
to produce an image of a highly glazed patterned teapot, 
as in Figure 10. 

Resource Requirements 

The images shown in this paper were all generated 
on a PDP-I  1/45 computer having a 256K-byte random 
access frame buffer which was used as the depth buffer. 
The main routines were written in Fortran and the 
critical parts were written in assembly language. The 
computation time of the extended subdivision algo- 
rithm is roughly proportional to the area covered by 
visible objects. Images of nontextured objects of 
the type used in this paper take about 25 minutes. The 
addition of texture or reflection increases this time by 
about l0 percent. All images have a resolution of 
512)< 512 picture elements. 
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Conclusions 

By refining and extending Catmull 's subdivision 
algorithm, images can be generated having a far higher 
degree of naturalness than was previously possible. 
These generalizations result in improved techniques 
for generating patterns and texture, and in the new 
capability for simulating reflections. 
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The geometric structure inherent in the definition 
of the shapes of three-dimensional objects and environ- 
ments is used not just to define their relative motion and 
placement, but also to assist in solving many other 
problems of systems for producing pictures by com- 
puter. By using an extension of traditional structure 
information, or a geometric hierarchy, five significant 
improvements to current techniques are possible. First, 
the range of complexity of an environment is greatly 
increased while the visible complexity of any given scene 
is kept within a fixed upper limit. Second, a meaningful 
way is provided to vary the amount of detail presented 
in a scene. Third, "clipping" becomes a very fast 
logarithmic search for the resolvable parts of the en- 
vironment within the field of view. Fourth, frame to 
flame coherence and clipping define a graphical "work- 
ing set," or fraction of the total structure that should 
he present in primary store for immediate access by the 
visible surface algorithm. Finally, the geometric struc- 
ture suggests a recursive descent, visible surface algo- 
rithm in which the computation time potentially grows 
linearly with the visible complexity of the scene. 
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1. Introduction 

1.1 Background 
Early research in computer graphics was concerned 

with the organization and presentation of graphical 
information in the form of real-time line drawings on a 
CRT. Many of the concepts of structuring graphical 
information were developed by Sutherland in Sketchpad 
[19], and the line-drawing graphical displays that re- 
sulted from his early research remain the most widely 
used today. With the development of integrated circuit 
technology, research interests shifted to producing very 
realistic, shaded, color pictures of the visible parts of 
complex three-dimensional objects. Because of the 
desire to utilize television technology, the algorithms 
for producing these pictures generated output for a 
raster CRT. The pioneering works in this area were by 
Schumacker et al. [18] and Wylie et al. [23]. 

Computer produced pictures now provide one of 
the most direct and useful ways of communicating 
with the computer. The ability to produce shaded 
pictures that illustrate mathematical functions and 
physical properties of mathematical models is of in- 
contestable value in both research and education. 
With the development of computer controlled simu- 
lators, a real-time computer displayed environment is 
now used to train pilots of aircraft [11, 16], spacecraft 
[9] and ocean vessels [2]. Other significant uses of com- 
puter pictures include computer aided design [4], 
modeling of chemical structures [22], and computer 
animation [7, 12]. With this increased value of com- 
puter generated pictures, comes an increasing need to 
devise efficient algorithms that improve the realism and 
enhance the descriptive power of these pictures. 

1.2 Motivation for New Research 
The underlying motivation for new research on 

computer produced pictures is to either enhance the 
realism of the pictures or improve the performance of 
the algorithms that generate them. Most recent re- 
search has addressed a combination of these issues. 

There are three basic approaches to improving 
picture quality. The first is to devise clever ways to 
add information value to a scene without significantly 
increasing the total amount of information in the data- 
base for the scene, for example, without increasing the 
number of polygons used in representing the objects. 
Approaches of this type usually make subtle changes 
to the visible surface and shading algorithms that result 
in greatly improved pictures. Examples are the im- 
provements to shading algorithms devised by H. 
Gouraud [10] and Bui-Tuong Phong [15]. 

The second approach is to employ more refined 
mathematical models for the objects being rendered 
and to devise algorithms that can find the visible surfaces 
using these models. The goal of these methods is to 
model smooth surfaces with surface patches, such as 
Coons patches [5] or B-splines [4, 17], rather than with 
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clusters of polygons, and still not increase the size of 
the database, Catmull's [3] ingenious algorithm is an 
example of this approach. The benefit of these methods 
is that an arbitrarily refined description of the model is 
present, thus allowing much better renditions of con- 
tours and shading. The disadvantage is that because of 
nonlinear mathematics, the algorithms are less effi- 
cient than polygon-based algorithms. 

The third approach is to increase the information in 
the database and employ more structured methods for 
handling the increased information. The motivation 
for this approach is that the information value of a 
scene grows in proportion to the amount of informa- 
tion in the database for the scene. Newell's [13] al- 
gorithm is an example of this approach. 

The structured approach appears to be the most 
promising of these approaches since it potentially im- 
proves both picture quality and algorithm performance. 
However, there are several problems associated with 
this approach. First, increased complexity of a scene, 
or increased information in the database, has less 
value as the resolution limits of the display are ap- 
proached. It makes no sense to use 500 polygons in 
describing an object if it covers only 20 raster units of 
the display. How do we select only that portion of the 
data base that has meaning in the context of the resolu- 
tion of the viewing device? Second, how do we ac- 
commodate the increased storage requirements of this 
additional information? We might, for example, wish 
to model a human body to the extent that a closeup 
view of the eye shows the patterns of the iris, yet such 
a fine description of the entire body will indeed require 
large amounts of store. Third, how much information 
must be presented to convey the information content 
of the scene? In other words, we would like to present 
the minimal information needed to convey the meaning 
of what is being viewed. For example, when we view 
the human body mentioned above from a very large 
distance, we might need to present only "specks" for 
the eyes, or perhaps just a "block" for the head, totally 
eliminating the eyes from consideration. The amount 
of information "needed" can be the subject of psycho- 
logical debate, but it is clear that even coarse decisions 
will yield more manageable scenes than attempting to 
use all of the available information. 

These issues have not previously been addressed in 
a unified way. The research described here represents 
an attempt to solve these and related problems. 

2. Summary of Existing Algorithms 

Visible surface algorithms may be categorized ac- 
cording to whether they employ polygons, parametric 
surface patches, or procedures as the underlying method 
of modeling the surfaces they render. The most thor- 
oughly studied types of algorithms use polygons. How- 
ever, because of the shortcomings of representing 
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smooth surfaces with faceted clusters of polygons, 
some research interest has recently been devoted to 
parametric surface algorithms, which allow higher 
degrees of continuity than just positional continuity. 
The algorithms for these different modeling methods 
will be discussed separately. 

2.1 Polygon-Based Algorithms 
A highly informative survey of existing polygon- 

based visible surface algorithms has been written by 
Sutherland et al. [20]. As they point out, a convenient 
way to classify these algorithms is according to the 
order in which they sort the image space polygons that 
are potentially visible in a scene. The basic difference 
between the major algorithms is in whether they sort 
in depth (from the viewpoint) before the vertical- 
horizontal sort, or vice versa. 

Depth-first sort. The most significant algorithms to 
use this sorting order are due to Schumacker et al. [18] 
and Newell et al. [14]. Schumacker utilizes this order 
along with a polygon clustering concept to achieve a 
coherence from one frame to the next, while Newell 
utilizes it to render translucent images. By first com- 
puting a priority ordering of polygons according to 
their image space distance from the screen, they are 
able to establish which polygon segments on a given 
scan line have visibility priority. 

Newell uses this information to write those segments 
with a lesser priority into a scan-line buffer before 
writing in those with a greater priority. Thus greater 
priority segments which are from translucent polygons 
only modify the intensity values in the buffer rather 
than completely overwriting them. While there is 
clearly a considerable overhead in writing into the 
buffer segments that might eventually be obscured, 
some beautiful pictures have resulted from this work. 

Schumacker's goal is to produce real-time picture 
sequences. Rather than writing the polygon segment 
information for a scan-line into a buffer according to 
its priority, a set of priority-ordered hardware registers 
are simultaneously loaded with the priority-ordered 
segment information. Then as the scan line is displayed, 
the register information is counted down and a com- 
binational-logic network selects the appropriate highest 
priority register according to its lateral displacement 
on the screen. This approach requires a separate set of 
registers for each polygon segment that intersects the 
scan line. Nonetheless, it represents the first real-time 
solution to the visible surface problem [9]. 

There are two very significant features to Schu- 
maeker's work. First, he makes use of a priori knowl- 
edge of the database to compute fixed priorities for 
clusters of polygons. If  the polygons in a group of 
polygons are not subject to changes in relative place- 
ment, they form a cluster and may be assigned fixed 
priorities which work no matter from where the cluster 
is viewed. Thus part of the priority ordering is fixed 
with the environment and need not be recomputed 
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each frame. Second, he shows that if the environment 
is restricted so that the clusters are linearly separable, 
an intercluster priority can be established that does 
not change unless the viewpoint crosses one of the 
separating planes; hence, the priority ordering remains 
fixed from one frame to the next unless one of the 
planes is crossed. 

This work by Schumacker and coworkers represents 
the only visible surface algorithm to make use of both 
structured information (clustering) and frame to frame 
coherence (relatively constant intercluster priority). 
These very important concepts will be discussed in 
more detail later. 

Depth-last sort. The algorithms that use this sort- 
ing order have been devised by Watkins [21], Bou- 
knight [1], and Wylie et al. [23]. They are referred to as 
scan-line algorithms and differ only in their use of 
various image-space coherence properties. All three 
first perform a vertical bucket (radix) sort of polygon 
edges according to their uppermost vertices. Then for 
each scan line, the various polygon segments on that 
scan line are sorted according to their horizontal dis- 
placements. The depth sort is deferred until last under 
the assumption that the initial two sorts will decrease 
the number of depth comparisons needed to determine 
final visibility. 

Of the three approaches, Watkins' is the most 
economical because of its uses of scan-line coherence 
and a logarithmic depth search. The assumption of 
scan-line coherence is that in going from one scan line 
to the next, the number of changed polygon segments is 
small; hence the horizontal sort may be optimized to 
take advantage of this. Watkins' is the only other 
algorithm besides Schumacker's that has been imple- 
mented in hardware. 

2.2 Parametric Surface Algorithms 
Modeling smooth surfaces with collections of 

polygons leads to problems both in shading the sur- 
face and in rendering the contour edges. While there 
have been a number of very clever improvements to 
the quality of such pictures without significantly in- 
creasing the amount of information used, notably 
those of Gouraud [10], Phong [15], and Crow [6], the 
most direct approach is to employ a more refined model, 
such as parametric surface patches. Such patches can 
be used to define the surface using no more, and usually 
even less, information than is required with polygons. 
Yet they can join together with tangent or even higher 
continuity, thus eliminating the above problems. The 
difficulty with this method is that the mathematics is 
no longer linear; to explicitly solve for such things as 
the curve of intersection of two bi-cubic patches or of a 
patch and a clipping plane are very difficult problems. 

Catmull [3] solves such problems, but not ex- 
plicitly. Rather, he does so by employing the discrete 
character of the image space, a recursive algorithm, 
and what he calls a Z-buffer. For each patch in the 
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environment his algorithm asks: does the patch extend 
over more than a single raster unit? If the answer is 
yes, the patch is subdivided (by a very fast algorithm 
for bi-cubic patches) into four patches and the same 
question is recursively asked of these patches. When the 
answer finally is no, an attempt is made to write the 
intensity and depth coordinates for the resulting 
"patch" into a buffer for the raster unit, or pixel, in 
question. The attempt fails if the pixel buffer already 
has in it a depth coordinate nearer to the observer 
(with some minor modifications to allow for translucent 
patches). 

A very significant feature of Catmull's algorithm is 
that, despite the more complex mathematics, it will 
actually work faster than polygon-based algorithms 
if the object being rendered occupies a very small area 
of the screen. Because of the recursive structure of the 
algorithm, it will "structure" the surface no more 
finely than the resolution of the display dictates, 
whereas current polygon-based algorithms keep the 
same structural description, i.e. the same number of 
polygons, no matter how much of the screen area is 
occupied. This notion of structuring will be extended 
to include polygon-based algorithms in the next section. 

2.3 Procedurally Modeled Objects 
Newell [13] has recently employed procedural model- 

ing to solve the visible surface problem for complex 
scenes. According to this approach, objects are modeled 
using procedures which "know how" to render them- 
selves in terms of their own primitives, which might 
include activations of other object procedures; such 
knowledge includes rendering only their visible parts. 
This is a very general way to represent objects. 

Although the underlying philosophy of this approach 
is very general, in the actual implementation Newell 
user polygons as the basic primitives for the objects. The 
object procedures are activated according to a priority 
ordering so that more distant objects are activated 
first. Each procedure renders the object it represents by 
activating the Watkins process, the results of which 
are written into a frame buffer. The net result is there- 
fore a "hybrid" Watkins/Newell priority algorithm. 

The significant point about this algorithm is not 
the procedural modeling but that it represents another 
example of structuring to simplify the total so~ting 
problem, namely that the geometric primitives of one 
object need be compared with those of another only 
when the objects overlap. 

the structures employed take a diverse variety of forms, 
from Catmull's implicit structuring of surface patches 
to Newell's procedural objects. What is needed is a 
single, unified, structural approach that embodies all 
of the ideas from these algorithms. Before presenting 
one such approach it is instructive to consider two 
ways in which structure has been utilized to prepare 
objects for visible surface processing. 

3.1 Existing Uses of Structure 

Defining relative placement. The benefits of a posi- 
tion or motion structure have been realized for some 
time. Sutherland used such concepts in two dimensions 
in Sketchpad, and a number of graphics hardware 
companies incorporate transformation hardware in 
their display devices to accommodate structural de- 
scriptions. Most of the visible surface algorithms pre- 
sented used a position or motion structure to describe 
positions and orientations of objects relative to each 
other. However, all but the few mentioned in Section 
2 disregard the structure at the visible surface algorithm 
level. That is, all polygons of the objects are trans- 
formed into a common screen coordinate system in 
which the visible surface algorithm works. 

An example of such a structure is shown in Figure 
1. Each node in the hierarchy represents a set of geo- 
metric primitives (e.g. polygons) defining the node and 
the arc leading to the node represents a transformation 
defining the orientation and placement of the node 
relative to its "parent." Because each node has its 
own unique transformation defining it, it may represent 
one of many "instances" of the same primitive de- 
scription, or data set. This is a very convenient and 
general way to define and place objects. 

Decreasing clipping time. When simulating a camera 
in a computer-generated environment, some parts of the 
environment must be "clipped" to the field of view of 
the simulated camera. This can be done either by trans- 
forming all of the geometric primitives of each object 
into the camera, or screen, coordinate system and clip- 
ping each of them separately or by first clipping some 
bounding volume of the object to see if it intersects the 
boundaries of the field of view. If it does not, then the 
parts of the object lie either totally within or totally 
outside of the field of view and thus need not be sepa- 
rately clipped. This utilization of the above mentioned 
position hierarchy is implicitly assumed, although this 
author does not know if the authors of the various 
algorithms actually made such use of it. 

3. Hierarchical Approach 

It was indicated in the previous section that, aside 
from uses of image-space coherence to reduce the 
amount of sorting required, the most fruitful gains in 
visible surface algorithm research have resulted from 
structuring the environments being rendered. However, 

3.2 New Uses of Structure 

Varying environment detail. By choosing to represent 
an object with a certain amount of detail, one fixes the 
minimum distance from which the object may be dis- 
played with a realistic rendering. For example, a 
dodecahedron looks like a sphere from a sufficiently 
large distance and thus can be used to model it so long 
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Fig. 1. The traditional motion structure used to position objects 
relative to the "world" and subobjects relative to objects. Each 
arc in the graph represents a transformation. 
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as it is viewed from that or a greater distance. However, 
if it must ever be viewed more closely, it will look like a 
dodecahedron. One solution to this is simply to define 
it with the most detail that will ever be necessary. 
However, then it might have far more detail than is 
needed to represent it at large distances, and in a com- 
plex environment with many such objects, there would 
be too many polygons (or other geometric primitives) 
for the visible surface algorithms to efficiently handle. 

As mentioned in Section 2, the solution to this 
problem has been to define objects relatively coarsely 
and employ clever algorithms that smooth appropriate 
contours or improve shading to make the object look 
more realistic at close observation. The difficulty with 
these approaches is that at best the range of viewing 
depth is only slightly improved, and the problem of too 
much detail at large distances usually remains. Al- 
though these approaches have yielded results of  un- 
questionable value, it seems evident that multiple levels 
of description must be used to adequately represent 
complex environments. 1 

How does one represent these multiple levels of 
description? A solution is to define "objects" in a 
hierarchy like that of Figure 2. The entire environment 
is itself an "object"  and is represented as a rooted tree. 
("Object" is a generic term for the things represented 
by nodes of the tree. This generic term will be used 
for the remainder of this paper.) There are two types of  
arcs in the tree, those that represent transformations 
as before and those that represent pointers to more 
detailed structure (the identity transformation). Each 
nonterminal node represents a "sufficient" description 
of  the "object"  if it covers no more than some small 

1Actually, Evans and Sutherland made use of a three-level 
description of the New York skyline in its Maritime simulation, 
but in an ad hoc way [2]. 

area of  the display; the arcs leading from the node 
point to more detailed "objects" which collectively 
define a more detailed version of the original object if 
its description is insufficient because it covers a larger 
area of the screen. The terminal nodes of  the tree repre- 
sent either polygons or surface patches (or other primi- 
tives) according to whether they are primitive elements 
of a faceted or a smooth object. 

As an example of such a description, consider a 
model of the human body. When viewed at a very large 
distance, for example when the body covers only 3 or 4 
display raster units, it is sufficient to model the body 
with a single rectangular polyhedron with appropriate 
color. Therefore the uppermost node, or "object ,"  for 
this body represents this simple description. If  the body 
is viewed from a closer distance--for example, if its 
topmost node's description covers 16 raster uni ts--  
then this topmost description is no longer sufficient, 
and the next level of  more refined description is needed. 
At this next level the body is now perhaps described as 
a collection of rectangular polyhedra appropriately 
attached to each other, for example using one poly- 
hedron for each of the arms and legs, the head and the 
torso. Then so long as each of these "objects" covers 
only a few raster units of the display, their description 
is "sufficient." When the viewing distance decreases 
such that any of them covers a critical maximum area 
of the display, its more detailed subobjects are used to 
replace its description. This process is carried out to 
whatever maximum level of detail will be needed. For  
example, a terminal level of description of the fingertip 
might be several surface patches (which could be im- 
plicitly structured even more finely using Catmull's 
algorithm). 

The body described is just one "object"  of an en- 
vironment, or larger hierarchy. There might be many 
such bodies, or other objects. The significant point, 
however, is that in a complex environment, the amount  
of information presented about the various objects in 
the environment varies according to the fraction of the 
field of view occupied by these objects. 

It is worth noting again that CatmuU's algorithm, 
described in the previous section, implicitly built such 
a structure. His algorithm used this structure in such a 
way that, despite the more complex mathematics of 
surface patches, it outperforms polygon-based algo- 
rithms if the surface occupies a small area of the screen. 
Thus it seems that such a structure should lead to im- 
provements in polygon-based algorithms as well. 

Clipping: a truncated logarithmic search. The choice 
of this structural representation poses another problem. 
How does one select only that portion of a potentially 
very large hierarchy that is meaningful in the context of 
the viewpoint and the resolution of the viewing device? 
In other words, clipping in a broader sense must mean 
selecting not only that part of the environment within 
the field of view (the usual meaning) but also just the 
resolvable part. This implies finding the visible nodes of 

551 Communications October 1976 
of Volume 19 
the ACM Number 10 



the tree, as shown in Figure 2. The contour shown in the 
figure represents a possible set of objects that are within 
the field of view and are both not too large and not too 
small for the screen areas they occupy. 

In order to efficiently perform this clipping opera- 
tion some minimal description of object sizes must be 
available. For  example, a bounding rectangular box or 
a bounding sphere would be sufficient information to 
test whether an object is totally within or totally outside 
of  the field of view. The minimum necessary informa- 
tion is the center and radius of a bounding sphere. 

This general structure therefore suggests a very 
fast clipping algorithm which recursively descends the 
tree, transforming (if necessary) this minimal informa- 
tion into perspective viewing coordinates and testing 
both the area occupied by the bounding sphere and its 
intersection with the boundaries of the field of view. 
The criterion for descending a level is the area test, 
while the criterion for inclusion/rejection is the field 
of view boundary test. Only after either the area test 
terminates the descent or the terminal level of repre- 
sentation is reached is it necessary to actually trans- 
form and possibly clip the polygons or surface patches 
represented by the node. Clipping therefore resembles a 
logarithmic search that is truncated by the area (re- 
solvability) test. 

This relatively simple mechanism for varying the de- 
tail in a scene suggests several other interesting possi- 
bilities. Since the center of attention of a scene is often 
its geometric center, one might effectively render the 
scene with a center-weighting of  detail. In other words, 
the maximum area an object is allowed to cover before 
splitting it into its subobjects becomes larger towards 
the periphery of the field of view. This is somewhat 
analogous to the center-weighted metering systems of  
some cameras. Likewise, since moving objects are less 
resolved by both the human eye (because of saccadic 
suppression) and a camera (because of blurring), one 
can render them with an amount  of detail that varies 
inversely with their speeds. Indeed, an entire scene 
might be rendered with less detail if the camera is 
moving. Thus "clipping" can be extended to include 
these concepts as well. 

Graphical working set. Since the problems addressed 
by this model are those associated with producing 
pictures and picture sequences of very complex en- 
vironments, the excessive storage needed for the geo- 
metric description of these environments must some- 
how be accommodated. Denning's "working set" 
model for program behavior provides a useful analogy 
[8]. According to this model, a computer program that 
makes excessive demands on immediate-access store 
is structured or segmented, and its storage demands 
are managed in such a way that only those segments 
most recently in use are actually kept in immediate- 
access store. The remaining potentially large number of 
segments are kept on a slower, secondary store, such 
as a disk. The "working set" is that set of segments 

Fig. 2. A very deep hierarchy that structures the environment 
much more than the traditional motion structure. Arcs in this 
graph represent either transformations or pointers to more re- 
fined definitions of the node. The visible part contour represents a 
possible result of clipping. 
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available for immediate access, and is usually defined 
by a time average of past program reference patterns. 
Reference to an unavailable segment causes that seg- 
ment to become part of the working set, and segments 
not accessed after some period of time are deleted 
from the working set. 

This working set model coupled with the broader  
sense of  clipping mentioned above suggests a suitable 
way to accomplish a particular type of frame coherence. 
The working set in this context is that set of objects in 
the hierarchy that are "near"  to the field of view, inside 
it, or "near"  to the resolution of the image space. 
Only if an object is a member of this set is its description 
kept in immediate-access store. The set membership 
will change slowly since the differences between one 
scene and the next are usually small. Those cases in 
which the differences are large due to fast camera (or 
object) motion are easily accommodated by rendering 
the scene (or object) with less detail, as mentioned 
above. Moreover, the minimal description of node size 
needed for clipping suffices as the graphical analog of  
the segment table used in the computer program con- 
text. That  is, this minimal clipping description must 
always be available in immediate-access store to facili- 
tate determining the working set. This working set 
model therefore seems particularly well suited to the 
graphics context. 
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Improving existing algorithms. There are two ways 
in which a geometric hierarchy should lead to improve- 
ments in existing algorithms. The first is by reducing the 
number of comparisons needed to sort objects and the 
second is by eliminating from potential consideration 
an entire portion of the environment because an object 
obscures it. 

Since sorting is the central problem of visible surface 
algorithms, the performance of these algorithms im- 
proves with improved sorting methods. Indeed, many 
of the fast visible surface algorithms that have been 
discussed have resulted from clever utilization of image- 
space coherences, such as scan-line coherence, to im- 
prove sorting speeds. In the present hierarchical frame- 
work, the geometric proximity of the subobjects of an 
object provides an object-space coherence that can also 
be utilized to decrease sorting time. 

For  example, consider an ideal case of a binary tree 
as shown in Figure 3. Each node of the tree has as- 
sociated with it a bounding volume, but since this 
ideal tree is the result of clipping, only the terminal 
nodes actually represent geometric primitives, e.g. 
polygons or patches. Assuming that there are n levels 
in the tree, not counting the root node, there are m = 
2" terminal nodes. 

If the structure is ignored, then the fastest possible 
sort of these terminal nodes is accomplished with pro- 
portional to m log2m comparisons using a quicksort. 
However, if the structure is utilized and if the bounding 
volumes of siblings do not overlap, which is admittedly 
an optimum arrangement, then the number of required 
operations is p2 ° for the first level, p21 for the second 

Fig. 3. An ideal binary hierarchy in which none ot" the terminal 
nodes overlap. The first p2 0 comparison sorts all objects into two 
classes, the second p21 comparisons sort them into 4 classes, etc. 
Summing all comparisons from all levels yields p(2 n - 1) 
comparisons. 

Ideal Environment Number of  

comparisons 

p2 ° 

p2 I 

p2 2 

• P 2n - I  

T ota l :  p(2n-I  ) 
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level, p2 2 for the third, etc., where p is a proportionality 
factor. Summing the number of operations performed 
at all levels yields p)-'~'_~0 ~ 2 i = p(2 - - 1), or roughly 
pm. In other words, by using the structure, in the 
optimum situation of no overlap, the sorting time grows 
linearly rather than as rn log2m. 

Of course, this analysis holds only for a binary 
hierarchy in which none of the siblings' bounding vol- 
umes overlap, which is an idealized situation. A binary 
hierarchy might not be appropriate, and any complex 
environment will no doubt have some overlap, although 
presumably not a very large amount. However, the 
point here is that sorting methods which utilize the 
geometric structure can yield a considerable per- 
formance improvement over those which do not, even 
under less than ideal conditions. 

The other improvement provided by a deeply 
structured geometric hierarchy is that of eliminating a 
potentially large part of the structure from considera- 
tion because an object obscures it. Such an improve- 
ment requires defining for each object (in the generic 
sense) both a simple occluded volume, A, such that if 
A is obscured then the entire object is obscured, and a 
simple occluding volume, 6, such that if 6 obscures 
something then that thing is sure to be obscured by the 
object. Clearly, A exists for all objects, whereas/~ might 
not exist for some objects, such as an open-ended cyl- 
inder or a transparent object. A can be just the bounding 
sphere used in clipping, but /~ is in general additional 
information that must be kept for each object. 

Recursive descent, visible surface algorithm. The 
above considerations suggest a totally new recursive- 
descent visible surface algorithm in which at each level 
all objects are sorted according to their bounding 
volumes. If any of the bounding volumes overlap both 
laterally and vertically then the occlusion test potentially 
allows one (or more) of the objects, and hence all of 
its descendents, to be totally eliminated from con- 
sideration. 

Using the ordering thus obtained, the same sorting 
and occlusion tests are recursively applied to each of 
the descendants of these objects; in those cases where 
two or more objects' bounding volumes overlap in 
all three dimensions, indicating potential intersections, 
the descendents of these objects are treated as if they 
have the same parent nodes at the next level of  recur- 
sion. Of course, recursion terminates when a terminal 
node is reached, and the net result of descending the 
tree is a very rapid sort of the primitives represented 
by these terminal nodes. Under ideal conditions, the 
computation time of this algorithm grows linearly with 
the visible complexity of the scene. 

Since both this algorithm and the clipping algo- 
rithm described above recursively descend a tree struc- 
ture, it seems natural to combine them. Doing so not 
only potentially eliminates area tests on occluded ob- 
jects but also potentially decreases the size of the work- 
ing set. If  all processing is performed by a single pro- 
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cessor, such as a general purpose computer,  then the 
algorithms are probably most conveniently integrated 
into a single algorithm. However,  if multiple processors 
are available, whether special purpose hardware or 
general purpose computers,  then the algorithms might 
be left separate or combined according to whether 
parallelism is achieved by pipelining or otherwise. 

Building structured databases. Obtaining a good 
graphical database is a very time consuming and diffi- 
cult part of computer  picture research. Databases 
obtained by careful measurement of  real objects, by 
"building" objects from collections of  simple mathe- 
matical objects, or by sculpturing surfaces in three di- 
mensions [4] are at least as valuable as the visible 
surface algorithms that render them. 

At first glance it appears that the structural frame- 
work multiplies the dimensions of this problem since 
multiple descriptions of  the same object must be de- 
fined. However,  in the case of carefully measured real 
objects, the multiple descriptions can be produced by 
judicious "bo t t om-up"  pruning of existing definitions 
of  the objects in their most  detailed form. Therefore use 
can be made of all objects that have already been 
defined. 

Those existing objects modeled with surface patches 
also present no problem. The coarser, high-level de- 
scriptions of these objects can be obtained by replacing 
the patches themselves with polygons and proceeding 
with the "bo t t om-up"  pruning mentioned above to 
obtain even coarser descriptions. The finer, low-level 
descriptions of the objects can be obtained by "top-  
down" splitting of the surface patches, as in the Cat- 
mull algorithm. This can be done either at display time 
or beforehand in building the database; the difference 
is the traditional t ime/space tradeoff. 

4. Conclusions 

All of  the recent major  advances in computer  pic- 
ture research have resulted from either explicitly or 
implicitly incorporating structure information in the 
geometric modeling techniques. This research represents 
an at tempt to encompass all of  these advances in a 
more general structural framework as a unified ap- 
proach to solving a number  of  the important  problems 
of systems for producing computer  pictures. 

The proposed hierarchical models potentially solve 
a number  of  these problems. They provide a meaningful 
way to vary the amount  of  detail in a scene both ac- 
cording to the screen area occupied by the objects in the 
scene and according to the speed with which an object 
or the camera is moving. They also extend the total 
range of definition of the object space and suggest 
convenient ways to rapidly access objects by utilizing 
a graphical working set to accomplish frame coherence. 

An important  aspect of  the hierarchical models is 
that by providing a way to vary detail they can yield 

an incremental improvement  to existing systems for 
producing computer  pictures without modifying their 
visible surface algorithms. Another  incremental im- 
provement is then possible by incorporating the struc- 
ture in the sorting phases of  existing algorithms. A 
final improvement  is suggested by a totally new re- 
cursive descent visible surface algorithm in which the 
computat ion time potentially grows linearly with the 
visible complexity of  a scene rather than as a worse 
than linear function of the object-space complexity. 
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