samples image

~filter image
Figure 7-1

One method of filtering is to “convaiva® fhe original image with a "two-dimensional
fourier window" or "box window.” With this method we in effect take a "box" that can
cover one raster-element square and is ane unit high and put the box on the original
imaga. 'The box is multiplied by Ehe i;\tensities in the image ~- which results ir zero's

everywhers but at the box -- ond the rasulting values are then integrated. This
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yiends one vaiue for that position of the box. The value in effact is the avarage of the
intensities under the box. The box can be moved and a value calculated for soma
other point. As the box is moved over the entire image a new filtered image is
created. The process of moving the box window over the image, multip!ying, and
integrating to form a new image is called “convolution® and can also be used with
windows other than a box. The filtered image that results from using a box window no
longer has sharp clean lines; much, but not all of the high frequency information is
gone. Even though some of the high frequency information remains, a box filter = still

good enough for most computer graphics purposes.

AREA SAMPLING

Since the filtered image wil! be sampled only at discrete points corresponding to
the raster-elements it is necessary to calculate the filtered image only at those points.
In other words, we can think of a raster-element as corresponding to some small
sauare ares cf the original image and we only 6eed to find the average intensity of the
visible surfacas In that square, We shall call this particular form of fillering and

sampling "area-sampling.”

Area-sampling is the technique usually used in computer graphics to do
anti-aliasing. Typlcally, when an edge of a polygon passes through a raster-element
square, the intensity for t:c corresponding raster-element is some average of the

polygon intensity and the intensity of polygon behind, weighted by their respective

' visicie areas in the square. Mcat methods for anti-aliasing have bee= cpplied at the

edges of polygons since the aliasing eifects in the center of a polygon have usually
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been negligible.

Since there are several ways of filtering it is natural to ask "what is the best
achievable anti-aliasing?” One should not he misled into thinking that area-sampling is
the bect anti-aliasing possible ever. though it is a considerable improvement over
point-sampling of an unfiltered image. A better method, for example (although how
much better is not known) would be to use a pyramid with a base that could cover four
raster-element squares 25 a windecw for convolution instead of a box window.
Unfortunately, "perfeci” anti-aliasing is also undesirable because the filter necessary to
make this possibla lso modifies the image in an undesirable way. The reasons for this
and the answer to the above qusstion are beyond the scope of this thesis. Methods

for anti-aliasing are part of on-going research at the University of Utah.

RASTERING

Rastering occurs during the process of display regardless of the intensity values at
each raster-slement? Rastering occurs when we can see the individual dols or
scan-lines on the raster display. An example of rastering occurs in television where
we frequently car. see the scan-lines. If we can see the Jois cr scan-lines, then we
are seeing something tha! ic an artifact of the raster display and is undesirable

information, thus the name "rastering.”

2. There are actually two kinds of rastering -- "static® and "dynamic,” The diztinction
between the two is bavond the scopu of this thasis.
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The meaning of the word "rastering” usedi here is not universai and in computer
graphies it is frequently used to denote what we call here “aliasing.® However in
order to be consistant with the use of the word by the signal-processing rasearch
group at tha University of Utah we shal! take it to mean the effect that vceurs in the

process of actually displaying the raster.

"Anti-rastering” is the procesc of reducing or eliminating rastering. The practical
methad for anti-rastering is to defocus the CRT beam enough so that adjacent dots on
the raster-display just merge. A picture of a "flat-field" on a raster-display should

appear to e of uniform intensity with nc dot or line structurs.

ANTI-ALIASING FOR THE SUBDIVISION ALGORITHM

The subdivision e!gori.fh.m can be modified to allow for area-campling. Such a
modification requires techniques for determining what is visible in each raster-element
square and some method for storing and combining intensity values at each square to
get the average. The modified algorithni has some drawbacks which will be discussed
at the end of the chapter. Before presenting the modification, some groundwork needs

to be laid and an "area-averaging algorithm™ must be described.

One of the termination conditions described in chapter two required that a patch
be approximated by a polvgon to see if it was small enough. This szme polygon can
be used to du the area-sampling. Afiar the finest subdivisicn, e pelygon will bs

very small. We will require that no polygon cover more than four raster-element

squares (see figure 7-2). In each square then, there will be some “piece” of the

polygon.
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The average intensity of all pieces visible in a square is needed to do
area-sampling. Unfortunately, the pieces that logically belong to a square are nét
derived in immediate sequential order; that is, after one piece is found for .a square,
other areas of the screen may be worked on before finding another piece for that
square. Some mechanism must be found for storing the piece intensities so that the

average intensity can be found.

The problem is simplified if we make use of the following observations. In the
large majority of raster-element squares all visible pieces come from the same patch.
In a smaller, but still significant, number of squares, the pif;ces coms from two patches
-- namely at silhouettes and patch boundaries. A very small number have three or
more patches visible in a single square. The method to se presented will do
area-sampling for the first two cases correctly but is rot guarenteed to be correct if

more than two patches are visible in a single square.

The above implies that sach piece must be identified with some patch. A patch
code will be introduced for this purpose. The problem of identification is complicated
by the fact that a patch may obscure itself; and in general it will, in regions near the
silhouette. We can, however, differentiate between front and back-facing pieces by
using an area-calculation method that gives negative or positive area depending vn
which way the piece faces. A bit can be set for a piece which indicates its facing

direction.

The area-averaging algorithm vcquires that pieces be processed in z order. That

requirement holds aven within patches, ie, the four subpalches of a paich are sorted
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s0 that subdivision continues first with the mcre distant subpatch. If the z-buffer is
used and the order is wrong, then the error will show up only at the silhouette where

a staircase effect might become visibie.

A iarge frame-buffer will be nsoded for the area-averaging algorithm. At every
raster-oloment, storage will be needed for two intensities, 1, and |, area, a facing
direction bit, and a patch code. If the algorithm is used in conjunction with the
z-buffer then storage for z is alsc needed. We shall describe values already in the
butfer as "old" and the new values to be written as "new.* The area of a single
raster-element square will be taken to be unity so that is the largest value that can be
stored in the area part of the raster-elemant. Initially I, will have the background

intensity, the area bits will contain one's and the patch code will be zero.

The area-averaging aléorithm is: A new piece is found with its area, code, direction
bit, and 'lntensity value which is weighted by the area. Then its corresponding
raster-element is retrieved. The following are the poscibilities.

1. If the new code is the same as tiio ¢l und the direction bits are the same then
the pieces come from the same patch. Add the areas and the new weighted
intensily tc the old value in |,

2. if the twc codes are the camo ond the. direction bils are differcnl then the
silhouette has been encountered and the accumulated area from that patch is
about to be obscured by the new and: subsequent pieces. Set the area to be
ihe new area, the intensity |, to be the new weighted intensity, and the direction
bit to the new direction value.

3. !t the codes are diffsrant then a new pisce or pieces will partially or ccmpletely



48.

obscure the old pieces. Put the valus of |, divided by area (to unweight it) into
I set |, 10 the new weighted intensity, set the area value, and set the patch
code and direction bit. For displaying, the intensity will be |,-1,#(1.-area).
This algorithm has solved two problems: all of the pieces have been put together to
allow mapping and at the silhouettes and boundaries the intensily is a combination from

the two visible objects,

The subdwision algorithm of chapter two can now be modified to allow for

area-sampling instead of point-sampling. Consider figure 7-2. Each square

raster-elemant

: square

N

vertices

Figure 7-2
represents a raster-element square. Recall that a raster-element cquarc is the area
on the screen corresponding to ons raster-clement. The crossings of thé horizontal
and vertical lines which bound the squares will be called "vertices.® The modification
to the algorithm is that thg patches will be subdivided until they cover at most one
vertex (as opposed to a sample-point). An additional constraint on the termination
condition is that the approximating polygon (the dotted lines in iigure 7-2) lie within

the area of the four sqvéres adjoining the verlex.
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The polygon that approximates the patch (the dotted lires in figure 7-2) will be
used for the area calculations. The polygon must be divided into pieces that belong to

cach of the four squares. Each piece then is used with the arva-averaging algorithm.

The algorithm presented is unsatisfactory in some ways: it requires a lot of
memory, there is a lot of computation required, it is 2pplied at every point instead of
just where needed, It does not work with transparency, and thare aranseveral cases
where it fails. On the other hand, mapping requires the ability to area-sample over
the entire surface. It is not clear at this time just how much or how little is required
to do acceptabie anti-aliasing. Hopefully, the above discussion will‘ lead to some

cheaper or better methods for doing area-sampling.



CHAPTER EIGHT

CONCLUSION

The subdivision algorithm has been implemeated in software on a PDP-10 at the
University of Utah. Several pictures generated by the program are included in this

thesis in App~nsix D.

Table 7-1 lists some timing information about the generation of a few of the
pictures. Tne initialization of the frame-buffer tcok about 7 seconds and displaying
the framz buffer took about 28 seconds. The times listed below do not include

initialization and display time,

OBJECT PICTURE = TIME (minutes:seconds)
single patch 2 1:17
glass 1 1:55
bottle 1 4:15
~ klein bottle 14 15:00

TABLE 7-1

It is nztural to consider a hardware implementation because of the simplicity of ihe
algorithm and the tremandous number of times those simple steps must be performed.

The four components of suzh an implementation are;
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1. The subdivider.
2. The stack,

3. The tester.

Th- alvadne

T Slrwswws v

]

The subdivider can split the patch into four pieces. Since subdividing a cubic
takes three adds, the number of adds to subdivide a bicubic component is 30, The
values must travel through the edges to the center so the values must pass through
four addors. The fastest possible implementatior wculd have a subdivider for each

component,

There are several ways of trading off speed with cost. One subdivider could be
used to subdivide each component sequentially. The system would just run slower._ In
addition, sinca each subdividar can be broken up into modules that combine
register-squares, one could use just one module and give it two register-squares at a

time to get a new square. Then the system would run even slower.

A stack would be needed to push the new squares onto. It needs to be large

enough to handle the maximum laval of subdivision, probably no greater than i35,

Tha tectar must decide whather to display thn patch or subdivide. It would check
the x and y values at the corners. In addition, it may sort the four new patches if
necescary either for the Newell algorithm or to do transparency. It is possible at some

level of recursion to determine that no more sorting needs to be done. -
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The shader picks out the surface normal componants, normalizes them, takes some
dot products, and calculates the intensity for each raster-element. #f the
area-sampling method is used then the area of the patch in each raster-eloment square
must also be calculated and the resu'te merged with the information in the

frame-buifer.

PROBLEMS

The most immadiate probiem is that of aliasing. One would hope that there is a
cheaper or faster solution than the one presented here. For exampie, one ir-ight
detect the silhouetie by ucing the ta~genis and then area sample only at the silhouesttse
of objects to calculate the right combination of intensities. An advantage of the
subdivision algorithm is that a lot of information about the patch is available. The

problem is to find a way to use that information to solve the aliasing probiem,

Another problem is that bicubic patches may not adeguately fill the needs of some
people working with curved surfaces. It seems likely that the notion of subdividing

can be applied to other curved surfacs schemee,



APPENDIX A

THE BICUBIC EQUATION

There are several different methods for generating bicubic patches. Each method
is useful on different occasions. Bicubic equations are widely used i-. comput -r aided
geometric design. Some good references are [11,12,13,14] with the article by George

reters in [11] being specially devoted to the bicubic patch.

Consider the simple cuble:
x(t) = at® + bt* + ¢t + d

This can be expressed in matrix notation:

a
x() [t £ ¢ 1] b]

c

d
A curve In spacc can be represented by the parametric vector eqguation
F{t) = [x(1) y(t) 2()] Since each component is a parametric function of t and is
treated the samo as the other components, it is only necessary for us to coneider ono

componer® «(t).

A pateh Is a function of two variables, u and v. F(uy) = Deluv) yluv) z(uv)l

Again only one component needs to be considered. The mat-ix notation for x{u,v) is:

8y & 2 3u1 vl

x(uv) (U Ut u 1]|%m B2 B 3 || v? .
8y, 8y ;3 A|lv
) 8y Ay )}



where the a, are the coufficients of the equation just as a, b, ¢, and d were

coefticients in the univeriate cass,

The problem then is to find the coefficients. There are many ways of doing this.
We shall consider here only those wéys that are local, that is, the changing of cata only
affects the coefficients of nearty patches. In order to find the coefficients of the
simple cubic it is necessary to have four items of information. We can then transform

that information into the coefficients by some four-by-four matrix M.

) P,

blumliP| -

¢ Ps

d P,

therefore
P,

x(t)=[t* 2t 13M|F2
Py
P

The P’s can be some physically relevant itams of infarmation such as points or slopes.
The matrix M is a constant matrix that corresponds to the particular kind of information
chosen as the P/s. It is important to note that this concept can be trivial' s ~xtended

to the bivariate case:

Pi Pz Pu ::" T v:
A 13M|Pn Pn Prs Pa M V7]

w(uy) = [u* v u 1] Py Py Py Paf v
Par Paa Pa Pa 1J

where the P, are relevant data such as points or slopes. For example the P, might be

a four-by-four grid of points.
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The balance of this appendix shall be devoted to showing what tha M matrices are
‘zr different kinds of P's. When the P's are points they may be referred to as "control
pe§nts"‘ The examples shall be given using the univariate case 30 recall that the

extension to bivariate patches is shown above.

1. SIMPLE CUBIC THROUGH 4 POINTS

| \,P.

Consider {he four points P,, P, P,, and P,. The cubic will pass threugh each point

and x(0)=P,, x(1/3)=P,, x(2/3)uP;, and x(1)=P,. Then:

, Py
x(t) = [t* t2 t 11, |Ps
Py

i
and for this particular choice of the values of the independent variable,

-9 27-27 9
M, = (1/2)] 18-45 36 -9|
: -11 18 -8 2

2 000

-

It is difficult with this scheme to connect two cubics at some point with ¢! continuity.
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2. THE BEZIER OR BERNSTEIN CUBIC

/-—-....\
a Pa

Consider the four points P, P, Py, and P.. The curve will pass through P, and D7,
The line from P, to P, is tangent to the curve at P, and the line from P, to P, is tangent
at P, The length of the tangent vector at P, is threa times tne length of the line from
P, o P, Similarly the length of the tangent vector at P, is three time the leagth: of

the line from P, to P,. The curve is constrained to lie with the convex hull of the

defining points,

P,
x(t) = [t t 1IM, |p,

Pa
Pe
‘where
i 2 -3 17
M=[3 -6 3 0
-3 3 & ¢©
1 ¢ & 2]

Two cubics can be joined with C, continuity if the control points at the joint are
the same (quite obvisiily} and the two control points of both connecting ends are all

colinear, ie, in ine following diagram P, P=Q,, and Q, are colinear.



P.

\P” Joint

LT \ z

/ PuQy [
P,
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Q

3. THE HERMITE INTERPOLANT

Qi- Q

P 14/

Pe

. Consider two points and two tangents, then:

!
|

20

() = [t 12t Q] My

£,

where

2 -2 1 1
wl3 3 -2 -1
My 0O 010
(£ 0 00
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Two cubics can be connected easily with C' continuity if the tangents at the connecting

points ars tha same,

The extensicn to a bivariate patch is not as straightforward as in the other cases.
The bivariate patch is frequently called a bicubic Coons patch and sometimes the

"hermite tensor-product bicubic surface.” The elements of the P matrix are:

Q00 Q1) fc,«}.m Q.0,)]

Qu(°;0> Qu(uon' :Qw(ooo) Qw(ocn )
Q41,00 QALY | QL0 Gulti}]

which corresponds to the palch

Q.1,0)

041,0) - QL1L,1)

Q1,1)

S

QL,1)

Q1,0 Q.(1,0)

Qull,1)

Q..(0,0)

Q.(%0) Qu(0,1} /1 QU0,1)

"QL0,0)

The Q are the corner points, the Q, are the tangent vectors in the u direction, the Q,
are the tangents in the v direction, and the Q.. are the cross derivatives which -:;re

- fraauent!ly called the twist vectors. The iwist vectors are somatimes set to zeru which

may cause "pseudo-flats” at the corners.



4. THE B-SPLINE
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The cubic B-spline gives very nice looking curves and provides continuity of the

second derivative.

In general it does not interpolate its control points, but rather

approxim=tes them. The generated cubic is also constrainaed to lie within the convex

hull of its defiring points. Consider the four points P, Py, P, and Py

Py

N P,

Ps

A cubic curve ca: 9 genérated that in general does not pass through any of its four

control points. Now consider a fifth point P,.

h.
.

Py

Another section of curve can be generated using points Py, P, P, and P,. The two

curved pieces will be connacted with ¢? continuity at the joint. The equation .to

generate a saclion s
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Py
W) = [t8 17 t 11, |Pe
Py
Pe

whers
-1 3 -3 1
. 3 -6 9 0
M = (1/6) -3 0 38 0
11 10

&, THE CATMULL-ROM CUBIC SPLINE

This spline interpolates it< control points 2nd has continuity of the first derivative,

Consider the four points P, P, Py, and P,

P,

’I
Py

A cubic can be genrerated that passes from point P, to P, Now consider a fifth point
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N

Ly

e

Py
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Another piece of curve can be generated using points P, Py, P, and P,. The two

sections will be connected with ¢! continuity. The equatior: to generate a section is:

) P
x(t) = [t7 12 t 1] M.'[Pj ‘

!F"j
P
where
-1 3 -3 1
I 2 ’5 4 "‘1
M, =
=B 6y o
2 0 ¢

0



APPENDIX B

RELATIONSHIP OF CORRECTICN FACTORS TO BEZIER CONTROL POINTS

We can find the Rezidr control points for a patch since the corner values and
correction tarms can be expresscd in matrix 'form as shown ia chapta: three, Hecall
that the patch generated by the 16 control points is constrained to lie within the
convex hull of those points. This is useful for clipping and determining when two

patches might intersect,

Recall equation (3-8) C « SA where A is the matrix of coefficiants. Of courss we

can go the other way by noting A = $'C. If ws have four points d,, d,, d,, and d. and

d,
C=|d

ds

then the coefficients for the Bezidr cubic for those points zre A=80 where B is the
four-by-four matrix given in Appendix A in the section on Bezidr cubics. If we put the

relationship into equation 3-5 then C«§A=SBD. Therefore:
(8-2) D « B'S'C

giving the control points D as a function of the correction matrix C.

This analysls can be extended o surfaces. Let C be the four-by-four correction
matrix for a patch. Wa axpect it 1o contain the same vaiuss iisted in figure 4-6. Let

M be the four-by-four matrix of coefficients for the bicubic patch. Then
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(B-3) C = SMS™

L2t P be the four-by-four matrix of the 16 Eeziar control points for the patch. Then

M = BPBT and it follows that C = SBPB'SY. Therefore:
(B-4) P = BS'C(ST)(B)!

where

o 0 0 1
Biw|(0 01/3 1
0 1/32/3 1
1 1 11

1 0 0 O
g5 = |2/3-2/9 1/3-1/9

1/3-1/9 2/3-2/9

0O 0 't o



APPENDIX C

APPRONIMATING THE BICUBIC NORMAL EQUATION

The norm=l «veler to a bisubic match can be found by taking the cross product of
the tangent vecicr in the 1. © Ji~ai'en and the tangent vector in the v direction and
can be shown to be quintic. It is desirakle to approximate the quintic normal equation

with a bicubic equation because a bicubic equation is easier to work with.

The x component of the surface vector le:

v:
x = Ut u LMV
v
RY
whera M, is the matrix of coefficiants for x. The darivative in the u direction is:
[vil

xe=[307 2u 1 0]M.F'J
1

and the derivative in the v direction is:

favé

ke = D u? u 1]Mc|2v
. 1

0

For simplicity we shall define:
Uw [u v ul]
U e [Gut 2u i C]

U” = [6u 2 0 0]
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V=

'vn .

Thereiore X, = UM,V and X, = UM,Y". The y and z components are treated similarly
of courss. The tangsnt in the u direction is [x, y. 2] and the tangent in tha v

direction is [x, y., 2.}

We need to find the rormal vector [xp yn 2,1 The norms! vector can be tound by
taking the cross product:
xo{uyv) = vz, - y,7.
Yn(u,vf = 2, = ZX

Zn(U;V) = %Ye = XYeu

but since x, = UMY, x, « MV, y, = UMV, elc., we can write:
(A-1) Xo{uyv) « UMVUMY’ - UMVUMV
{A-2) Yaluyv) = UMVUMN - UMVUMY

(A-3) Zp(uy) = UMVUMV’ - UMVUM,V
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It should be apparent on close examination of the equations Al1-A3 that each
component is, as asserled, a fifth degree polynomial in u and v. Lst us consider only
the x comporent of thz normal. In order to approximate the normal vectoi equation
with a bicubic normal vector equation we require ihat the bicubic normai have the
3a6;

1. valuas at the corners, ¥ {uv)

2. derivatives In the u direction at the corners, dxa(u,v)/du
3. derivatives in the v direction at the corners, dx.(uv)/dv
4, cross derivatives at the corners, d®x,(u,v)/dudv.

If we group this data in » matrix we have:

[ 4(0,0) WOl | dx00)  den0D)
t dv dv
]
%n(1,0) xo{L,1) | dx{1,0) dxn(1,1)
5, = S 7
dx(0,0) dxef0,1) | d%si0,0) d%q(0,1)
du dv ; dudv dudy
dxy(1,0) dll,]) ! dixq(1,0) dtx{1,1)
du du p dudv dudv |

—

The form of this matrix is the same form as the data matrix for a bicubin Coons paich.

Therefore we can use Coons magic matrix:

f2 -2 ;3 1
C={3 3 -2 =1
¢ 0 1 0

1 0 0 %

So the x component of the bicubic normal is:
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(A-5) x = CPCT

The quintic function and its derivatives can Lo written more explicitly as:
(A-5) Xnluv) = UMVUMV - UM VUMV

(A~7)  dxpluv)/du = U"MVUMV’ + UMVUMV’
“UMVUMY - UMVUMY

(A-8)  dx(uv)fdv = UMVUMY + U'MVUMV™
- UMV"UMYV - UMVUM,V’

(A-9) dix(u,v)/dudv = U'MVUMVY’ + U VUMV
+ UMNVUMV + UMVUMY™
- UMVUMY - UMVUM,V’

= UMVU'MV - UM VU"M,V

The values of these equations at u=0,1 and v=0,! can then be substituted into the

appropriate places in equation A-4,

Rather than rewrite squations A-4 through A-9 for the y and 2 components just
note that for y we can use the substitutions
1. v repiaces x
2. zreplacesy

3. x replaces 2



and for z
1. zreplaces x
2. x replaces y

3. yreplaces z
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APPENDIX D

PICTURES

The pictures in this appendix were made on the high-precision CRT at the
University of Utah. Al pictures were made at 512 resolution. The beam was slightly

overfocused,

The discontinuitizs in the shading on the everting spheres are caused by first
derivative discontinuities in the surface description and not by the algorithm. The
rcughness at thé intersections are a result of insufficient 2 resolution. The front

clipping plane was much too close to the eye.

The area-sampled klein bottle clearly illustrates deficiencies in the area-sampling
algorithm presented in chapter seven. However, the algorithm works very well for

mappling.

The phoiographs used f.r mapping were scanned into the computer with a
scanning device at the University of Utah. Only lzck of time prevented a more

elaborate demonstration of the power of mappinz.

The shading discontinuities in ths brick cylinder occur because the original brick

wall was not evanly lit,



Picture 2

A single patch demonstracing the
aliasing that results from point-
sampling. Observe the edges.

Picture 1

A bottle and glass. The bottle
kas 32 patches.

Picture 3

A patch demonstrating area-
sampling. Again observe the
edges.

Picture 4 ricture §

roint~sampled and over-focused. Area-saspled and over-focused.
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Picture 6 Picture 7

A spiral tube. A transparent spiral tube.

Picture 8 Picture 9
A sphere midway through its Another view of an everting
eversion. Desiqned by Dr. N=ison sphare.

Max at Carnegie-Mellon University
using bicubic Coons patches.



Picture 10 Picture 11

Two bottles and a glass. 142 bottles and glasses.

Picture 12 Picture 13

The bottles scene mapped onto a The bottles with simulated
curved patch. refleccicn.



Picture 14

Klein bhottle. Designed by Dr.
James Clark using B-8plines.

Picture 16

Klein bottle with transparency.

Picture 15

Klein bottle with area~sanpling
used. Notice the occasional
failure at the silhouette to do
the anti-aliasing correctly.

Picture 17

The bottle and glass with trans-
parency added tn the glass and
"color" to the bottle.
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Picture i3

The brick image mapped
respectively onto a single
rounded patch, a stretched patch,
an S curved patch, and a cylinder
of four patches.




Picture 19

A piciure of the author's family
mapped onto several patches.

Picture 21

A photograph of a hill
mapped onto a curved patch.

Picture 20

A picture of the autho.'s wife
mapped onto a cylinder.

Winnie the Poo and Tigyger
on a curved patcl.
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