
to produce an image of a highly glazed patterned teapot,
as in Figure 10.

Resource Requirements

The images shown in this paper were all generated
on a PDP-I 1/45 computer having a 256K-byte random
access frame buffer which was used as the depth buffer.
The main routines were written in Fortran and the
critical parts were written in assembly language. The
computation time of the extended subdivision algo-
rithm is roughly proportional to the area covered by
visible objects. Images of nontextured objects of
the type used in this paper take about 25 minutes. The
addition of texture or reflection increases this time by
about l0 percent. All images have a resolution of
512)< 512 picture elements.

Graphics and
Image Processing

Hierarchical
Geometric Models for
Visible Surface
Algorithms
James H. Clark
University of California at Santa Cruz

Conclusions

By refining and extending Catmull 's subdivision
algorithm, images can be generated having a far higher
degree of naturalness than was previously possible.
These generalizations result in improved techniques
for generating patterns and texture, and in the new
capability for simulating reflections.

References
1. Bui-Tuong Phong. Illumination for computer generated images.
Comm. ACM 18, 6 (June 1975), 311-317.
2. Catmuli, E.A. Computer display of curved surfaces. Proc.
Conf. on Comptr. Graphics, Pattern Recognition, and Data
Structure, May 1975, pp. ll-17 (IEEE Cat. No. 75CH0981-1C).
3. Crow, F.C. The aliasing problem in computer-synthesized
shaded images. Tech. Rep. UTEC-CSC-76-015, Dep. Comptr.
Sci., U. of Utah, Salt Lake City, Utah, March 1976.
4. Forrest, A.R. On Coons and other methods for the representa-
tion of curved surfaces. Computer Graphics and Image Processing
1 (1972), 341.
5. Gouraud, H. Computer display of curved surfaces. Tech.
Rep. UTEC-CSC-71-113, Dep. Com ptr. Sci., U. of Utah, Salt
Lake City, Utah, June 1971.
6. Newell, M.E., Newell, R.G., and Sancha, T.L. A solution to
the hidden surface problem. Proc. ACM 1972 Ann. Conf., Boston,
pp. 443-450.
7. Oppenheim, A.V., and Schafer, R.W. Digital Signal Process-
ing. Prentice-Hall, Englewood Cliffs, N.J., 1975, pp. 26-34.
8. Sutherland, I.E., Sproull, R.F., and Schumaker, R.A. A
characterization of ten hidden-surface algorithms. Computing
Surveys 6, 1 (March 1974), 1-55.
9. Warnock, J.E. A hidden-line algorithm for halftone picture
representation. Rep. TR 4-15, Dep. Comptr. Sci., U. of Utah,
Salt Lake City, Utah, 1969.
10. Watkins, G.S. A real-time visible surface algorithm. Tech.
Rep. UTEC-CSC-70-101, Dep. Comptr. Sci., U. of Utah, Salt
Lake City, Utah, June 1970.

547

The geometric structure inherent in the definition
of the shapes of three-dimensional objects and environ-
ments is used not just to define their relative motion and
placement, but also to assist in solving many other
problems of systems for producing pictures by com-
puter. By using an extension of traditional structure
information, or a geometric hierarchy, five significant
improvements to current techniques are possible. First,
the range of complexity of an environment is greatly
increased while the visible complexity of any given scene
is kept within a fixed upper limit. Second, a meaningful
way is provided to vary the amount of detail presented
in a scene. Third, "clipping" becomes a very fast
logarithmic search for the resolvable parts of the en-
vironment within the field of view. Fourth, frame to
flame coherence and clipping define a graphical "work-
ing set," or fraction of the total structure that should
he present in primary store for immediate access by the
visible surface algorithm. Finally, the geometric struc-
ture suggests a recursive descent, visible surface algo-
rithm in which the computation time potentially grows
linearly with the visible complexity of the scene.

Key Words and Phrases: visible surface algorithms,
hidden surface algorithms, hierarchical data structures,
geometric models

CR Categories: 5.31, 8.2

Copyright © 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

A version of this paper was presented at SIGGRAPH 76:
The Third Annual Conference on Computer Graphics, Inter-
active Techniques, and Image Processing, The Wharton School,
University of Pennsylvania, July 14--16, 1976.

Author's address: Information Sciences, University of Cali-
fornia, Santa Cruz, CA 95064.

Communications October 1976
of Volume 19
the ACM Number 10

1. Introduction

1.1 Background
Early research in computer graphics was concerned

with the organization and presentation of graphical
information in the form of real-time line drawings on a
CRT. Many of the concepts of structuring graphical
information were developed by Sutherland in Sketchpad
[19], and the line-drawing graphical displays that re-
sulted from his early research remain the most widely
used today. With the development of integrated circuit
technology, research interests shifted to producing very
realistic, shaded, color pictures of the visible parts of
complex three-dimensional objects. Because of the
desire to utilize television technology, the algorithms
for producing these pictures generated output for a
raster CRT. The pioneering works in this area were by
Schumacker et al. [18] and Wylie et al. [23].

Computer produced pictures now provide one of
the most direct and useful ways of communicating
with the computer. The ability to produce shaded
pictures that illustrate mathematical functions and
physical properties of mathematical models is of in-
contestable value in both research and education.
With the development of computer controlled simu-
lators, a real-time computer displayed environment is
now used to train pilots of aircraft [11, 16], spacecraft
[9] and ocean vessels [2]. Other significant uses of com-
puter pictures include computer aided design [4],
modeling of chemical structures [22], and computer
animation [7, 12]. With this increased value of com-
puter generated pictures, comes an increasing need to
devise efficient algorithms that improve the realism and
enhance the descriptive power of these pictures.

1.2 Motivation for New Research
The underlying motivation for new research on

computer produced pictures is to either enhance the
realism of the pictures or improve the performance of
the algorithms that generate them. Most recent re-
search has addressed a combination of these issues.

There are three basic approaches to improving
picture quality. The first is to devise clever ways to
add information value to a scene without significantly
increasing the total amount of information in the data-
base for the scene, for example, without increasing the
number of polygons used in representing the objects.
Approaches of this type usually make subtle changes
to the visible surface and shading algorithms that result
in greatly improved pictures. Examples are the im-
provements to shading algorithms devised by H.
Gouraud [10] and Bui-Tuong Phong [15].

The second approach is to employ more refined
mathematical models for the objects being rendered
and to devise algorithms that can find the visible surfaces
using these models. The goal of these methods is to
model smooth surfaces with surface patches, such as
Coons patches [5] or B-splines [4, 17], rather than with

548

clusters of polygons, and still not increase the size of
the database, Catmull's [3] ingenious algorithm is an
example of this approach. The benefit of these methods
is that an arbitrarily refined description of the model is
present, thus allowing much better renditions of con-
tours and shading. The disadvantage is that because of
nonlinear mathematics, the algorithms are less effi-
cient than polygon-based algorithms.

The third approach is to increase the information in
the database and employ more structured methods for
handling the increased information. The motivation
for this approach is that the information value of a
scene grows in proportion to the amount of informa-
tion in the database for the scene. Newell's [13] al-
gorithm is an example of this approach.

The structured approach appears to be the most
promising of these approaches since it potentially im-
proves both picture quality and algorithm performance.
However, there are several problems associated with
this approach. First, increased complexity of a scene,
or increased information in the database, has less
value as the resolution limits of the display are ap-
proached. It makes no sense to use 500 polygons in
describing an object if it covers only 20 raster units of
the display. How do we select only that portion of the
data base that has meaning in the context of the resolu-
tion of the viewing device? Second, how do we ac-
commodate the increased storage requirements of this
additional information? We might, for example, wish
to model a human body to the extent that a closeup
view of the eye shows the patterns of the iris, yet such
a fine description of the entire body will indeed require
large amounts of store. Third, how much information
must be presented to convey the information content
of the scene? In other words, we would like to present
the minimal information needed to convey the meaning
of what is being viewed. For example, when we view
the human body mentioned above from a very large
distance, we might need to present only "specks" for
the eyes, or perhaps just a "block" for the head, totally
eliminating the eyes from consideration. The amount
of information "needed" can be the subject of psycho-
logical debate, but it is clear that even coarse decisions
will yield more manageable scenes than attempting to
use all of the available information.

These issues have not previously been addressed in
a unified way. The research described here represents
an attempt to solve these and related problems.

2. Summary of Existing Algorithms

Visible surface algorithms may be categorized ac-
cording to whether they employ polygons, parametric
surface patches, or procedures as the underlying method
of modeling the surfaces they render. The most thor-
oughly studied types of algorithms use polygons. How-
ever, because of the shortcomings of representing

Communications October 1976
of Volume 19
the ACM Number 10

smooth surfaces with faceted clusters of polygons,
some research interest has recently been devoted to
parametric surface algorithms, which allow higher
degrees of continuity than just positional continuity.
The algorithms for these different modeling methods
will be discussed separately.

2.1 Polygon-Based Algorithms
A highly informative survey of existing polygon-

based visible surface algorithms has been written by
Sutherland et al. [20]. As they point out, a convenient
way to classify these algorithms is according to the
order in which they sort the image space polygons that
are potentially visible in a scene. The basic difference
between the major algorithms is in whether they sort
in depth (from the viewpoint) before the vertical-
horizontal sort, or vice versa.

Depth-first sort. The most significant algorithms to
use this sorting order are due to Schumacker et al. [18]
and Newell et al. [14]. Schumacker utilizes this order
along with a polygon clustering concept to achieve a
coherence from one frame to the next, while Newell
utilizes it to render translucent images. By first com-
puting a priority ordering of polygons according to
their image space distance from the screen, they are
able to establish which polygon segments on a given
scan line have visibility priority.

Newell uses this information to write those segments
with a lesser priority into a scan-line buffer before
writing in those with a greater priority. Thus greater
priority segments which are from translucent polygons
only modify the intensity values in the buffer rather
than completely overwriting them. While there is
clearly a considerable overhead in writing into the
buffer segments that might eventually be obscured,
some beautiful pictures have resulted from this work.

Schumacker's goal is to produce real-time picture
sequences. Rather than writing the polygon segment
information for a scan-line into a buffer according to
its priority, a set of priority-ordered hardware registers
are simultaneously loaded with the priority-ordered
segment information. Then as the scan line is displayed,
the register information is counted down and a com-
binational-logic network selects the appropriate highest
priority register according to its lateral displacement
on the screen. This approach requires a separate set of
registers for each polygon segment that intersects the
scan line. Nonetheless, it represents the first real-time
solution to the visible surface problem [9].

There are two very significant features to Schu-
maeker's work. First, he makes use of a priori knowl-
edge of the database to compute fixed priorities for
clusters of polygons. If the polygons in a group of
polygons are not subject to changes in relative place-
ment, they form a cluster and may be assigned fixed
priorities which work no matter from where the cluster
is viewed. Thus part of the priority ordering is fixed
with the environment and need not be recomputed

549

each frame. Second, he shows that if the environment
is restricted so that the clusters are linearly separable,
an intercluster priority can be established that does
not change unless the viewpoint crosses one of the
separating planes; hence, the priority ordering remains
fixed from one frame to the next unless one of the
planes is crossed.

This work by Schumacker and coworkers represents
the only visible surface algorithm to make use of both
structured information (clustering) and frame to frame
coherence (relatively constant intercluster priority).
These very important concepts will be discussed in
more detail later.

Depth-last sort. The algorithms that use this sort-
ing order have been devised by Watkins [21], Bou-
knight [1], and Wylie et al. [23]. They are referred to as
scan-line algorithms and differ only in their use of
various image-space coherence properties. All three
first perform a vertical bucket (radix) sort of polygon
edges according to their uppermost vertices. Then for
each scan line, the various polygon segments on that
scan line are sorted according to their horizontal dis-
placements. The depth sort is deferred until last under
the assumption that the initial two sorts will decrease
the number of depth comparisons needed to determine
final visibility.

Of the three approaches, Watkins' is the most
economical because of its uses of scan-line coherence
and a logarithmic depth search. The assumption of
scan-line coherence is that in going from one scan line
to the next, the number of changed polygon segments is
small; hence the horizontal sort may be optimized to
take advantage of this. Watkins' is the only other
algorithm besides Schumacker's that has been imple-
mented in hardware.

2.2 Parametric Surface Algorithms
Modeling smooth surfaces with collections of

polygons leads to problems both in shading the sur-
face and in rendering the contour edges. While there
have been a number of very clever improvements to
the quality of such pictures without significantly in-
creasing the amount of information used, notably
those of Gouraud [10], Phong [15], and Crow [6], the
most direct approach is to employ a more refined model,
such as parametric surface patches. Such patches can
be used to define the surface using no more, and usually
even less, information than is required with polygons.
Yet they can join together with tangent or even higher
continuity, thus eliminating the above problems. The
difficulty with this method is that the mathematics is
no longer linear; to explicitly solve for such things as
the curve of intersection of two bi-cubic patches or of a
patch and a clipping plane are very difficult problems.

Catmull [3] solves such problems, but not ex-
plicitly. Rather, he does so by employing the discrete
character of the image space, a recursive algorithm,
and what he calls a Z-buffer. For each patch in the

Communications October 1976
of Volume 19
the ACM Number 10

environment his algorithm asks: does the patch extend
over more than a single raster unit? If the answer is
yes, the patch is subdivided (by a very fast algorithm
for bi-cubic patches) into four patches and the same
question is recursively asked of these patches. When the
answer finally is no, an attempt is made to write the
intensity and depth coordinates for the resulting
"patch" into a buffer for the raster unit, or pixel, in
question. The attempt fails if the pixel buffer already
has in it a depth coordinate nearer to the observer
(with some minor modifications to allow for translucent
patches).

A very significant feature of Catmull's algorithm is
that, despite the more complex mathematics, it will
actually work faster than polygon-based algorithms
if the object being rendered occupies a very small area
of the screen. Because of the recursive structure of the
algorithm, it will "structure" the surface no more
finely than the resolution of the display dictates,
whereas current polygon-based algorithms keep the
same structural description, i.e. the same number of
polygons, no matter how much of the screen area is
occupied. This notion of structuring will be extended
to include polygon-based algorithms in the next section.

2.3 Procedurally Modeled Objects
Newell [13] has recently employed procedural model-

ing to solve the visible surface problem for complex
scenes. According to this approach, objects are modeled
using procedures which "know how" to render them-
selves in terms of their own primitives, which might
include activations of other object procedures; such
knowledge includes rendering only their visible parts.
This is a very general way to represent objects.

Although the underlying philosophy of this approach
is very general, in the actual implementation Newell
user polygons as the basic primitives for the objects. The
object procedures are activated according to a priority
ordering so that more distant objects are activated
first. Each procedure renders the object it represents by
activating the Watkins process, the results of which
are written into a frame buffer. The net result is there-
fore a "hybrid" Watkins/Newell priority algorithm.

The significant point about this algorithm is not
the procedural modeling but that it represents another
example of structuring to simplify the total so~ting
problem, namely that the geometric primitives of one
object need be compared with those of another only
when the objects overlap.

the structures employed take a diverse variety of forms,
from Catmull's implicit structuring of surface patches
to Newell's procedural objects. What is needed is a
single, unified, structural approach that embodies all
of the ideas from these algorithms. Before presenting
one such approach it is instructive to consider two
ways in which structure has been utilized to prepare
objects for visible surface processing.

3.1 Existing Uses of Structure

Defining relative placement. The benefits of a posi-
tion or motion structure have been realized for some
time. Sutherland used such concepts in two dimensions
in Sketchpad, and a number of graphics hardware
companies incorporate transformation hardware in
their display devices to accommodate structural de-
scriptions. Most of the visible surface algorithms pre-
sented used a position or motion structure to describe
positions and orientations of objects relative to each
other. However, all but the few mentioned in Section
2 disregard the structure at the visible surface algorithm
level. That is, all polygons of the objects are trans-
formed into a common screen coordinate system in
which the visible surface algorithm works.

An example of such a structure is shown in Figure
1. Each node in the hierarchy represents a set of geo-
metric primitives (e.g. polygons) defining the node and
the arc leading to the node represents a transformation
defining the orientation and placement of the node
relative to its "parent." Because each node has its
own unique transformation defining it, it may represent
one of many "instances" of the same primitive de-
scription, or data set. This is a very convenient and
general way to define and place objects.

Decreasing clipping time. When simulating a camera
in a computer-generated environment, some parts of the
environment must be "clipped" to the field of view of
the simulated camera. This can be done either by trans-
forming all of the geometric primitives of each object
into the camera, or screen, coordinate system and clip-
ping each of them separately or by first clipping some
bounding volume of the object to see if it intersects the
boundaries of the field of view. If it does not, then the
parts of the object lie either totally within or totally
outside of the field of view and thus need not be sepa-
rately clipped. This utilization of the above mentioned
position hierarchy is implicitly assumed, although this
author does not know if the authors of the various
algorithms actually made such use of it.

3. Hierarchical Approach

It was indicated in the previous section that, aside
from uses of image-space coherence to reduce the
amount of sorting required, the most fruitful gains in
visible surface algorithm research have resulted from
structuring the environments being rendered. However,

3.2 New Uses of Structure

Varying environment detail. By choosing to represent
an object with a certain amount of detail, one fixes the
minimum distance from which the object may be dis-
played with a realistic rendering. For example, a
dodecahedron looks like a sphere from a sufficiently
large distance and thus can be used to model it so long

550 Communications October 1976
of Volume 19
the ACM Number 10

Fig. 1. The traditional motion structure used to position objects
relative to the "world" and subobjects relative to objects. Each
arc in the graph represents a transformation.

/

C A M E R A

)
T c

T I 1" 2 ~ \ T 3

T T

2 \
T T

/ \

as it is viewed from that or a greater distance. However,
if it must ever be viewed more closely, it will look like a
dodecahedron. One solution to this is simply to define
it with the most detail that will ever be necessary.
However, then it might have far more detail than is
needed to represent it at large distances, and in a com-
plex environment with many such objects, there would
be too many polygons (or other geometric primitives)
for the visible surface algorithms to efficiently handle.

As mentioned in Section 2, the solution to this
problem has been to define objects relatively coarsely
and employ clever algorithms that smooth appropriate
contours or improve shading to make the object look
more realistic at close observation. The difficulty with
these approaches is that at best the range of viewing
depth is only slightly improved, and the problem of too
much detail at large distances usually remains. Al-
though these approaches have yielded results of un-
questionable value, it seems evident that multiple levels
of description must be used to adequately represent
complex environments. 1

How does one represent these multiple levels of
description? A solution is to define "objects" in a
hierarchy like that of Figure 2. The entire environment
is itself an "object" and is represented as a rooted tree.
("Object" is a generic term for the things represented
by nodes of the tree. This generic term will be used
for the remainder of this paper.) There are two types of
arcs in the tree, those that represent transformations
as before and those that represent pointers to more
detailed structure (the identity transformation). Each
nonterminal node represents a "sufficient" description
of the "object" if it covers no more than some small

1Actually, Evans and Sutherland made use of a three-level
description of the New York skyline in its Maritime simulation,
but in an ad hoc way [2].

area of the display; the arcs leading from the node
point to more detailed "objects" which collectively
define a more detailed version of the original object if
its description is insufficient because it covers a larger
area of the screen. The terminal nodes of the tree repre-
sent either polygons or surface patches (or other primi-
tives) according to whether they are primitive elements
of a faceted or a smooth object.

As an example of such a description, consider a
model of the human body. When viewed at a very large
distance, for example when the body covers only 3 or 4
display raster units, it is sufficient to model the body
with a single rectangular polyhedron with appropriate
color. Therefore the uppermost node, or "object ," for
this body represents this simple description. If the body
is viewed from a closer distance--for example, if its
topmost node's description covers 16 raster uni ts--
then this topmost description is no longer sufficient,
and the next level of more refined description is needed.
At this next level the body is now perhaps described as
a collection of rectangular polyhedra appropriately
attached to each other, for example using one poly-
hedron for each of the arms and legs, the head and the
torso. Then so long as each of these "objects" covers
only a few raster units of the display, their description
is "sufficient." When the viewing distance decreases
such that any of them covers a critical maximum area
of the display, its more detailed subobjects are used to
replace its description. This process is carried out to
whatever maximum level of detail will be needed. For
example, a terminal level of description of the fingertip
might be several surface patches (which could be im-
plicitly structured even more finely using Catmull's
algorithm).

The body described is just one "object" of an en-
vironment, or larger hierarchy. There might be many
such bodies, or other objects. The significant point,
however, is that in a complex environment, the amount
of information presented about the various objects in
the environment varies according to the fraction of the
field of view occupied by these objects.

It is worth noting again that CatmuU's algorithm,
described in the previous section, implicitly built such
a structure. His algorithm used this structure in such a
way that, despite the more complex mathematics of
surface patches, it outperforms polygon-based algo-
rithms if the surface occupies a small area of the screen.
Thus it seems that such a structure should lead to im-
provements in polygon-based algorithms as well.

Clipping: a truncated logarithmic search. The choice
of this structural representation poses another problem.
How does one select only that portion of a potentially
very large hierarchy that is meaningful in the context of
the viewpoint and the resolution of the viewing device?
In other words, clipping in a broader sense must mean
selecting not only that part of the environment within
the field of view (the usual meaning) but also just the
resolvable part. This implies finding the visible nodes of

551 Communications October 1976
of Volume 19
the ACM Number 10

the tree, as shown in Figure 2. The contour shown in the
figure represents a possible set of objects that are within
the field of view and are both not too large and not too
small for the screen areas they occupy.

In order to efficiently perform this clipping opera-
tion some minimal description of object sizes must be
available. For example, a bounding rectangular box or
a bounding sphere would be sufficient information to
test whether an object is totally within or totally outside
of the field of view. The minimum necessary informa-
tion is the center and radius of a bounding sphere.

This general structure therefore suggests a very
fast clipping algorithm which recursively descends the
tree, transforming (if necessary) this minimal informa-
tion into perspective viewing coordinates and testing
both the area occupied by the bounding sphere and its
intersection with the boundaries of the field of view.
The criterion for descending a level is the area test,
while the criterion for inclusion/rejection is the field
of view boundary test. Only after either the area test
terminates the descent or the terminal level of repre-
sentation is reached is it necessary to actually trans-
form and possibly clip the polygons or surface patches
represented by the node. Clipping therefore resembles a
logarithmic search that is truncated by the area (re-
solvability) test.

This relatively simple mechanism for varying the de-
tail in a scene suggests several other interesting possi-
bilities. Since the center of attention of a scene is often
its geometric center, one might effectively render the
scene with a center-weighting of detail. In other words,
the maximum area an object is allowed to cover before
splitting it into its subobjects becomes larger towards
the periphery of the field of view. This is somewhat
analogous to the center-weighted metering systems of
some cameras. Likewise, since moving objects are less
resolved by both the human eye (because of saccadic
suppression) and a camera (because of blurring), one
can render them with an amount of detail that varies
inversely with their speeds. Indeed, an entire scene
might be rendered with less detail if the camera is
moving. Thus "clipping" can be extended to include
these concepts as well.

Graphical working set. Since the problems addressed
by this model are those associated with producing
pictures and picture sequences of very complex en-
vironments, the excessive storage needed for the geo-
metric description of these environments must some-
how be accommodated. Denning's "working set"
model for program behavior provides a useful analogy
[8]. According to this model, a computer program that
makes excessive demands on immediate-access store
is structured or segmented, and its storage demands
are managed in such a way that only those segments
most recently in use are actually kept in immediate-
access store. The remaining potentially large number of
segments are kept on a slower, secondary store, such
as a disk. The "working set" is that set of segments

Fig. 2. A very deep hierarchy that structures the environment
much more than the traditional motion structure. Arcs in this
graph represent either transformations or pointers to more re-
fined definitions of the node. The visible part contour represents a
possible result of clipping.

C a m e r a

Eavironment ~ T J

/

available for immediate access, and is usually defined
by a time average of past program reference patterns.
Reference to an unavailable segment causes that seg-
ment to become part of the working set, and segments
not accessed after some period of time are deleted
from the working set.

This working set model coupled with the broader
sense of clipping mentioned above suggests a suitable
way to accomplish a particular type of frame coherence.
The working set in this context is that set of objects in
the hierarchy that are "near" to the field of view, inside
it, or "near" to the resolution of the image space.
Only if an object is a member of this set is its description
kept in immediate-access store. The set membership
will change slowly since the differences between one
scene and the next are usually small. Those cases in
which the differences are large due to fast camera (or
object) motion are easily accommodated by rendering
the scene (or object) with less detail, as mentioned
above. Moreover, the minimal description of node size
needed for clipping suffices as the graphical analog of
the segment table used in the computer program con-
text. That is, this minimal clipping description must
always be available in immediate-access store to facili-
tate determining the working set. This working set
model therefore seems particularly well suited to the
graphics context.

552 Communications October 1976
of Volume 19
the ACM Number 10

Improving existing algorithms. There are two ways
in which a geometric hierarchy should lead to improve-
ments in existing algorithms. The first is by reducing the
number of comparisons needed to sort objects and the
second is by eliminating from potential consideration
an entire portion of the environment because an object
obscures it.

Since sorting is the central problem of visible surface
algorithms, the performance of these algorithms im-
proves with improved sorting methods. Indeed, many
of the fast visible surface algorithms that have been
discussed have resulted from clever utilization of image-
space coherences, such as scan-line coherence, to im-
prove sorting speeds. In the present hierarchical frame-
work, the geometric proximity of the subobjects of an
object provides an object-space coherence that can also
be utilized to decrease sorting time.

For example, consider an ideal case of a binary tree
as shown in Figure 3. Each node of the tree has as-
sociated with it a bounding volume, but since this
ideal tree is the result of clipping, only the terminal
nodes actually represent geometric primitives, e.g.
polygons or patches. Assuming that there are n levels
in the tree, not counting the root node, there are m =
2" terminal nodes.

If the structure is ignored, then the fastest possible
sort of these terminal nodes is accomplished with pro-
portional to m log2m comparisons using a quicksort.
However, if the structure is utilized and if the bounding
volumes of siblings do not overlap, which is admittedly
an optimum arrangement, then the number of required
operations is p2 ° for the first level, p21 for the second

Fig. 3. An ideal binary hierarchy in which none ot" the terminal
nodes overlap. The first p2 0 comparison sorts all objects into two
classes, the second p21 comparisons sort them into 4 classes, etc.
Summing all comparisons from all levels yields p(2 n - 1)
comparisons.

Ideal Environment Number of

comparisons

p2 °

p2 I

p2 2

• P 2n - I

T ota l : p(2n-I)

553

level, p2 2 for the third, etc., where p is a proportionality
factor. Summing the number of operations performed
at all levels yields p)-'~'_~0 ~ 2 i = p(2 - - 1), or roughly
pm. In other words, by using the structure, in the
optimum situation of no overlap, the sorting time grows
linearly rather than as rn log2m.

Of course, this analysis holds only for a binary
hierarchy in which none of the siblings' bounding vol-
umes overlap, which is an idealized situation. A binary
hierarchy might not be appropriate, and any complex
environment will no doubt have some overlap, although
presumably not a very large amount. However, the
point here is that sorting methods which utilize the
geometric structure can yield a considerable per-
formance improvement over those which do not, even
under less than ideal conditions.

The other improvement provided by a deeply
structured geometric hierarchy is that of eliminating a
potentially large part of the structure from considera-
tion because an object obscures it. Such an improve-
ment requires defining for each object (in the generic
sense) both a simple occluded volume, A, such that if
A is obscured then the entire object is obscured, and a
simple occluding volume, 6, such that if 6 obscures
something then that thing is sure to be obscured by the
object. Clearly, A exists for all objects, whereas/~ might
not exist for some objects, such as an open-ended cyl-
inder or a transparent object. A can be just the bounding
sphere used in clipping, but /~ is in general additional
information that must be kept for each object.

Recursive descent, visible surface algorithm. The
above considerations suggest a totally new recursive-
descent visible surface algorithm in which at each level
all objects are sorted according to their bounding
volumes. If any of the bounding volumes overlap both
laterally and vertically then the occlusion test potentially
allows one (or more) of the objects, and hence all of
its descendents, to be totally eliminated from con-
sideration.

Using the ordering thus obtained, the same sorting
and occlusion tests are recursively applied to each of
the descendants of these objects; in those cases where
two or more objects' bounding volumes overlap in
all three dimensions, indicating potential intersections,
the descendents of these objects are treated as if they
have the same parent nodes at the next level of recur-
sion. Of course, recursion terminates when a terminal
node is reached, and the net result of descending the
tree is a very rapid sort of the primitives represented
by these terminal nodes. Under ideal conditions, the
computation time of this algorithm grows linearly with
the visible complexity of the scene.

Since both this algorithm and the clipping algo-
rithm described above recursively descend a tree struc-
ture, it seems natural to combine them. Doing so not
only potentially eliminates area tests on occluded ob-
jects but also potentially decreases the size of the work-
ing set. If all processing is performed by a single pro-

Communications October 197 6
of Volume 19
the ACM Number 10

cessor, such as a general purpose computer, then the
algorithms are probably most conveniently integrated
into a single algorithm. However, if multiple processors
are available, whether special purpose hardware or
general purpose computers, then the algorithms might
be left separate or combined according to whether
parallelism is achieved by pipelining or otherwise.

Building structured databases. Obtaining a good
graphical database is a very time consuming and diffi-
cult part of computer picture research. Databases
obtained by careful measurement of real objects, by
"building" objects from collections of simple mathe-
matical objects, or by sculpturing surfaces in three di-
mensions [4] are at least as valuable as the visible
surface algorithms that render them.

At first glance it appears that the structural frame-
work multiplies the dimensions of this problem since
multiple descriptions of the same object must be de-
fined. However, in the case of carefully measured real
objects, the multiple descriptions can be produced by
judicious "bo t t om-up" pruning of existing definitions
of the objects in their most detailed form. Therefore use
can be made of all objects that have already been
defined.

Those existing objects modeled with surface patches
also present no problem. The coarser, high-level de-
scriptions of these objects can be obtained by replacing
the patches themselves with polygons and proceeding
with the "bo t t om-up" pruning mentioned above to
obtain even coarser descriptions. The finer, low-level
descriptions of the objects can be obtained by "top-
down" splitting of the surface patches, as in the Cat-
mull algorithm. This can be done either at display time
or beforehand in building the database; the difference
is the traditional t ime/space tradeoff.

4. Conclusions

All of the recent major advances in computer pic-
ture research have resulted from either explicitly or
implicitly incorporating structure information in the
geometric modeling techniques. This research represents
an at tempt to encompass all of these advances in a
more general structural framework as a unified ap-
proach to solving a number of the important problems
of systems for producing computer pictures.

The proposed hierarchical models potentially solve
a number of these problems. They provide a meaningful
way to vary the amount of detail in a scene both ac-
cording to the screen area occupied by the objects in the
scene and according to the speed with which an object
or the camera is moving. They also extend the total
range of definition of the object space and suggest
convenient ways to rapidly access objects by utilizing
a graphical working set to accomplish frame coherence.

An important aspect of the hierarchical models is
that by providing a way to vary detail they can yield

an incremental improvement to existing systems for
producing computer pictures without modifying their
visible surface algorithms. Another incremental im-
provement is then possible by incorporating the struc-
ture in the sorting phases of existing algorithms. A
final improvement is suggested by a totally new re-
cursive descent visible surface algorithm in which the
computat ion time potentially grows linearly with the
visible complexity of a scene rather than as a worse
than linear function of the object-space complexity.

References
1. Bouknight, W.J. A procedure for generation of three-dimen-
sional half-toned computer graphics representations. Comm. ACM,
13, 9 (Sept. 1970), 527.
2. Computer Aided Operations and Research Facility, U.S.
Maritime Service Simulator (principal contractor Philco-Ford,
visible-surface processor by Evans and Sutherland Comptr. Corp.).
3. CatmuU, E. A subdivision algorithm for computer display of
curved surfaces. Tech. Rep. UTEC-CSc-74-133, U. of Utah, Salt
Lake City, Utah, Dec. 1974.
4. Clark, J.H. 3-D design of free-form B-spline surfaces.
UTEC-CSc-74-120, Ph.D. Th., U. of Utah, Salt Lake City, Utah,
(abridged version Designing surfaces in 3-D. Comm. ACM 19,
8 (Aug. 1976), 464-470.)
5. Coons, S.A. Surfaces for computer-aided design of space
forms. Project MAC TR-41., M.I.T., Cambridge, Mass., June 1967.
6. Crow, F.C., and Bui-Tuong Phong. Improved Rendition of Poly-
gonal Models of Curved Surfaces. Proc. Second USAJapan
Comptr. Conf., Aug. 1975, p. 475.
7. Csuri, C. Computer animation, Computer Graphics 9, 1
(1975), 92-101 (Issue of Proc. Second Ann. Conf. Comptr.
Graphics and Interactive Techniques).
8. Denning, P.J. The working set model for program behavior.
Comm. ACM, 11, 5 (May 1968), 323-333.
9. Electonic scene generator expansion system. Final Rep.,
NASA Contract NAS 9-11065, Defense Electronic Div., General
Electric Corp., Syracuse, N.Y., Dec. 1971.
10. Gouraud, H. Computer display of curved surfaces. IEEE
Trans. Computers C-20 (June 1971), 623.
11. Nasa-Ames Short Take-off and Landing Simulator (built
by Evans and Sutherland Comptr. Corp.).
12. New York Inst. Tech., Comptr. Animation Dep.
13. Newell, M. The utilization of procedure models in digital
image synthesis. Ph.D. Th., Comptr. Sci., U. of Utah, Salt Lake
City, Utah, 1975.
14. Newell, M.E., NeweU, R.G., and Sancha, T.L. A new solution
to the hidden-surface problem. Proc. ACM 1972 Ann. Conf.,
pp. 443-448.
15. Bui-Tuong Phong. Illumination for computer generated pictures.
Comm. ACM 18, 6 (June 1975), 311-317.
16. Rediflow Flight Simulation, Ltd., NOVOVIEW Visual
Systems (video system provided by E&S Comptr. Corp.).
17. Riesenfeld, R.E. Applications of B-spline approximation to
geometric problems of computer aided design. Ph.D. Th., Syra-
cuse U., Syracuse, N.Y., 1972.
18. Schumacker, R.A., Brand, B., Gilliland, M., and Sharp, W.
Study for applying computer-generated images to visual simula-
tions. AFHRL-TR-69-74, US Air Force Human Resources Lab.,
Washington, D.C., Sept. 1969.
19. Sutherland, I.E. Sketchpad: a man-machine graphical com-
munication system. TR 296, M.I.T Lincoln Labs, M.I.T., Cam-
bridge, Mass., Jan. 1963.
20. Sutherland, I.E., Sproull, R.F., and Schumacker, R.A. A
characterization of ten hidden-surface algorithms. Computing
Surveys, 6, 1 (March 1974), 1-55.
21. Watkins, G.S. A real-time visible-surface algorithm. UTECH-
CSc-70-101, Ph.D. Th., Comptr. Sci. Dep., U. of Utah, Salt Lake
City, Utah, June, 1970.
22. Wipke, T., et al. Computer Representation and Manipulation
of Chemical Information. Wylie Interscience, New York, 1974.
23. Wylie, C., Romney, R.S., Evans, D.C., and Erdahl, A. Half-
tone perspective drawings by computer. Proc. AFIPS 1967 FJCC,
Vol. 31, AFIPS Press, Montvale, N.J., pp. 49-58.

554 Communications October 1976
of Volume 19
the ACM Number 10

