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Shading is an important part of computer imagery, but 
shaders have been based on fixed models to which all sur- 
faces must conform. As computer imagery becomes more 
sophisticated, surfaces have more complex shading charac- 
teristics and thus require a less rigid shading model. This 
paper presents a flexible tree-structured shading model 
that can represent a wide range of shading characteristics. 
The model provides an easy means for specifying complex 
shading characteristics. It is also efficient because it can 
tailor the shading calculations to each type of surface. 
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1. I n t r o d u c t i o n  

Making synthetic images look realistic is an important 
goal in computer imagery for two reasons. First, some 
applications require a high degree of realism as an end in 
itself. Second and more generally, realism acts as a meas- 
ure of our techniques and understanding. To the degree 
that we lack the ability to make pictures look realistic, 
we also lack some artistic control. 

Making a realistic image involves solving a number of 
different problems. This paper addresses the problem of 
shading, or selecting colors for points on each surface, 
and more specifically the problem of controlling and 
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directing the shading calculations. Other problems, such 
as constructing a model and animating it, are equally 
important to realistic image synthesis but are not 
addressed in this paper. 

At the heart of the shading calculations is the simulation 
of the way light interacts with objects. Early work in 
reflection models was done by Henri Gouraud[10] and by 
Phong[16], with more accurate models being developed by 
Jim Blinn[2] and by the author[7], who applied the shad- 
ing model to the simulation of specific materials. Blinn 
has developed a separate shading model for clouds[5]. 
Turner Whitted included reflection and refraction[18]. 

Textures allow us to map shading properties onto a sur- 
face mathematically, greatly increasing the visual com- 
plexity and richness of an image without the overhead of 
explicitly modeling those properties. Texturing was first 
used in computer graphics by Ed Catmull[6]. Jim Blinn 
later extended the use of. texturing to surface bumps, 
roughness, and reflections[I, 4, 3]. Geoff Gardner 
included texturing of transparency[9]. 

The trend in shaders has been toward more flexibility and 
generality, as evidenced by Blinn's generalization of tex- 
turing[If and Whitted's shader dispatcher[19]. What has 
been lacking is an overall system that integrates the vari- 
ous shading and texturing techniques. This paper intro- 
duces such a system, one that is based on a more general 
approach to shading. The new approach provides a 
language for describing surfaces and allows traditional 
shading techniques to be combined in novel ways. 

Previous shaders have been limited by the use of fixed 
models of light reflection into which all surfaces must be 
fit. The new approach is modular and assumes that no 
Single shading model is appropriate for all surfaces. In 
some cases utter simplicity is desired, while in others we 
may require a complexity that would normally be a bur- 
den. Because of its modular nature, the new shader can 
handle both of these extremes in the same image; it per- 
forms only the calculations needed for the simple cases 
while allowing arbitrarily complex calculations where they 
are required. 
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2. A p p e a r a n c e  P a r a m e t e r s  

A number of different geometric, material, and environ- 
mental properties together determine the color of a sur- 
face. Any value that is used in the shading calculation is 
called an appearance parameter. Appearance parameters 
include the surface normal, the color of the light source, 
the shininess of the surface, bump maps, etc. 

The traditional approach to shading is to divide the cal- 
culations into two stages: 

1. Determining the values of the appearance param- 
eters. 

2. Using those values to evaluate the fixed shading 
equation. 

This approach can offer a great deal of generality in the 
first stage but is inflexible in the second. Appearance 
parameters may be determined in a number of ways, 
including texture mapping and normal interpolation. The 
shading equation itself, however, is fixed. All surfaces 
must be fit into it, no matter how complex and no matter 
how simple. Little allowance is made for the extremely 
diverse ways in which objects interact with light. 

3. Shade  Trees  

A more general approach is to eliminate the fixed shading 
equation and the entire two stage approach. Rather than 
attempt to describe all possible surfaces with a single 
equation, the shader orchestrates a set of basic opera- 
tions, such as dot products and vector normalization. 
The shader organizes these operations in a tree. 

Each operation is a node of the tree. Each node produces 
one or more appearance parameters as output, and can 
use zero or more appearance parameters as input. For 
example, the inputs to a "diffuse" node are a surface nor- 
mal and a light vector, and the output is an intensity 
value. The normal might come from the geometric nor- 
mal, a bump map, or a procedural texture. The output 
might be the input to a "multiply" node, which would 
multiply the intensity by its other input, a color. 

The shader performs the calculations at the nodes by 
traversing the tree in postorder. The output of the root 
of the tree is the final color. Basic geometric information, 
such as the surface normal and the location of the object, 
are leaves of the tree. (In general, the nodes actually 
form a directed acyclic graph, because a single appear- 
ance parameter can be used as input to more than one 
node.) 

Even an appearance parameter that is usually thought of 
as the final shade can itself be treated as an intermediate 
step. This is particularly useful in rendering a surface 
that consists of different materials. The final shade can 
be a combination of the shades of the various materials, 

with the amount of the various materials based perhaps 
on a texture map. 

Shade trees can describe a wide range of shading situa- 
tions from simplest to the most complex. Different types 
of shading calculations can coexist in a single image, with 
each surface using as many or as few operations as it 
requires. 

4. L ight  T rees  

The appearance parameters used in the shading calcula- 
tions include the light source direction and color. These 
appearance parameters are described by their own tree. 
Light trees are separate from shade trees so that each 
light tree can be grafted onto several different shade 
trees. 

Different types of lights require different calcula- 
tions[17, 11]. The intensity of a local light source changes 
as the square of the distance from the light. Spotlights 
have a goniometric curve that describes their intensity as 
a function of direction. Some lights have flaps that 
abruptly restrict their illumination. All of these lights 
are easily described by light trees. For example, the 
inputs to the "spotlight" tree are the direction of the cen- 
tral axis of the light beam and the rate at which the 
intensity of the beam decreases with angle, in addition to 
the position of the light and the location of the point 
being illuminated. It uses the relevant formulas to calcu- 
late the intensity of the light at that location. These cal- 
culations, which are so specific to this one particular type 
of light source, are isolated from the rest of the shading, 
communicating only through the appearance parameters. 

B. A t m o s p h e r e  Trees  

The final output of a shade tree is the exitance, the color 
and intensity of the light leaving the surface. But this is 
not necessarily the same color and intensity as the light 
that reaches the eye. Atmospheric effects are described 
by a tree that has the exitance as one of its inputs and 
the light actually reaching the eye as its output. 

Atmospheric effects are often described by procedural 
models. For example, haze is an exponential function of 
distance[14, 13] and can vary with direction. Loren Car- 
penter simulated sky and haze in his film Vol Libre and 
developed a general atmosphere model for the Genesis 
sequence in Star Trek II. These models are easily incor- 
porated into atmosphere trees. 

Rainbows can also be described by an atmosphere tree, 
with light being added in the primary and secondary 
bows and subtracted in Alexander's dark band[15, 12]. 
The color and intensity are a function of the angle 
between the light direction and the viewing direction. 
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Figure la.  Shade tree for copper. 
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Figure lb. The mix node in a shade tree for wood. 
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Figure ld.  "Highlight at"  branch of a light tree. Figure le. Simple shade tree. 
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6. I m p l e m e n t a t i o n  

To facilitate describing shade trees and building up a 
library of surfaces, we have developed a special shade tree 
language. A program written in this language is compiled 
into an internal representation of a shade tree. Programs 
in this language are also used to describe light trees and 
atmosphere trees. 

A number of keywords, such as normal and location, refer 
to the basic geometric information provided as input to 
the shader. The final results are referred to by the key- 
words final_color and final_opacity. 

Several types of nodes are built into the language, includ- 
ing mathematical functions such as square root and nor- 

. realize and shading functions such as diffuse and specular. 
Other more specialized nodes can be added dynamically; 
when such a node is declared in the language, the shader 
searches for a file by that name and loads it. This pro- 
vides enough flexibility to add new and exotic shading 
functions easily. 

Variables in the language represent appearance parame- 
ters, and statements describe how to connect the nodes 
with appearance parameters. For example, the following 
program describes metallic shading and defines the shade 
tree shown in Figure la. Note that the ambient and 
specular nodes are built into the language, and that the 
output of the light trees is available to all nodes. 

float a~-~-.Sj s~-~.5 ; 
float roughness~---.1 ; 
f loat intens i ty  ; 
color metal  color-----(1,1,1) ; 
intens i ty  ~ a , a m b i e n t  0 -i- 

s*specular(nor  mal ,v iewer,r  oughness);  
final color ----~ intens i ty  * meta l  color ; 

Point variables can be specified in eye space or in world 
space, whichever is more convenient. World space coordi- 
nates are indicated by preceding them with the keyword 
"world_space". 

This language works in conjunction with a modeling 
language to associate surfaces and light sources with 
objects. A l i g h t  can be assigned to the group of objects 
because some lights affect only part of the environment. 
Its light tree calculations are performed only for the 
objects it affects. 

The surface command in the modeling language desig- 
nates a shade tree for an object. The values of variables 
in the surface language can be overridden here. For 
example, for the above "metal" surface, the statement 

surface  "metal"p 
"metal_color",  mater ia l  bronze ,  
"roughneas"~ .15 

in the modeling language initializes the variable "rough- 
ness" to be .15 instead of the default .1 and 
"metal_color" to be the color of bronze instead of white. 

7 .  E x p e r i e n c e  w i t h  S h a d e  T r e e s  

This section presents several specific examples of shade 
trees and discusses the benefits of this new way of think- 
ing about shading. Since we first started using shade 
trees, we have discovered many more uses for them than 
originally expected. 

One surprise was the new uses of textures. For example, 
we rendered some leaves of grass generated by Bill Reeves 
by creating a texture map of transparency that could be 
mapped onto a polygon. Instead of using the texture to 
store the color of the blades for a particular orientation 
relative to the light source, the surface normal can be 
encoded in the texture and used in a shade tree as shown 
in figure lc. The shading uses the correct normal and 
changes appropriately as the lights move. 

Shadows, including penumbras, can be calculated or 
painted ahead of time and stored as textures that are 
accessed by the light tree. The ambient light is a 
separate light source; it is usually a constant, but it can 
also be textured to account for the dimming of the 
ambient light in corners. 

Perhaps the 
"mix" node, 
between the 
between two 
material can 
also be used 
ous,  such  as 

most useful shade tree node has been the 
which uses one of its inputs to interpolate 
other two. This can be used to select 

types of materials, so that a pattern of one 
be inlaid into another. The mix node can 
for a single material that is not homogene- 
wood. Many types of wood have a grain 

pattern of a light and dark wood. The light and dark 
wood are really separate materials, with separate sets of 
appearance parameters such as color and shininess. The 
grain is a single channel of texture that selects between 
these two materials. We compute the color of light oak 
and the color of the dark oak and then mix the two based 
on the grain texture. Figure lb  shows how the mix node 
is used in a shade tree for wood. 

Metal fleck paint has flecks are oriented in random direc- 
tions about the surface normal. A special node generates 
the location of each fleck on the surface and the orienta- 
tion of each fleck relative to the surface normal. We add 
this relative normal to the surface normal and renormal- 
ize to get the true fleck normal, which is used to shade 
the fleck. The final color of the surface is a mixture of 
the color of the base paint and the color of the flecks, 
based on the procedural texture for the location of the 
flecks. Because the reflection from the flecks is highly 
directional, the "mix" node is essential. We can not sim- 
ply shade a blend the appearance parameters (including 
the normals) of the flecks and the paint. 
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The input to the "texture" node is a set of texture coor- 
dinates. Texture coordinates are traditionally the same 
as the object's natural coordinates u and v. But once we 
regard the texture coordinates as an appearance parame- 
ter, we see that they do not need to be identical to u and 
v. We call the texture coordinates s and t to distinguish 
them from patch coordinates u and v. If we choose s and 
t properly, a single texture can extend over several 
patches without seams. 

One of the more exotic uses of shade trees is an extension 
to bump maps called displacement maps. Since the loca- 
tion is an appearance parameter, we can actually move 
the location as well as perturbing the surface normal. 
Displacement maps began as a solution to the silhouette 
problems that arise when bump maps are used to make 
beveled edges. They are useful in many situations and 
can almost be considered a type of modeling. This use of 
shade trees, however, depends on performing the shading 
calculations (or at least the displacement map part of 
them) before the visible surface calculations. 

In many cases, we are interested not in the actual loca- 
tion of a light source, but in the' position of its highlight 
on a particular surface. The position of the desired 
highlight can be an input to the light tree, which calcu- 
lates the light direction that would make a highlight 
appear at that given location. The tree for this calcula- 
tion is shown in Figure ld. It has proved useful in set- 
ting up the lighting for a scene. 

Unusual shading functions can added to the library of 
shades easily. "Cat's eye" reflectors on highways reflect 
light back toward the light source. They are essentially a 
specular reflection with the normal pointed toward the 
light source. Marble has a textured diffuse component 
and a mirror-like specular component. The glowing 
shock wave in the Genesis sequence in Star Trek H was 
rendered by Loren Carpenter using a special purpose 
shading function he developed. This function was later 
easily described as a shade tree. 

Other shade trees are used just for debugging. For exam- 
ple, a shade tree that assigns each patch a different ran- 
dora color can be useful in detecting bugs in the patch 
splitting code. The surface normal can be encoded in the 
color to look for discontinuities. It is easy to use a simple 
shading model, such as the one shown in Figure le, for 
trial images and to switch to more elaborate calculations 
for the final image. 

Intermediate results can be computed by one shade tree 
and stored in a texture for later use by another shade 
tree. This is useful in calculating shading information 
that does not change from frame to frame within the 
scene. 

Figure 2. Union and Intersection of Two Cubes 
Beveled With Displacement Maps. 

Figure 3a. Grass Normal Texture Map. 

Figure 3b. Grass Rendered with Textured Normals. 
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8. Examples  

Figure 2 shows the union and intersection of a plastic and 
a copper beveled cube. Each cube is described by 6 
polygons that are beveled in the shader according to a 
procedural texture. The beveling is a displacement map 
that moves the locations as well as the normals. 

Figure 3a is a grass texture map generated Bill Reeves. 
This texture was used to generate Figure 3b, which con- 
sists of a single polygon with texture mapped tran- 
sparency. In addition, the red, green, and blue com- 
ponents of the texture are used to encode the three com- 
ponents of the normal relative to the normal of the sur- 
face. The resulting picture has highlights that are 
appropriate to the local lighting environment. 

Figure 4 is Road to Point Reyes [8] The road lines, 
asphalt, and oil spots are each described by shade trees; 
the outputs of these trees are grafted to a "mix" node 
and mixed according to a texture map. The wooden 
fence posts and bronze chain links are described with 
shade trees. The hills are rendered with a three channel 
color texture map generated procedurally by Tom Porter. 
The rainbow is described by an atmosphere tree. During 
the early stages of design, texture maps were used to 
render the grass, the bushes, and the puddles quickly; 
these were later replaced by more exact models. 

Figure 5c, Bee Box, illustrates light trees, displacement 
maps, and the "mix" node. The light is a spotlight, and 
its shadow (including penumbra) is produced by a texture 
map in a light tree. The regions of wood, ivory, copper, 
and bronze are selected by three channels of the texture 
map shown in figure 5a. Another channel controls the 
surface roughness in the copper and bronze regions. By 
contrast, figure 5b shows the same box rendered with 
diffuse blue shading and no displacement maps or sha- 
dows. 

9. Efficiency 

The overhead involved in using shade trees is small since 
the tree construction and traversal is done ahead of time 
by the shade tree compiler. At run time there is just a 
list of routines to call for each surface and a list of argu- 
ments (i.e., appearance parameters) for each routine. 

Some of the surfaces described by shade trees are com- 
plex, and the shading time increases with the complexity 
of the shade tree. Shade trees are very useful in optimiz- 
ing the shading calculations, however, because it is easy 
to adjust surface descriptions to the appropriate level of 
computation. If a surface is perfectly diffuse, the specular 
shading calculations are never used. If the geometrical 
attenuation of the Torrance-Sparrow[2] shading model is 
not necessary for a particular surface, it can easily be 
avoided. Reflections can be calculated with a "trace a 

ray" node or with an an environment map, as appropri- 
ate. Color maps, bump maps, or displacement maps can 
be used depending on the distance to the object. 

Notice that in Bee Box, the wood uses only one channel 
of texture (the amount of grain) instead of the three one 
would expect (red, green, and blue). This one channel 
controls an entire set of appearance parameters, including 
color and roughness. Since wood is a mixture of surfaces, 
based on a texture map, only one branch of the shade 
tree need be descended in places where the texture calls 
for only one of surfaces. 

10. Conclusions 

Shade trees offer a way to specify and change shading 
properties quickly and easily. They are flexible because 
they are not based on a fixed shading formula; instead 
they provide a general way to connect basic shading 
operations. They are efficient because they customize the 
shading calculations for each type of surface. 

11. A c k n o w l e d g e m e n t s  

Many of the ideas in this paper came out of discussions 
with Loren Carpenter. In some cases it is hard to say 
exactly who thought of what, because many of the ideas 
came out in the course of brainstorming sessions. Our 
discussions included displacement maps and shadow tex- 
tures, which led to the extension of shade trees to light 
trees. 

Tom Duff provided the nugget of code (a run time loader) 
that inspired a flexible implementation of shade trees. 
The modeling language that provides all of the hooks for 
lights and surfaces was written by Bill Reeves and Tom 
Duff. John Lasseter painted the texture of the bee. Dis- 
cussions with Dan Silva were helpful in the early stages. 
This work began as a continuation of work done at the 
Program of Computer Graphics at Cornell University. 
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Figure 4. Road to Point Reyes. 
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Figure 6a. Plain Box. Figure 6b. Bee Texture. 

Figure 6c. Bee Box 
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