
Cellular Texture Generation
Kurt W. Fleischer
David H. Laidlaw
Bena L. Currin
Alan H. Barr

California Institute of Technology
Pasadena, CA 91125

email: kurt, dhl, bena, barr @druggist.gg.caltech.edu

Abstract

We propose an approach for modeling surface details such as scales,
feathers, or thorns. These types of cellular textures require a rep-
resentation with more detail than texture-mapping but are inconve-
nient to model with hand-crafted geometry.

We generate patterns of geometric elements using a biolog-
ically-motivated cellular development simulation together with a
constraint to keep the cells on a surface. The surfacemay be defined
by an implicit function, a volume dataset, or a polygonalmesh. Our
simulation combines and extends previous work in developmental
models and constrained particle systems.
KeyWords: particle systems, developmental models, data am-

plification, constraints, texture mapping, bump mapping, displace-
ment mapping

1 Introduction

For several years computer graphics researchers and practitioners
have been grapplingwith the problemof creating and displaying sur-
faces having an organic appearance. Texturemaps, bumpmaps, and
related methods often attain the appearance of detailed geometry
without actually creating it. These techniques do not suffice, how-
ever, when the viewpoint is close enough that the three-dimensional
(3-D) geometric structure of a surface texture is apparent.

We are interested in making images of surfaces covered with
interacting geometric elements, such as scales, feathers, thorns, and
fur. We model these elements as small 3-D cells constrained to lie
on a surface. The cells interact to form cellular textures: surface
textures with 3-D geometry, orientation, and color. Our approach
combines properties of particle systems, developmental models,
and reaction-diffusion methods into one system. Figure 7 shows an
example combining all of these approaches.

There are a few challenges in making images of these types of
materials:

The geometry is often too pronounced for using texture- or
bump-maps.

Figure 1: Thorny Head: Both flat and thorn-shaped cells are con-
strained to lie on a surface defined by a polygonal dataset of a
human head. Flat cells are used in the neck and chest regions, while
thorn-shaped cells are used on the head. The orientation of each
thorn approaches that of its neighbors, leading to a continuous field
of thorns that sweeps across the head. The size of the thorns is
related to the level of detail of the model; smaller thorns are placed
on smaller features.

It is often difficult to map appropriate texture coordinates
onto the global geometry and topology.
The placement, orientation, coloration, and shape of the in-
dividual elements may depend on:

– neighboring elements,
– surface characteristics such as local curvature, or
– global phenomena such as sunlight.

Permission to make digital/hard copy of part or all of this work
for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission
of ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
©1995 ACM-0-89791-701-4/95/008Ö$3.50

239

Convert

Sco=0.7

Simulate Render

Geometry ImageCells

Sco=0.0 Sco=1.0

Figure 2: The cellular particle simulator computes the locations, orientations, and other values associatedwith the cells. This information is
converted to geometry and appearance parameters, which is then passed to a renderer to create the image. Note that the cell orientations (red
arrows) become the orientations of the thorns. Using a geometric modeler, we created a geometric object that changes shape from a bump to
a thorn based on a single parameter [31]. We use the cell state variable S to control this parameter (Section 4).

Because of the potentially complicated interdependenciesof the
elements, it is difficult to create either geometric or textural models
of such objects by hand. So we turn to automatic data-amplification
techniques,which are similar to the structured particle systemsused
to generate models of plants [26, 30].

Developmental Approach For generating organic patterns, it is
natural to consider a biologically-based simulation. In previous
work [8], we developed a biological developmental model to simu-
late and study patterns generated by the motions and interactions of
discrete cells (Figure 3). These artificial cells move about,grow, and
divide in a simulated petri dish, the extracellular environment. The
extracellular environment can contain physical barriers, diffusing
chemicals, gravity, etc. The ability to form a variety of interesting
patterns with the system has prompted us to explore its application
to geometric texture generation (Figure 1).

The textures we model are formed from many interacting geo-
metric elements. Actual fur, scales, and thorns may be formed from
single cells or multiple cells [19]. In either case, we assume that
the texture patterns arise from the interactions of discrete elements
capable of movement and orientation change, and model each of
these elements as one cell. The patterns are formed as the cells ex-
perience physical processes of collision, adhesion, and other local
interactions.

Software Structure The approach advocated by this paper is to
automatically grow cellular textures by simulating discrete cells on
surfaces. We then convert the resulting cellular information into
model geometry and coloration, which is rendered. The images
of this paper were generated using oriented, spherical cells, which
are converted into thorns, scales, and other shapes for rendering
(Figure 2).

Overview The remainder of this paper is structured as follows.
Section 2 describes related work. It is followed by an overview
of the system architecture in Section 3. Section 4 describes the
cellular particle system, and includes examples of cell programs
that implement various behaviors. In Section 5 we discuss the
particle converter,which producesgeometry from the cell positions,
orientations and other parameters.

Results are presented in Section 6,which describes the examples
shown in the figures. The final section presents a discussion of the
approach and some directions for future work.

2 Related Work

This approach is a synthesis and extension of work ranging from
morphological models to general texture mapping. In this section,
we discuss our approach in the context of four related areas:

Levels of Detail
Biologically Motivated Morphogenesis
Reaction-Diffusion Methods
Particle Systems

Levels ofDetail Choosing the appropriate level of detail for image
synthesis at a given viewing distance has long been recognized
as an important topic in computer graphics [4, 14, 15]. At large
scales, geometricmodels are necessary; intermediate scales, texture
mapping and similar techniques may be sufficient; at the smallest
scales, illumination models suffice to describe the microgeometry
of the object [38].

The level of detail of the models addressed in this paper falls
somewhere between the use of hand-crafted geometric models and
bump- or texture-mapping. A range of geometric levels is available
to us because of the modular nature of our technique.

Complex, oriented textures have been created and rendered in
manyways, notablywith texels [15]. The texel approach is interme-
diate between geometry and mapping techniques, but leaves open
the question of how to arrange the texel elements appropriately.
Our approach addresses this problem, and can produce models to
be rendered using texels.

Displacementmapping is another technique for adding geomet-
ric detail to surfaces [3]. As with texels, the displacementmapping
technique does not address the problem of determining which dis-
placements are necessary to create a specific effect, such as a field of
similarly oriented thorns. A possible application of our technique

Figure 3: These images demonstrate the pattern formation capabil-
ities of our 2-D cell simulator [8].

240

is to create such displacement maps, for example by creating flow
fields [21].

Biologically Motivated Morphogenesis The cellular develop-
ment systemwhich forms the basis of this work [6, 7, 8] incorporates
elements of several established biological models of morphogen-
esis: Turing’s morphogens [35], Odell’s mechanical models [20],
and Lindenmayer-system cell lineage determinants [24], as well as
our own model of cell contact and adhesion.

Muchwell-known computer graphicswork is biologically based.
The combination of developmental models with geometric con-
straints enables the creation of many organic patterns. It has been
explored in work on plant growth [13, 23], plant organ place-
ment [10], and seashell patterning [9].

Interacting geometric elements were used by [10] to model the
placement of plant organs. Our cells are a generalization of these
elements, with many additional capabilities, including independent
movement, adhesion, and changes in size and orientation due to
cell-cell interaction.

In [9], pigmentation patterns on seashells are modeled using
reaction-diffusion equations on surfaces definedby sweeping a gen-
erating curve along a logarithmic spiral. This shares with our work
the concept of applying pattern formation models on 3-D surfaces.
Their use of continuous reaction-diffusion equations to generate
the patterns differs from our use of discrete cells. For the types of
cellular texture we are investigating, the choice of a discrete model
seems appropriate.

Spatially-oriented models of plant growth are capable of gener-
ating attractive plant images [1, 13]. The placement of geometric
objects in the environment of plants affects their growth. The impor-
tance of combining environmental and endogenousmechanisms in
forming organic shapes in computer graphics has also been demon-
strated using environmentally-sensitive L-systems [23], which al-
low interaction between the environment and the development of
a structure defined by an L-system. In an application to synthetic
topiary, elements sense their global position andorientation, and are
pruned according to a bounding surface. Our work also combines
geometric environmental factors with an endogenous developmen-
tal model to describe cell behavior. We differ from these plant
models by the use of discrete motile cells that are able to move and
rotate independently.

Reaction-Diffusion Methods Reaction-diffusion equationswere
first proposed as a model for morphogenesis by Turing [35]. They
are a continuous approximation to a sheet of many discrete cells
interacting over time. Our system models discrete cells explicitly,
and can generate patterns similar to continuous reaction-diffusion
equations since it is actually a more detailed model of the same
biological system.

Reaction-diffusion equations have been successfully applied to
the generation of texture maps [36, 40]. Because they are based
on natural phenomena, they have an appealing organic quality. In
addition, they avoid problems of parameterization and topology by
creating the pattern directly on a surface. Our approach shares both
of these benefits.

In our 2-D implementation (Figure 3), we include both discrete
cells and a continuous reaction-diffusion computation. The two
models are also able to interact, since the discrete cells can senseand
emit the continuously diffusing chemicals. The 3-D implementation
does not yet support continuously diffusing and reacting chemicals.
However, we are able to reproduce some forms of reaction-diffusion
behavior using cell-cell interaction in the discrete model.

Particle Systems Early particle systems [25, 28] had little or
no interparticle interaction, unlike later work based on molecular
models and other criteria [17, 34]. Our work includes elements of

Witkin and Heckbert’s surface-constrained particles [41], and the
orientation constraints of Szeliski and Tonneson [33]. Reynold’s
“boids” [27] introduced somewhat more sophisticated interacting
particles with programmable behaviors. In addition, his boids, like
our interacting cells, can sense and react to each other and to their
environment.

3 Software Architecture

We arrange the process into three software modules (Figure 2).

cellular particle simulator with surface constraints: computes
locations, orientations, sizes and other parameters of cells
based on a behavioral specification. Allows particles to be
constrained to a surface (implicit, polygon mesh, or volume
dataset isosurface).

parameterized particle-to-geometry converter: converts cell po-
sitions, orientations and other parameters into shape and ap-
pearance parameters.

renderer: takes shape and appearance parameters plus a scene
description and renders the scene. The images in this paper
were generatedwith John Snyder’s ray tracer [32], which was
chosen primarily for its speed on large datasets.

The implementation of our framework involves the addition of
cell-cell interactions, orientation constraints and surface constraints
to a more traditional particle simulator. A simple version of a
particle converter can be implemented using a geometric modeler
to place a geometric object at each particle’s location with the
appropriate size and orientation. The cellular particle simulator and
particle converter are described in further detail in the Sections 4
and 5.

4 Cellular Particle Simulator

The cellular particle system combines cell-cell interactions, cell-
cell adhesion, oriented particles, and surface constraints into one
unified framework. Additional discussion of the cell simulator and
its implementation can be found in [7, 8].

Our system allows the user to specify cell behaviors such as ‘go
to a surface’ and ‘align with neighbors’ by combining modular cell
programs. Cell programs are first-order differential equation terms
that modify the cell’s state (see Table 1).

In Section 4.1 we discuss how to use the simulator, and then
delve into a more detailed mathematical description of the cell pro-
grams in Section 4.2. Section 4.3 describes the cell programs used
to create simulations like those shown in the figures. Section 4.4
presents methods for incorporating various types of surfaces into
our surface constraint method.

4.1 Using the Simulator
For a particular simulation run, the user defines

the cell state variables,
the extracellular environment, and
the cell programs.

The useralso specifies initial placementsand other initial conditions
for the cells.

Users can control the simulation by writing cell programs to
describe the behaviors of the cells, and by putting surfaces into
the environment. More direct interaction is also possible during the
simulation process. The usercan halt the simulation, change the cell
programs, and choose individual cells or groups of cells to modify
or remove. The simulation is then restarted with the modifications.
It is sometimes convenient to freeze certain cell values when they

241

have reached a desirable state. Frozen values remain fixed while
others continue to vary when the simulation is restarted. Particular
seed cells can also be placed and frozen in situations where the user
wishes to achieve a certain effect. For instance, frozen cells with
a particular orientation could encourage fur to run in a particular
direction on a surface.

4.2 Definitions
A cell is an entity that has position, orientation, shape, and an
arbitrary length state vector for parameters such as chemical con-
centrations in a reaction-diffusion simulation. It is a generalization
of a particle in a particle system.

Cell State Variables The state of a cell,

= (r S S
S S S S S S)

is a vector containing values representing position (), orientation
(), size (r), and concentrations of chemicals within the cell (S)
or in the cell membrane (S). The variable S is used to trigger
an event, the cell splitting. This occurs when the value of this state
variable exceeds a threshold, . S is defined similarly, with
an associated threshold, .

In real cells, chemicals in the cell membranes of adjacent cells
can bind together and enable cells to sense that they are in contact.
The chemicals can also be adhesive. The binding of membrane
chemicals is specific; some chemicals bind in complementarypairs,
and others bind to themselves. Ourmodel allows the user to specify
the adhesive properties of the membrane chemicals, and provides
the amount of each boundmembrane chemical as an environmental
parameter (described below).

To define a cell’s motion, we specify cell programs that con-
tribute to , the viscous force on the cell. This is the attempted
motion of the cell, which is further modified by the influence of
collisions, adhesion, and viscous drag. We do not currently com-
pute inertial dynamics, but instead use viscous dynamics (F = mv),
which makes the cells easier to control and predict. Collision forces
are computed using a polynomial penalty function (kxno where xo is
the overlap between two cells).

We represent cell orientation in 3-D using a quaternion. In
the exposition that follows, we sometimes refer to the cell’s local
coordinate frame using the three basis vectors: x y z. This is
the coordinate frame obtained by rotating from the lab frame using
quaternion .

Extracellular Environment The cell’s external environment is
a vector of parameters that are provided as an input to the cell
programs. These parameters describe everything the cell can sense
from its current position:

= (a0 a1 a2 p0 p0 p1 p1

v0 v1

x y z u0 u1)

The ai values represent the amounts of membrane chemicals
that are bound to membrane chemicals on neighboring cells. The
value and gradient of a potential field, such as an implicit function
or the concentration of a diffusing chemical, are provided in pi
and pi . These fields are evaluated at the current location of the
cell, and will generally have different values at different locations.
Other scalar and vector fields can be provided in ui and vi, which
can also be functions of position.

The orientation of a cell relative to its neighbors is made avail-
able to the cell programs in the vectors i . This vector describes
the rotation that would align this cell’s i axis with the average
orientation of the adjacent cells. This parameter is used to align
the orientations of cells, as shown in Figure 8(a) and others. The
direction i specifies the axis of rotation, and the magnitude spec-
ifies the rotation angle (similar to angular velocity). As an example,
consider the computation of the average relative x-axis for a cell b,
computed as a sum over neighboring cells c:

x =
1
n
c neighbors

b
x

c
x

b
x

c
x
cos 1(b

x
c
x)

where x is the x-axis of the cell c, and cell b has n neighbors.

Cell Programs Each cell has several cell programs,which are first
order differential equations describing how its state changes over
time. Examples are given in Table 1 and Section 4.3. A cell program
is a function of the cell’s current state and its environment as
expressed by . Different types of cells use different cell programs
or different combinations of the same cell programs to define their
behaviors. Even if two cells share the same set of cell programs,they
will generally behave differently because they experience different
local conditions depending on their position.

The entire system of differential equations to be solved is ob-
tained by superposing ordinary differential equations from the cell
programs for every cell. Additional equations arise from compu-
tation in the environment (e.g., diffusion of chemicals, although
this is not in the current 3-D implementation). In order to handle
discontinuous changes, such as when cells are created or die, we
use a piecewise ordinary differential equation solver [2, App. C].

Mathematical Basis for Cell Programs Differential equations
are a general tool for creating dynamic behavior. In our cell pro-
grams, we employ equations arising from physical models, as well
as those arising from constraint solution techniques.

Higher order linear differential equations, such as those for
mechanical or chemical systems, can be rewritten as multiple first
order differential equations (i.e., cell programs) with the addition
of state variables. In this case, the simulation dynamics reflect the
dynamics of the equations.

In order towrite constraints as cell programs,we formulate them
as energy functions1 to be minimized [39]. Each constraint is ex-
pressed as an energy function Ei() of the state of the system, ,
and the parameters describing the environment, . Hard constraints
could also fit into this framework using Lagrange multipliers [22].

Using relative constants ki to weight the soft constraints, we
express the overall energy to minimize as:

E() = k1E1() + + knEN()

We can minimize this energy according to gradient descent by
modifying the state according to

dS
dt =

N

i=1

ki
Ei
S

Superposition of Cell Programs Because the overall energy is
expressed as a sum, the cell programs dS dt are also sums of
terms, one for each constraint. We find it convenient to write cell
programs as incremental collections of constraints. We write this as
dS dt += constraint term in our example programs in Table 1.
Multiple cell programs can thus be added together conveniently.

1Note that when we use constraint-based cell programs, the dynamics of our sim-
ulation depends upon the gradient descent algorithm, and is not necessarily physically
meaningful.

242

Behavior Environment Requirements Cell Program

Go to a surface. An implicit surface f () = 0. += k f () f ()

Die if too far from surface. An implicit surface f () = 0. S += 1
d f () S

Align an axis with a vector field. A vector field, (). v k y ()
y () cos

1(y
()
())

y is the cell’s y-axis. += (1 2) v

Align x-axis with neighbors. x , x-axis orientation relative to
neighbors.

+= (1 2) x

Align z-axis with neighbors. z, z-axis orientation relative to
neighbors.

+= (1 2) z

Maintain unit quaternion. += 4k(1)

Adhere to other cells Membrane chemical a2 which binds to
itself.

S += 1 0 S

Divide until surface is covered. , amount of a2 which is bound. S += () S

Set size relative to surface feature size , a value which reflects the size of the
nearest feature on the surface.

r += r

Example of reaction-diffusion in , amounts of bound membrane S += 20 +
discrete cells. chemicals. 10 S2 (1 + S2) 0 5 S + 13

The user has specified that the membrane S += 0 95
chemical a0 binds to a1, and that a2 binds S += (3 S) S
to itself. S += S

S += 5 S
S += 1 S

Table 1: Example Cell Programs. Scalar or vector fields are given as a function of spatial location, , and are evaluated at the current location
of the cell, . See cell program descriptions in Section 4.3.

4.3 Example Cell Programs
The cell programs listed in Table 1 exemplify the types of cell
programs used to make the figures in this paper. We describe each
briefly below.

Remember that the contributions from multiple terms are added
together to make a single differential equation for each state variable
(using the += notation). Many of the cell programs shown here are
of the form Si (t) = dSi dt = Si(t) for some constant , which
causes Si to quickly approach the value .

Go to a surface. This cell program implements a constraint to
keep a cell on the implicit surface f () = 0. An approximation to
the gradient, f (), is also available in the environment. As the
simulation runs, a cell with this program will descend the gradient
and come to rest on the surface. The parameter k determines the
speed with which the particle approaches the surface.

Die if too far from surface. Recall that when the variable S
crosses the threshold , it triggers cell death (Section 4.2). In this
cell program, we cause S to rise towards the threshold quickly
if the cell is greater than a certain distance from the surface. Com-
puting this requires a measure of the distance from the surface. For
the implicit surfaces used in the figures, f () is an approximation
to the distance from the surface.

The equation in Table 1 causes cells at a distance greater than d
to die. Similar cell programs can cause a cell to die if it becomes too
large, its orientation strays too far from neighboring cells, or due to

any other condition that is a function of the cell’s environment and
internal state.

Align with a vector field. In this example, we align the cell’s y-
axis, y with a given vector field (). The vector field is evaluated
at the cell’s current location, .

We first compute the vector v, which represents the transfor-
mation required to rotate the y into . v is the axis of rotation,
and the length of v specifies the angle through which to rotate.
The formulation works with any of the cell’s axes.

The form of the cell program comes from the equation

= (1 2)

which defines the rate of change of a quaternion, , for angular
velocity [12].

If we have multiple cell programs of this form, the i terms
add, which allows us to constrain one, two, or all three axes of the
cells. If the orientation constraints conflict, the cell’s orientation
will approach the average orientation. If they don’t conflict, all
constraints will become satisfied.

Align with neighbors. The three orientation constraints on the
cell’s x-, y- and z-axes fully constrain its orientation. Constraining
two axes would be sufficient in most cases, except where the vector
field () happenedto be collinear with the x- or z-axis. Having the
extra constraint keeps us from running into problems in that case,
and also aids the convergence of the cell alignment process.

243

Maintain unit quaternion. It is wise to add a constraint to ensure
that the quaternion does not stray too far from a unit quaternion
during the integration of the differential equations. We can do
this with another simple constraint. Table 1 shows a term for
this constraint that comes from minimizing the energy expression
E = (1)2, which describes the deviation of from a unit
quaternion.

Adhere to other cells. This equation causes the variable S
(representing the surface chemical a2) to approach and stay at the
value 1.0. A pair of cells expressing a2 will stick together once
they come in contact, and a force is required to pull them apart. The
environment vector for each cell will report the amount of chemical
bound on each cell, , which may be used in other cell programs
to determine if the cell has contacted another cell. The amount
bound is computed from the contact area between the two cells, and
the concentrations on each cell.

Divide until surface is covered. Divide until the amount of bound
surface chemical a2 reaches the level . reports the total
amount bound from all cells that are in contact, which gives the cell
a means of determining how many neighbors it has. Note that the
mechanism has more general utility than just counting neighbors.
For instance, a cellwith twice the concentration ofa0will contribute
more to .

The auxiliary function () is used in this cell program
to compute a continuous version of the condition ().
The function (a b) computes a continuous version of the boolean
condition (b a):

(a b) (((b a)) + 1) 2

The value of this function will be near one for (b a) and near
zero for (a b).

Set size relative to surface feature size. In Figure 1, the cell sizes
are related to the sizes of features in the polygonal database. This
is achieved by providing the cells with a value that represents
the area of the nearest triangle. The value could be used to
pass information about local curvature or any other parameter that
we wish to use to change the cell behavior.

Example of reaction-diffusion in discrete cells. The full deriva-
tion [7] of this set of equations is beyond the scope of this paper,
however we will describe the equations briefly. The first equation
in this set defines a genetic switch [18] that tends to drive S to-
wards one of two values, depending on the influence of the term

. In terms of Meinhardt’s activator-inhibitor models [16],
S is the activator and S is the inhibitor, which is propagated
by the activity of membrane chemicals. The other equations deter-
mine interactions of membrane chemicals that lead to an effective
diffusion of the value of S among the cells. The value of S can
then be used to determine the final rendered shape of the cell, as
illustrated in to Figures 2 and 7.

4.4 Surface Constraints
Wehave applied surface constraints to a variety of surface classes:

polygonal mesh,
implicit function, and
isosurfaces of volume data.

The surface constraint cell program evaluates an implicit func-
tion to enable the cell to find and stay on the surface (Table 1).

Several of the surfaces used to create the figures are defined by
triangular meshes. We create a rough approximation to an implicit
function for these meshes. Any implicitization method will work,
and in fact it doesn’t have to be very exact. We implement this
function by constructing an approximate kd-tree for the triangular
mesh. In constructing a true kd-tree, each additional vertex may
add several new partitions. Our approximation adds only the one
necessary partition for each added vertex. This makes the tree
smaller and faster to precompute, but no longer actually gives the
closest point. To evaluate the function, we look up the triangle
center in the kd-tree supposedly nearest to a given point. We then
check adjacent triangles to see if they are closer, to improve the
characteristics of the approximation. We then compute the direction
and distance to that triangle, and use it as we would the gradient
of an implicit function. We find the approximation, in conjunction
with the local search, to be satisfactory for this application.

5 Particle Converter

The particle converter converts information about the particles and
their environment into geometry and appearance parameters for
rendering. It receives all of the results of the simulation, includ-
ing the position, orientation and size of each cell, concentration
of reaction-diffusion chemicals, and other arbitrary user-defined
parameters, such as type or color. It also may have access to infor-
mation about how far each cell is from the surface and properties of
the surface near the cell (e.g, curvature) The converter also knows
which cells contact each other.

The particle converter concept has proven to be extremely con-
venient. It enables us to do a variety of useful operations, includ-
ing:

choosing an appropriate representation for each cell based on
its screen size (Figure 4);
smoothly changing the appearance of a cell based on a con-
tinuously varying parameter (Figure 7);
using the cell positions to generate a spatial subdivision (sim-
ilar to [33, 37, 41]);
using the cell orientations to compute a flow field on the
surface (useful for displacement maps [21]); and
experimenting with various colorations and geometries using
the same simulation dataset.

The output of the particle converter is a collection of geometry
and appearance information suitable for a particular renderer. This
collection will generally include one or more geometric primitives
for each cell, and the local texture, transparency, or bump informa-
tion. The geometry can be simple, as in Figure 5, where each cell is
rendered as a few polygons with a mottled-green texture map. Or
it can be more complicated, as in the parameterized 3D thorn shape
that curls based on cell state information (Figure 7 (c)).

The particle converter can also use contact information to calcu-
late the size or shape of geometric primitives based on neighboring
cell proximity, or to interpolate parameters such as orientation be-
tween cell centers.

We have implemented two particle converters. One provides
options for choosing a particular geometry and texture for each cell.
In addition, it considers information associatedwith the underlying
polygons, such as which body part it represents in an anatomical
model (lips, eyes, etc.) This can be used to change the rendering
of cells in certain areas, as can be seen on the lips of the man in
Figure 1.

Our second particle converter was implemented using a general
purpose modeler [31]. Taking advantage of the flexibility of this
modeler, we can create parameterized objects such as the bump-to-
thorn shape shown in Figure 2. The modeler is used to create the

244

Figure 4: In the top image, the thorny spheres at further distances
are rendered with fewer polygons. The bottom image shows a
closeup of the nearest and furthest objects, so we can see the re-
duced number of polygons.

thorny spheres in Figure 7.

Rendering an appropriately scaled representation One of the
drawbacks of data amplification techniques [30, 26] such as ours is
their ability to generate a ridiculous amount of geometry to render.
To ameliorate this, we use the particle converter to choosegeometric
primitives appropriate to the size of the object in the final image
(Figure 4). This approach could be carried even further,for instance,
by creating texture maps based on the cell positions.

6 Results

In this section we list a series of examples that highlight features of
our system.

Scales Figure 5 shows four views of a spherical object with a
uniform covering of similarly-oriented cells. The cell programs
used here incorporate terms to divide until the surface is covered,
to stay on the surface, and to die if pushed too far off of the surface.
Initially, several cells were placed near the surface, and allowed to
divide and wander. The cells were also given a soft constraint to
align their y-axes with the gradient of the surface implicit function,
and to align their x- and z-axes with their neighbors.

Note that two singularities in the orientations of cells arise nat-
urally on the sphere, due to its topology. One is visible on the near

Figure 5: Scales: Four views of a spherical object uniformly cov-
eredwith similarly oriented cells. Each cell is rendered as a groupof
four polygons with a texture and transparency map. The polygons
are tilted slightly to give a layered appearance.

Figure 6: Cellular textures can handle unusual topologies.

side of the upper right sphere. Unlike standard texture mapping, this
method introduces no particular parameterization problems, such as
stretching or shrinking of the texture.

A Knotty Problem Figure 6 shows that the cellular texture ap-
proach is capable of creating textures for surfaces with unusual
topologies. It is not necessary to have a parameterization for the
surface. This surface was designed by John Hughes and John Sny-
der.

Thorny Head: Changing cell size to match surface features
The examples described so far have used cells that are relatively

245

uniform in size. Figure 1 shows an example where the cell size
is related to the detail level in the underlying polygonal model.
We achieve this by providing the cells with another environmental
variable: the area of the nearest triangle in the underlying polygon
mesh. Note the finer texture and geometry around the eyes and
mouth.

Different rendering parameters were chosen according to prop-
erties of the underlying polygonal model. Each polygon in the
underlying database is associated with a region of the body. The
particle converter assigned different shading properties to the cells
in the head and neck regions. At the eyes, the underlying polygonal
representation shows through the cell texture.

Thorny Spheres: Differentiated cellular textures This example
shows several important capabilities of the system. It shows

the creationof simple reaction-diffusion patterns on a surface,
the use of the concentrations of cell chemicals to change
parameters of the rendered geometry, and
the ability to restart simulations from an previous state with
new cell programs, causing new behaviors to occur.

These cells are using reaction-diffusion equations similar to
those in Table 1 to create patterns of chemicals in the cells. The
diffusion of chemicals occurs by contact between cell membranes,
thus it can only occur between adjacent cells.

Using a geometric modeler, we created a parameterized geo-
metric object that changes from a bump to a thorn based on a single
parameter [31]. The particle converter sets this parameter to the
value of a state variable representing the concentration of one of the
reaction-diffusion chemicals.

We can see that there is a patch of cells on the front of the sphere
with very little of the chemical (rendered as bumps), and a larger
patch on the back with more of the chemical (rendered as thorns).
In addition to the sharp boundary between the patches, note that the
height of the thorns on the back patch varies continuously as they
sweep around the sphere.

These simulations began where the earlier sphere simulation of
Figure 5 left off, with new rules to cause the cells to differentiate.
This is a common motif of user interaction with the system: halt a
simulation, modify cell programs and parameters, and then continue
simulating.

A Bear of a Surface In Figure 8, we show a fur-covered model of
a bear defined as an isosurface of sampled volume data. We would
like for the bear’s fur to have a natural-looking orientation [15]. The
bear on the left, with the fully combed fur, started from a single cell
and used a set of rules similar to those used for Figure 5 to distribute
and orient the cells. Each cell on the bear is rendered with a group
of geometric objects meant to roughly represent a hunk of thick
hair.

The bear on the right, with the patchy fur, was the result of a
serendipitous combination of unintentional cell programs. Rather
than having each cell align with all of its neighbors, each cell
chooses one neighbor to align with. Also, cells do not attempt
to align with neighbors that are oriented in the directly opposing
direction. This bear started from about 2000 arbitrarily chosen cells
on the surface.

Additional, more specific, orientation constraints could cause
the fur to run more naturally down the limbs. Other cell programs
could be added to cause the fur to be shorter in the region of the
face and longer on the haunches, or to change the coloration based
on the orientation or curvature of the bear’s features.

7 Discussion

The combination of particle constraint techniqueswith developmen-
tal models enables the generation of a variety of cellular textures,
as shown in the figures. We have found the approach to be a pow-
erful method of creating attractive computer graphics models of
organic objects. In our experience with making cellular textures,
we encountered some difficulties, which we describe below. Some
of these limitations are associatedwith our current implementation,
and can be remedied without changing the basic framework. The
problems with simulation speed and data explosion are less easily
finessed, and will require further research to address fully.

Some commercially produced computer graphics films and vi-
deos contain models that have textures that appear similar to ours.
The techniques used to generate them are generally proprietary
and unpublished, hence we cannot definitively compare them with
our work. Software for orienting fur on a CG character has been
developed at Industrial Light & Magic [5]. It is interesting to note
that their discussion of the difficulties encountered closely parallels
our own experience.

Shapes The spherical shapes of cells in a simulation generally are
not the shapeswewant to render, and so the particle convertermight
makeobjects with undesirable intersections. This can beminimized
by a careful choice of cell geometry, but a more robust solution is
to use the desired geometric shape directly in the cellular particle
simulation. This would allow cell programs to calculate collisions
based on more accurate geometry.

Experiencewith Writing Cell Programs Writing cell programs
can be difficult. Programming independentlymoving cells by spec-
ifying differential equations has many desirable properties, but re-
quires a different intuition than other types of programming, and
often takes a while to get right. As with many tasks, it gets easier
with practice. Here are some suggestions for using this program-
ming paradigm:

Copy and combine known cell programs from other research-
ers, such as surface or orientation constraints [41, 33].
Think about the constraints in the energy formulation (Sec-
tion 4, and [39]).
Satisfy one constraint at a time; e.g., first get cell positions
right, then modify other attributes.
Force certain problemcells to be a certain way (through direct
interaction, Section 4.1).
Kill problem cells and regrow (Section 4.1).
Apply artificial evolution [29], and be patient.

Simulation Speed Simulations can be slow for some kinds of
cell programs. We have some that run in seconds, and others, like
the large datasets, that take many hours (e.g., the bear in Figure 8,
and the head in Figure 1). Generally, performance degrades as the
differential equations get stiff [11]. For some behaviors, clever cell
programs like those described in [41] avoid creating stiff differential
equations, and so run faster.

Data Explosion The data produced both by the simulation and
by the particle converter can get very large. We have partially
addressed this by parameterizing the particle converter output by
viewing distance (Figure 4). However, the simulation still has to
compute enough cells to cover the surfaces, independentof viewing
distance.

246

Figure 7: Varying Thorns. Reaction-diffusion-like equations determine the pattern of bumps and thorns on these spheres. Note the
continuously varying thorn height and thorn curvature on the center and rightmost spheres.

Figure 8: The bear on the left is fully combed, with all cells oriented like their neighbors. The bear on the right has patches of similarly-
oriented cells.

Future Work
There are several directions in which we would like to extend this
work. First, we plan to continue extending and refining the cell
programs to generate more complex cellular textures. We also
are interested in running simulations on objects as they move and
change shape. Modeling the motion of feathers on the wings of a
flying bird, or hair on a running animal would be exciting. Initial
experiments (not discussed in this paper) indicate that this will be
feasible.

Implementing more sophisticated cell geometries in the particle
simulator will give us more realistic placement of detail, and avoid
self-intersections in the rendering. Finally, we would like to explore
the possibilities of creating shapes directly from the fundamental

interactions of the cells, without the surface constraint.

Acknowledgments

Many thanks to Erik Winfree for designing and implementing the
kd-tree approximation, as well as for providing many helpful sug-
gestions. We are grateful to Allen Corcorran, Matt Avalos, Cindy
Ball, Dan Fain, Louise Foucher, Marcel Gavriliu, Barbara Meier,
Mark Montague, Alf Mikula, Preston Pfarner, Ravi Ramamoorthi,
Dian De Sha, and Denis Zorin for valuable discussions, support,
code, and proofreading. MRI data was taken at the Huntington
MRI center in Pasadena, CA.

This work was supported in part by grants from Apple, DEC,

247

Hewlett Packard, and IBM. Additional support was provided by
NSF (ASC-89-20219) as part of the NSF/ARPA STC for Com-
puterGraphics and ScientificVisualization, by theDOE (DE-FG03-
92ER25134) as part of the Center for Research in Computational
Biology, the Beckman Foundation, and by the National Institute
on Drug Abuse and the National Institute of Mental Health as part
of the Human Brain Project. All opinions, findings, conclusions,
or recommendations expressed in this document are those of the
authors and do not necessarily reflect the views of the sponsoring
agencies.

REFERENCES
[1] James Arvo and David Kirk. Modeling plants with environment-

sensitive automata. In Proceedings of Ausgraph ’88, pages 27–33,
1988.

[2] Ronen Barzel. Physically-Based Modeling: A Structured Approach.
Academic Press, Cambridge, MA, 1992.

[3] Robert L. Cook. Shade trees. In Computer Graphics (SIGGRAPH ’84
Proceedings), volume 18, pages 223–231, July 1984.

[4] F. C. Crow. A more flexible image generation environment. In Com-
puter Graphics (SIGGRAPH ’82 Proceedings), volume 16, pages 9–
18, July 1982.

[5] Jody Duncan. The making of a rockbuster. Cinefex: the Journal of
Cinematic Illusions, 58:34–65, June 1994.

[6] Kurt Fleischer. Cells: Simulations of multicellular development. In
SiggraphVideo Review, 1994. A video presented at Siggraph 94.

[7] Kurt W. Fleischer. A Multiple-Mechanism Developmental Model for
Defining Self-Organizing Structures. PhD dissertation, Caltech, De-
partment of Computation and Neural Systems, June 1995.

[8] KurtW. Fleischer and Alan H. Barr. A simulation testbed for the study
of multicellular development: The multiple mechanisms of morpho-
genesis. In Artificial Life III. Addison-Wesley, 1994.

[9] Deborah R. Fowler, Hans Meinhardt, and Przemyslaw Prusinkiewicz.
Modeling seashells. InComputerGraphics (SIGGRAPH ’92Proceed-
ings), volume 26, pages 379–388, July 1992.

[10] Deborah R. Fowler, Przemyslaw Prusinkiewicz, and JohannesBattjes.
A collision-based model of spiral phyllotaxis. In Computer Graphics
(SIGGRAPH ’92 Proceedings),volume 26, pages 361–368,July 1992.

[11] C.W. Gear. Numerical Initial Value Problems in OrdinaryDifferential
Equations. Prentice-Hall, Englewood Cliffs, NJ, 1971.

[12] Goldstein. Classical Mechanics. Addison-Wesley, 1980.
[13] Ned Greene. Voxel space automata: Modeling with stochastic growth

processes in voxel space. In Computer Graphics (SIGGRAPH ’89
Proceedings), volume 23, pages 175–184, July 1989.

[14] JamesT. Kajiya. Anisotropic reflectionmodels. InComputerGraphics
(SIGGRAPH ’85 Proceedings), volume 19, pages 15–21, July 1985.

[15] James T. Kajiya and Timothy L. Kay. Rendering fur with three dimen-
sional textures. InComputer Graphics (SIGGRAPH ’89 Proceedings),
volume 23, pages 271–280, July 1989.

[16] Hans Meinhardt. Models of Biological Pattern Formation. Academic
Press, London, 1982.

[17] Gavin Miller and Andrew Pearce. Globular dynamics: A connected
particle system for animating viscousfluids. ComputersandGraphics,
13(3):305–309, 1989.

[18] J. D. Murray.MathematicalBiology. Springer-Verlag, New York, 2nd
edition, 1993.

[19] B. N. Nagorcka, V. S. Manoranjan, and J. D. Murray. Complex spatial
patterns from tissue interactions – an illustrative model. Journal of
Theoretical Biology, 128:359–374, 1987.

[20] Garrett M. Odell, George Oster, P. Alberch, and B. Burnside. The
mechanical basis ofmorphogenesis.DevelopmentalBiology,85, 1981.

[21] Hans Køhling Pedersen. Displacement mapping using flow fields. In
Proceedingsof SIGGRAPH ’94 (Orlando, Florida, July 24–29, 1994),
pages 279–286. ACM Press, July 1994.

[22] John Platt. Constraint Methods for Neural Networks and Computer
Graphics. PhD dissertation, Caltech, Department of Computer Sci-
ence, Pasadena, CA, 91125, 1989.

[23] Przemyslaw Prusinkiewicz, Mark James, and Radomiŕ Měch. Syn-
thetic topiary. In Proceedings of SIGGRAPH ’94 (Orlando, Florida,
July 24–29, 1994), pages 351–358. ACM Press, July 1994.

[24] PrzemyslawPrusinkiewicz andAristid Lindenmayer. The Algorithmic
Beauty of Plants. Springer-Verlag, New York, 1990.

[25] W. T. Reeves. Particle systems – a technique for modeling a class of
fuzzy objects. ACM Trans. Graphics, 2:91–108, April 1983.

[26] William T. Reeves and Ricki Blau. Approximate and probabilistic
algorithms for shading and rendering structured particle systems. In
Computer Graphics (SIGGRAPH ’85 Proceedings), volume 19, pages
313–322, July 1985.

[27] Craig W. Reynolds. Flocks, herds, and schools: A distributed behav-
ioral model. In Computer Graphics (SIGGRAPH ’87 Proceedings),
volume 21, pages 25–34, July 1987.

[28] Karl Sims. Particle animation and rendering using data parallel com-
putation. In Computer Graphics (SIGGRAPH ’90 Proceedings), vol-
ume 24, pages 405–413, August 1990.

[29] Karl Sims. Artificial evolution for computer graphics. In Computer
Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages 319–328,
July 1991.

[30] Alvy Ray Smith. Plants, fractals and formal languages. In Computer
Graphics (SIGGRAPH ’84 Proceedings),volume 18, pages 1–10, July
1984.

[31] John Snyder. GenerativeModeling for Computer Graphics and CAD:
Symbolic Shape Design using Interval Analysis. Academic Press,
1992.

[32] John M. Snyder and Alan H. Barr. Ray tracing complex models
containing surface tessellations. In Computer Graphics (SIGGRAPH
’87 Proceedings), volume 21, pages 119–128, July 1987.

[33] Richard Szeliski and David Tonnesen. Surface modelingwith oriented
particle systems. In Computer Graphics (SIGGRAPH ’92 Proceed-
ings), volume 26, pages 185–194, July 1992.

[34] Demetri Terzopoulos, John Platt, and Kurt Fleischer. From goop to
glop: Heating and melting deformable models. In Graphics Interface
89, 1989.

[35] Alan Turing. The chemical basis of morphogenesis. Phil. Trans. B.,
237, 1952.

[36] Greg Turk. Generating textures for arbitrary surfaces using reaction-
diffusion. In Computer Graphics (SIGGRAPH ’91 Proceedings), vol-
ume 25, pages 289–298, July 1991.

[37] Greg Turk. Re-tiling polygonal surfaces. In Computer Graphics
(SIGGRAPH ’92 Proceedings), volume 26, pages 55–64, July 1992.

[38] Stephen H. Westin, James R. Arvo, and Kenneth E. Torrance. Pre-
dicting reflectance functions from complex surfaces. In Computer
Graphics (SIGGRAPH ’92 Proceedings), volume 26, pages 255–264,
July 1992.

[39] Andrew Witkin, Kurt Fleischer, and Alan Barr. Energy constraints
on parameterized models. In Computer Graphics (SIGGRAPH ’87
Proceedings), volume 21, pages 225–232, July 1987.

[40] Andrew Witkin and Michael Kass. Reaction-diffusion textures. In
Computer Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages
299–308, July 1991.

[41] Andrew P. Witkin and Paul S. Heckbert. Using particles to sample and
control implicit surfaces. InProceedingsof SIGGRAPH ’94 (Orlando,
Florida, July 24–29, 1994), pages 269–278. ACM Press, July 1994.

248

