
Computer Graphics Volume 18, Number 3 July 1984

Shade Trees

Robert L. Cook

Computer Division
Lucasfilm Ltd.

Shading is an important part of computer imagery, but
shaders have been based on fixed models to which all sur-
faces must conform. As computer imagery becomes more
sophisticated, surfaces have more complex shading charac-
teristics and thus require a less rigid shading model. This
paper presents a flexible tree-structured shading model
that can represent a wide range of shading characteristics.
The model provides an easy means for specifying complex
shading characteristics. It is also efficient because it can
tailor the shading calculations to each type of surface.

CR CATEGORIES AND SUBJECT DESCRIPTORS:
1.3.7 [C o m p u t e r G r a p h i c s] : Three-Dimensional
Graphics and Realism; E.1 [Data S t r u c t u r e s] :
Graphs, Trees.

ADDITIONAL KEY WORDS AND PHRASES: color,
computer graphics, illumination, lighting, reflection,
shading, shadows, texture

1. I n t r o d u c t i o n

Making synthetic images look realistic is an important
goal in computer imagery for two reasons. First, some
applications require a high degree of realism as an end in
itself. Second and more generally, realism acts as a meas-
ure of our techniques and understanding. To the degree
that we lack the ability to make pictures look realistic,
we also lack some artistic control.

Making a realistic image involves solving a number of
different problems. This paper addresses the problem of
shading, or selecting colors for points on each surface,
and more specifically the problem of controlling and

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-138-5/84/007/0223 $00.75

directing the shading calculations. Other problems, such
as constructing a model and animating it, are equally
important to realistic image synthesis but are not
addressed in this paper.

At the heart of the shading calculations is the simulation
of the way light interacts with objects. Early work in
reflection models was done by Henri Gouraud[10] and by
Phong[16], with more accurate models being developed by
Jim Blinn[2] and by the author[7], who applied the shad-
ing model to the simulation of specific materials. Blinn
has developed a separate shading model for clouds[5].
Turner Whitted included reflection and refraction[18].

Textures allow us to map shading properties onto a sur-
face mathematically, greatly increasing the visual com-
plexity and richness of an image without the overhead of
explicitly modeling those properties. Texturing was first
used in computer graphics by Ed Catmull[6]. Jim Blinn
later extended the use of. texturing to surface bumps,
roughness, and reflections[I, 4, 3]. Geoff Gardner
included texturing of transparency[9].

The trend in shaders has been toward more flexibility and
generality, as evidenced by Blinn's generalization of tex-
turing[If and Whitted's shader dispatcher[19]. What has
been lacking is an overall system that integrates the vari-
ous shading and texturing techniques. This paper intro-
duces such a system, one that is based on a more general
approach to shading. The new approach provides a
language for describing surfaces and allows traditional
shading techniques to be combined in novel ways.

Previous shaders have been limited by the use of fixed
models of light reflection into which all surfaces must be
fit. The new approach is modular and assumes that no
Single shading model is appropriate for all surfaces. In
some cases utter simplicity is desired, while in others we
may require a complexity that would normally be a bur-
den. Because of its modular nature, the new shader can
handle both of these extremes in the same image; it per-
forms only the calculations needed for the simple cases
while allowing arbitrarily complex calculations where they
are required.

223

@SIGGRAPH'84

2. A p p e a r a n c e P a r a m e t e r s

A number of different geometric, material, and environ-
mental properties together determine the color of a sur-
face. Any value that is used in the shading calculation is
called an appearance parameter. Appearance parameters
include the surface normal, the color of the light source,
the shininess of the surface, bump maps, etc.

The traditional approach to shading is to divide the cal-
culations into two stages:

1. Determining the values of the appearance param-
eters.

2. Using those values to evaluate the fixed shading
equation.

This approach can offer a great deal of generality in the
first stage but is inflexible in the second. Appearance
parameters may be determined in a number of ways,
including texture mapping and normal interpolation. The
shading equation itself, however, is fixed. All surfaces
must be fit into it, no matter how complex and no matter
how simple. Little allowance is made for the extremely
diverse ways in which objects interact with light.

3. Shade Trees

A more general approach is to eliminate the fixed shading
equation and the entire two stage approach. Rather than
attempt to describe all possible surfaces with a single
equation, the shader orchestrates a set of basic opera-
tions, such as dot products and vector normalization.
The shader organizes these operations in a tree.

Each operation is a node of the tree. Each node produces
one or more appearance parameters as output, and can
use zero or more appearance parameters as input. For
example, the inputs to a "diffuse" node are a surface nor-
mal and a light vector, and the output is an intensity
value. The normal might come from the geometric nor-
mal, a bump map, or a procedural texture. The output
might be the input to a "multiply" node, which would
multiply the intensity by its other input, a color.

The shader performs the calculations at the nodes by
traversing the tree in postorder. The output of the root
of the tree is the final color. Basic geometric information,
such as the surface normal and the location of the object,
are leaves of the tree. (In general, the nodes actually
form a directed acyclic graph, because a single appear-
ance parameter can be used as input to more than one
node.)

Even an appearance parameter that is usually thought of
as the final shade can itself be treated as an intermediate
step. This is particularly useful in rendering a surface
that consists of different materials. The final shade can
be a combination of the shades of the various materials,

with the amount of the various materials based perhaps
on a texture map.

Shade trees can describe a wide range of shading situa-
tions from simplest to the most complex. Different types
of shading calculations can coexist in a single image, with
each surface using as many or as few operations as it
requires.

4. L ight T rees

The appearance parameters used in the shading calcula-
tions include the light source direction and color. These
appearance parameters are described by their own tree.
Light trees are separate from shade trees so that each
light tree can be grafted onto several different shade
trees.

Different types of lights require different calcula-
tions[17, 11]. The intensity of a local light source changes
as the square of the distance from the light. Spotlights
have a goniometric curve that describes their intensity as
a function of direction. Some lights have flaps that
abruptly restrict their illumination. All of these lights
are easily described by light trees. For example, the
inputs to the "spotlight" tree are the direction of the cen-
tral axis of the light beam and the rate at which the
intensity of the beam decreases with angle, in addition to
the position of the light and the location of the point
being illuminated. It uses the relevant formulas to calcu-
late the intensity of the light at that location. These cal-
culations, which are so specific to this one particular type
of light source, are isolated from the rest of the shading,
communicating only through the appearance parameters.

B. A t m o s p h e r e Trees

The final output of a shade tree is the exitance, the color
and intensity of the light leaving the surface. But this is
not necessarily the same color and intensity as the light
that reaches the eye. Atmospheric effects are described
by a tree that has the exitance as one of its inputs and
the light actually reaching the eye as its output.

Atmospheric effects are often described by procedural
models. For example, haze is an exponential function of
distance[14, 13] and can vary with direction. Loren Car-
penter simulated sky and haze in his film Vol Libre and
developed a general atmosphere model for the Genesis
sequence in Star Trek II. These models are easily incor-
porated into atmosphere trees.

Rainbows can also be described by an atmosphere tree,
with light being added in the primary and secondary
bows and subtracted in Alexander's dark band[15, 12].
The color and intensity are a function of the angle
between the light direction and the viewing direction.

224

Computer Graphics Volume 18, Number 3 July 1984

/ \
weight of ambient
ambient

component

f inal color

t

i1f"....
/ / , . . . ~ ,.,~ copper

color

j -
weight o f specular
specular

normal viewer surface
roughness

Figure la. Shade tree for copper.

f inal color

t

for | wood grain for
dark wood I tezture light wood J

Figure lb. The mix node in a shade tree for wood.

t
normal o f grass

(#rafted onto
gra~s shade tree}

t

/ \ / \ / \
texture surface tangent texture surface tangent texture surface

T component in t direction S component in s direction N component normal
of normal of normal o f normal

Figure lc. Textured grass normal.

light direction

/ , , ,
* viewer / ' , ,

2 normal ,

,ffnal l eolor

/',,,,
* color / f

z component z component
o f eye space o f eye space

normal normal

Figure ld. "Highlight at" branch of a light tree. Figure le. Simple shade tree.

225

@SIGGRAPH'84

6. I m p l e m e n t a t i o n

To facilitate describing shade trees and building up a
library of surfaces, we have developed a special shade tree
language. A program written in this language is compiled
into an internal representation of a shade tree. Programs
in this language are also used to describe light trees and
atmosphere trees.

A number of keywords, such as normal and location, refer
to the basic geometric information provided as input to
the shader. The final results are referred to by the key-
words final_color and final_opacity.

Several types of nodes are built into the language, includ-
ing mathematical functions such as square root and nor-

. realize and shading functions such as diffuse and specular.
Other more specialized nodes can be added dynamically;
when such a node is declared in the language, the shader
searches for a file by that name and loads it. This pro-
vides enough flexibility to add new and exotic shading
functions easily.

Variables in the language represent appearance parame-
ters, and statements describe how to connect the nodes
with appearance parameters. For example, the following
program describes metallic shading and defines the shade
tree shown in Figure la. Note that the ambient and
specular nodes are built into the language, and that the
output of the light trees is available to all nodes.

float a~-~-.Sj s~-~.5 ;
float roughness~---.1 ;
f loat intens i ty ;
color metal color-----(1,1,1) ;
intens i ty ~ a , a m b i e n t 0 -i-

s*specular(nor mal ,v iewer,r oughness);
final color ----~ intens i ty * meta l color ;

Point variables can be specified in eye space or in world
space, whichever is more convenient. World space coordi-
nates are indicated by preceding them with the keyword
"world_space".

This language works in conjunction with a modeling
language to associate surfaces and light sources with
objects. A l i g h t can be assigned to the group of objects
because some lights affect only part of the environment.
Its light tree calculations are performed only for the
objects it affects.

The surface command in the modeling language desig-
nates a shade tree for an object. The values of variables
in the surface language can be overridden here. For
example, for the above "metal" surface, the statement

surface "metal"p
"metal_color", mater ia l bronze ,
"roughneas"~ .15

in the modeling language initializes the variable "rough-
ness" to be .15 instead of the default .1 and
"metal_color" to be the color of bronze instead of white.

7 . E x p e r i e n c e w i t h S h a d e T r e e s

This section presents several specific examples of shade
trees and discusses the benefits of this new way of think-
ing about shading. Since we first started using shade
trees, we have discovered many more uses for them than
originally expected.

One surprise was the new uses of textures. For example,
we rendered some leaves of grass generated by Bill Reeves
by creating a texture map of transparency that could be
mapped onto a polygon. Instead of using the texture to
store the color of the blades for a particular orientation
relative to the light source, the surface normal can be
encoded in the texture and used in a shade tree as shown
in figure lc. The shading uses the correct normal and
changes appropriately as the lights move.

Shadows, including penumbras, can be calculated or
painted ahead of time and stored as textures that are
accessed by the light tree. The ambient light is a
separate light source; it is usually a constant, but it can
also be textured to account for the dimming of the
ambient light in corners.

Perhaps the
"mix" node,
between the
between two
material can
also be used
ous, such as

most useful shade tree node has been the
which uses one of its inputs to interpolate
other two. This can be used to select

types of materials, so that a pattern of one
be inlaid into another. The mix node can
for a single material that is not homogene-
wood. Many types of wood have a grain

pattern of a light and dark wood. The light and dark
wood are really separate materials, with separate sets of
appearance parameters such as color and shininess. The
grain is a single channel of texture that selects between
these two materials. We compute the color of light oak
and the color of the dark oak and then mix the two based
on the grain texture. Figure lb shows how the mix node
is used in a shade tree for wood.

Metal fleck paint has flecks are oriented in random direc-
tions about the surface normal. A special node generates
the location of each fleck on the surface and the orienta-
tion of each fleck relative to the surface normal. We add
this relative normal to the surface normal and renormal-
ize to get the true fleck normal, which is used to shade
the fleck. The final color of the surface is a mixture of
the color of the base paint and the color of the flecks,
based on the procedural texture for the location of the
flecks. Because the reflection from the flecks is highly
directional, the "mix" node is essential. We can not sim-
ply shade a blend the appearance parameters (including
the normals) of the flecks and the paint.

226

Computer Graphics Volume 18, Number 3 July 1984

The input to the "texture" node is a set of texture coor-
dinates. Texture coordinates are traditionally the same
as the object's natural coordinates u and v. But once we
regard the texture coordinates as an appearance parame-
ter, we see that they do not need to be identical to u and
v. We call the texture coordinates s and t to distinguish
them from patch coordinates u and v. If we choose s and
t properly, a single texture can extend over several
patches without seams.

One of the more exotic uses of shade trees is an extension
to bump maps called displacement maps. Since the loca-
tion is an appearance parameter, we can actually move
the location as well as perturbing the surface normal.
Displacement maps began as a solution to the silhouette
problems that arise when bump maps are used to make
beveled edges. They are useful in many situations and
can almost be considered a type of modeling. This use of
shade trees, however, depends on performing the shading
calculations (or at least the displacement map part of
them) before the visible surface calculations.

In many cases, we are interested not in the actual loca-
tion of a light source, but in the' position of its highlight
on a particular surface. The position of the desired
highlight can be an input to the light tree, which calcu-
lates the light direction that would make a highlight
appear at that given location. The tree for this calcula-
tion is shown in Figure ld. It has proved useful in set-
ting up the lighting for a scene.

Unusual shading functions can added to the library of
shades easily. "Cat's eye" reflectors on highways reflect
light back toward the light source. They are essentially a
specular reflection with the normal pointed toward the
light source. Marble has a textured diffuse component
and a mirror-like specular component. The glowing
shock wave in the Genesis sequence in Star Trek H was
rendered by Loren Carpenter using a special purpose
shading function he developed. This function was later
easily described as a shade tree.

Other shade trees are used just for debugging. For exam-
ple, a shade tree that assigns each patch a different ran-
dora color can be useful in detecting bugs in the patch
splitting code. The surface normal can be encoded in the
color to look for discontinuities. It is easy to use a simple
shading model, such as the one shown in Figure le, for
trial images and to switch to more elaborate calculations
for the final image.

Intermediate results can be computed by one shade tree
and stored in a texture for later use by another shade
tree. This is useful in calculating shading information
that does not change from frame to frame within the
scene.

Figure 2. Union and Intersection of Two Cubes
Beveled With Displacement Maps.

Figure 3a. Grass Normal Texture Map.

Figure 3b. Grass Rendered with Textured Normals.

227

@SIGGRAPH'84

8. Examples

Figure 2 shows the union and intersection of a plastic and
a copper beveled cube. Each cube is described by 6
polygons that are beveled in the shader according to a
procedural texture. The beveling is a displacement map
that moves the locations as well as the normals.

Figure 3a is a grass texture map generated Bill Reeves.
This texture was used to generate Figure 3b, which con-
sists of a single polygon with texture mapped tran-
sparency. In addition, the red, green, and blue com-
ponents of the texture are used to encode the three com-
ponents of the normal relative to the normal of the sur-
face. The resulting picture has highlights that are
appropriate to the local lighting environment.

Figure 4 is Road to Point Reyes [8] The road lines,
asphalt, and oil spots are each described by shade trees;
the outputs of these trees are grafted to a "mix" node
and mixed according to a texture map. The wooden
fence posts and bronze chain links are described with
shade trees. The hills are rendered with a three channel
color texture map generated procedurally by Tom Porter.
The rainbow is described by an atmosphere tree. During
the early stages of design, texture maps were used to
render the grass, the bushes, and the puddles quickly;
these were later replaced by more exact models.

Figure 5c, Bee Box, illustrates light trees, displacement
maps, and the "mix" node. The light is a spotlight, and
its shadow (including penumbra) is produced by a texture
map in a light tree. The regions of wood, ivory, copper,
and bronze are selected by three channels of the texture
map shown in figure 5a. Another channel controls the
surface roughness in the copper and bronze regions. By
contrast, figure 5b shows the same box rendered with
diffuse blue shading and no displacement maps or sha-
dows.

9. Efficiency

The overhead involved in using shade trees is small since
the tree construction and traversal is done ahead of time
by the shade tree compiler. At run time there is just a
list of routines to call for each surface and a list of argu-
ments (i.e., appearance parameters) for each routine.

Some of the surfaces described by shade trees are com-
plex, and the shading time increases with the complexity
of the shade tree. Shade trees are very useful in optimiz-
ing the shading calculations, however, because it is easy
to adjust surface descriptions to the appropriate level of
computation. If a surface is perfectly diffuse, the specular
shading calculations are never used. If the geometrical
attenuation of the Torrance-Sparrow[2] shading model is
not necessary for a particular surface, it can easily be
avoided. Reflections can be calculated with a "trace a

ray" node or with an an environment map, as appropri-
ate. Color maps, bump maps, or displacement maps can
be used depending on the distance to the object.

Notice that in Bee Box, the wood uses only one channel
of texture (the amount of grain) instead of the three one
would expect (red, green, and blue). This one channel
controls an entire set of appearance parameters, including
color and roughness. Since wood is a mixture of surfaces,
based on a texture map, only one branch of the shade
tree need be descended in places where the texture calls
for only one of surfaces.

10. Conclusions

Shade trees offer a way to specify and change shading
properties quickly and easily. They are flexible because
they are not based on a fixed shading formula; instead
they provide a general way to connect basic shading
operations. They are efficient because they customize the
shading calculations for each type of surface.

11. A c k n o w l e d g e m e n t s

Many of the ideas in this paper came out of discussions
with Loren Carpenter. In some cases it is hard to say
exactly who thought of what, because many of the ideas
came out in the course of brainstorming sessions. Our
discussions included displacement maps and shadow tex-
tures, which led to the extension of shade trees to light
trees.

Tom Duff provided the nugget of code (a run time loader)
that inspired a flexible implementation of shade trees.
The modeling language that provides all of the hooks for
lights and surfaces was written by Bill Reeves and Tom
Duff. John Lasseter painted the texture of the bee. Dis-
cussions with Dan Silva were helpful in the early stages.
This work began as a continuation of work done at the
Program of Computer Graphics at Cornell University.

228

Computer Graphics Volume 18, Number 3 July 1984

Figure 4. Road to Point Reyes.

229

@SIGGRAPH'84

R e f e r e n c e s

1. BLINN, JAMES F. AND MARTIN E. NEWELL, "Tex-
ture and Reflection in Computer Generated Images,"
Communications of the ACM, vol. 19, pp. 542-547,
1976.

2. BLINN, JAMES F., "Models of Light Reflection for
Computer Synthesized Pictures," Computer Graph-
ics, vol. 11, no. 2, pp. 192-198, 1977.

BLINN, JAMES F., "Simulation of Wrinkled Sur-
faces;" Computer Graphics, vol. 12, no. 3, pp. 286-
292, August 1978.

4. BLINN, JAMES F., "Computer Display of Curved
Surfaces," PAD dissertation, University of Utah, Salt
Lake City, 1978.

5. BLINN, JAMES F., "Light Reflection Functions for
Simulation of Clouds and Dusty Surfaces," Com-
puter Graphics, vol. 16, no. 3, pp. 21-29, July 1982.

6. CATMULL, EDWIN, "A Subdivision Algorithm for
Computer Display of Curved Surfaces," PAd disser-
tation, University of Utah, Salt Lake City, 1974.

7. COOK, ROBERT L. AND KENNETH E. TORRANCE,
"A Reflection Model for Computer Graphics," ACM
Transactions on Graphics, vol. 1, no. 1, pp. 7-24,
1982.

8. COOK, ROBERT L., LOREN CARPENTER, THOMAS
PORTER, WILLIAM REEVES, DAVID SALESIN, AND
ALVY RAY SMITH, "Road to Point Reyes," Com-
puter Graphics, vol. 17, no. 3, July I983. title page
picture

GARDNER, GEOFFREY Y., EDWIN P. BERLIN JR.,
AND BOB GELMAN, "A Real-Time Computer Image
Generation System Using Textured Curved Sur-
faces," The 1981 Image Generation~Display Confer-
ence II, pp. 60-76, June 1981.

3.

9.

10. GOURAUD, HENRI, "Computer Display of Curved
Surfaces," PAD dissertation, University of Utah, Salt
Lake City, 1971.

ll. HALL, ROY A. AND DONALD P. GREENBERG, "A
Testbed for Realistic Image Synthesis," IEEE Com-
puter Graphics and Applications, vol. 3, no. 8, pp.
10-20, November 1983.

12. HULST, H. C. VAN DE, Light Scattering by Small
Particles, pp. 228-266, Dover, New York, 1957.

13. MCCARTNEY, EARL J., Optics of the Atmosphere,
pp. 1-49, John Wiley & Sons, New York, 1976.

14. MINNAERT, M., The Nature of Light and Color in the
Open Air, Dover, New York, 1954.

15. NUSSENZVEIG, H. MOYSES, "The Theory of the
Rainbow," Scientific American, vol. 236, no. 4, pp.
116-127, April 1977.

16. PHONG, BUI TUONG, "Illumination for Computer
Generated Pictures," Communications of the ACM,
vol. 18, pp. 311-317, 1975.

17. WARN, DAVID R., "Lighting Controls for Synthetic
Images," Computer Graphics, vol. 17, no. 3, pp. 13-
21, July 1983.

18. WHITTED, TURNER, "An Improved Illumination
Model for Shaded Display," Communications of the
ACM, vol. 23, pp. 343-349, 1980.

19. WHITTED, TURNER AND DAVID M. WEIMER, "A
Software Testbed for the Development of 3D Raster
Graphics Systems," ACM Transactions on Graphics,
vol. 1, no. 1, pp. 44-58, January 1982.

23O

Computer Graphics Volume 18, Number 3 July 1984

Figure 6a. Plain Box. Figure 6b. Bee Texture.

Figure 6c. Bee Box

231

