
Graphics and J. Foley
Image Processing Editor

The Aliasing Problem
in Computer-
Generated Shaded
Images
Franklin C. Crow
The University of Texas at Austin

Certain defects, such as jagged edges and
disappearing detail, have long been an annoyance in
digitally generated shaded images. Although
increasing the resolution or defocusing the display can
attenuate them, an understanding of these defects
leads to more effective methods. This paper explains
the observed defects in terms of the aliasing
phenomenon inherent in sampled signals and discusses
prerdtering as a recognized cure. A method for
evaluating filters is presented, the application of
prefiltering to hidden-surface algorithms is discussed,
and an implementation of a filtering tiler is shown
accompanied by examples of its effectiveness.

Key Words and Phrases: aliasing, computer
graphics, convolutional faltering, hidden-surface
removal, sampling

CR Categories: 8.2

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Association for Computing Machinery.

The work reported in this paper took place at the University of
Utah and was supported in part by the Advanced Research Projects
Agency of the Department of Defense under Contracts DAHC15-
73-C-0363 and F30602-80-C-0300. Author's address: Department
of Computer Sciences, Painter Hall 3.28, The University of Texas
at Austin, Austin, TX 78712.

799

Introduction

Shaded computer-synthesized images of opaque
objects with only visible surfaces displayed have be-
come relatively common in recent years. The primary
commercial use of such images has been visual simula-
tors, which require the most realistic possible image
obtainable at real-time rates. To create realistic images,
relatively complicated scenes must be depicted, and
defects due to the quantization necessary for computer
generation must be minimized.

A close look at virtually any shaded synthetic image
reveals that major problems exist in the rendition of
detail (Figures 1 and 4). These problems characteristi-
cally occur in three specific situations: (1) along edges
on the silhouette of an object or a crease in a surface,
(2) in very small objects, and (3) in areas of compli-
cated detail. The most obvious problems occur on
object silhouettes, where edges often have an annoy-
ingly jagged appearance. If computer-synthesized im-
ages are to achieve a greater degree of realism, it will
be necessary to generate images of arbitrarily compli-
cated scenes which contain many potentially jagged
edges, small objects, and details.

Small objects pose a problem because they can
disappear between the dots. This occurs because each
dot in the image represents a sample point in the
scene, an infinitely small spot on some surface being
depicted. If an object is small enough it is possible that
no part of it will coincide with a sample point. There-
fore a very small object may disappear entirely; a long
thin object may appear in some places and not in
others, giving the appearance of a string of beads; and
a highly detailed object such as a human face may lose
some of its features.

In animated sequences of images these problems
become very obvious. Armies of ants appear to run
along edges as their slopes change; small objects and
details flash on and off distractingly; slightly larger
objects appear to change shape and size without rea-
son; even a simple horizontal edge which looks fine in
a still picture can be seen to jump from one raster line
to another as it moves vertically in the display.

There are essentially three techniques for improving
the rendition of detail. The first is to increase the
resolution, causing sample points to occur more fre-
quently. This allows representation of finer details and

Fig. 1. Jagged edges can be attenuated by convolutional filtering.
The horizontal resolution in this image is approximately 128 samples.

Communications November 1977
of Volume 20
the ACM Number 11

diminishes the obtrusion of jagged edges. However, it
is impractical to increase the resolution sufficiently to
accommodate small, bright objects owing to the in-
creased cost of image production. The expense of the
most commonly used hidden-surface algorithms is pro-
portional to the resolution, and the number of dots
which must be produced grows as the square of the
resolution.

The second technique is to process the output
image by blurring it or applying contour-smoothing
algorithms such as those suggested by Freeman [3].
Although this approach can lessen the impact of jagged
edges, it can do nothing to restore objects or details
which have been lost. Furthermore, the image loses
sharpness which may be retained by other methods.

The third and most attractive technique is to make
each sample point represent a finite area in the scene
rather than an infinitesimal spot. Thus a very small
object would occupy a part of such a small area,
causing the intensity of the corresponding dot in the
output image to be computed as a weighted average of
the colors of the small object and its local background.
This approach corresponds closely to what actually
takes place in television and screen printing processes
[5, 10]. While the first two techniques offer somewhat
ad hoc approaches to improving rendition of detail, it
will be seen that the third technique is based on sound
principles.

Making each sample represent a finite area has the
effect of applying a convolutional filter before the
scene is sampled. It is well known that a signal may be
faithfully reproduced from digital samples only if the
highest frequency in the signal does not exceed one-
half the sampling frequency [7]. Convolutional filtering
may be used to satisfy this condition closely enough to
greatly improve the output image.

The consequence of failing to filter the signal
properly before sampling is known as "aliasing." Alias-
ing occurs when a lower frequency signal appears as
an "alias" of a high frequency signal after sampling
(Figure 2). Therefore highly periodic images of scenes
involving, for example, picket fences or venetian blinds
may appear, when sampled, to be made up of a few
broad strips rather than many fine lines.

Reproducing the signal involves representing each
sample in such a way that the reproduced signal has no
frequencies higher than the original signal. This can be

Fig. 2. Aliasing. x ' s represent a sampling rate of 10 samples per
unit on 12 cycle and 2 cycle signals. Samples are the same in both
cases.

800

accomplished by representing each sample as a rectan-
gular pulse and then low-pass filtering the resulting
signal. In the two-dimensional case, the result of failing
to filter the signal properly during reconstruction is
known as "rastering." Rastering is an artifact of the
structure of the displayed image. If the beam in a
television monitor is incorrectly focused, the resulting
effects are due to rastering.

Filtering Shaded Synthetic Images

To produce an image by computer, the scene is
first modeled by approximating all surfaces with easily
handled entities (e.g. line segments, polygons, or bicu-
bic patches). These entities are then stored in memory
at a precision determined by the available word size. If
N bits of precision are available, the scene is defined
to a resolution of 2 N elements (Rs). To produce an
image, the scene definition is sampled at the image
resolution (R~).

To ensure that the high frequencies in the scene do
not exceed one-half the sampling rate, the scene must
be convolved with a two-dimensional filter. Fast con-
volution methods [8] involving the two-dimensional
fast Fourier transform (FFT) are impractical since
taking the FFT would require producing an image of
resolution Rs, not to mention the 2R~ log R8 operations
each FFF would require. Direct convolution can be
much more easily applied since the convolution need
only be evaluated at the sample points. This requires
R~ times R~ operations, where Rs is the resolution of
the filter. If Rs is chosen to be 2RJR~ (empirically
found by us to be adequate), then the number of
operations needed to compute the direct convolution
is 4R~ z , much less than a single FFT. Nevertheless, this
is still an excessive amount of computation. In the
following discussion, an algorithm which simplifies the
computation by approximating direct convolution is
presented.

This algorithm assumes a filter which is nonzero
over a square region two sample intervals wide and
separable into functions in x and y . The scene is
abstracted so that all features within the compass of a
single superposition of the filter are modeled as rectan-
gular areas of constant intensity. This allows the inten-
sity of an image element to be calculated as a weighted
average of the contributions of the rectangular areas.
The weighting is, of course, determined by the filter
function.

Two-dimensional discrete convolution can be ex-
pressed as follows:

o0 c~

G(i,j)= ~ ~ F (k , m) H (i - k , j - m) . (1)
k = - o ~ m = - o o

Since H must be separable, it can be expressed as

H(i, j) = H~(i)H~q). (2)

With this restriction, the discrete convolution becomes

Communica t ions November 1977
of Volume 20
the A C M N u m b e r 11

G(i,j) = ~ ~ F(k ,m)Hi(i - k)H~(j - m) (3)
]~=--w m = - - o o

where G represents the filtered scene produced by
convolving the scene F with the filter H.

Furthermore, if the function F is approximated by
rectangular blocks, then the function over any such
block becomes constant. This greatly simplifies evalu-
ation of the filtered function. The summation can now
be rearranged so that the contribution of each rectan-
gular block is independent. The function G then be-
comes

ql 81

G(i,j) = ~ ~ C~Hi(i - k)Hjq - - m) + ...
k=p, m=r, (4)

qn $n

+ c . n i (i - k) n j (i - m)
I~=p n r a = r n

where [p,, q,] and [r,, s,] represent the bounds of a
given rectangular block of intensity C, and n such
blocks give the approximation to the filtered scene at
(i , j) .

To allow Hi and Hj to be considered separately for
a given rectangular block, the summation can be rear-
ranged as follows:

qn 8n

~ C.H,(i - k)Hjq - m)
k = p n m = r n

qn $n

= C. ~ Hi(i - k) ~ Hjq - m). (5)
k = p n m = r n

The implementation of an algorithm for discrete con-
volution over the scene description becomes relatively
easy as a result of this rearrangement. Note that by
making the rectangular blocks arbitrarily small an
arbitrarily good approximation to G can be obtained.

Implementing the algorithm involves building
lookup tables for summations over the functions H~
and Hi. Since H is always of limited nonzero extent,
two finite tables can be built, one for Hi and the other
for Hj (in practice these have usually been the same).
Each table will consist of entries which represent
partial sums across the function from the lower nonzero
bound to each point below the upper nonzero bound.
To obtain the sum over the function between any two
nonzero points, it is sufficient to find the difference
between the table entries for these two points. With
the help of lookup tables, any of the independent
summations (see eq. (5)) giving the approximation to
G for a given i and] can be found with four lookups,
two subtractions, and two multiplications.

To evaluate the filter functions used with the con-
volution algorithm, a test pattern which emphasizes
the defects due to aliasing may be used. A test pattern
has been invented which generates moire patterns in
response to improperly represented edges and detail.

The pattern is produced by generating almost par-
allel sections of parabolas by using second-order differ-
ences (Figure 3). The curvatures of the parabolas

8 0 1

Fig. 3. Test pattern consisting of closely spaced parabolic arcs
(moire patterns in this figure and some of those in Figures 5-8 are
caused by the half-tone printing process).

Fig. 4. Test pattern synthesized at a resolution of 256 samples by
using techniques similar to those of conventional hidden-surface
algorithms.

decrease linearly from a maximum on the left to zero
on the right. In addition, the distance between any
two adjacent parabolas decreases linearly from left to
right across the pattern, causing jaggedness along edges
to be repeated with slight variation from curve to
curve. The effects along groups of curves form elliptical
patterns which are much easier to detect than jagged-
ness along a single edge. Furthermore, toward the
right side of the pattern where the detail is too fine to
be resolved by the display, similar patterns are caused
by improper summing of the details represented in a
sample (Figure 4).

A program has been developed to display the
pattern convolved with various filters. An interactive
filter design routine allows quick design and modifica-
tion of a filter. The pattern can then be regenerated in
a few minutes to allow visual evaluation. Equipment
calibration routines are also included; the test pattern
sensitivity is great enough to make consistent calibra-
tion an absolute necessity.

Figures 5-8 illustrate the effectiveness of various
filters. In each figure, the curve at the lower left
represents the presampling filter while the upper left
curve represents the calibration function.

Having developed a method for applying convolu-
tional filters and having found effective filters, we
must find methods to restrict filtering to those parts of
the image where it is necessary. In other words, the
filtering process must be made adaptive.

Communications November 1977
of Volume 20
the ACM Number 11

Fig. 5. Pattern convolved with a filter consisting of nine equally Fig. 7. Pattern convolved with a roughly triangular filter having a
weighted discrete points (equivalent to tripling the resolution), base width of one sample interval.

Fig. 6. Pattern convolved with a filter consisting of 25 unequally
weighted discrete points.

Fig. 8. Pattern convolved with a roughly triangular filter having a
base width of two sample intervals.

Improved Efficiency Through Selective Filtering

To isolate most of the conditions which contribute
to aliasing before the hidden-surface computat ion is
begun, certain parts of the data can be tagged for
special t reatment . Tagging the data allows the hidden-
surface routine to operate normally over most of the
image, applying the more expensive convolution tech-
niques only where necessary.

Nearly all the difficulties in shaded images appear
where abrupt changes in intensity and thus high spatial
frequencies occur. If the elements of the scene descrip-
tion which Cause these occurrences can be tagged, the
difficulties can be localized. As noted above, the abrupt
intensity changes typically occur in the following three
cases: (1) along the silhouette of an object , (2) along
creases, corners, or other sharp changes in the direction
of a surface, and (3) at the edges of colored patches
on a surface.

If polyhedral objects are represented, every poly-
gon edge is a potential source of aliasing problems. On
the other hand, if curved surfaces are represented by a
polygonal approximation, shading techniques may be
used to conceal the polygon boundaries over smooth
areas [1, 4]. A curved surface approximated by poly-
gons can be made to look smooth by calculating
intensities based on the orientation of the surface at
the vertices of the polygons and then using interpola-
tion to find the intensities for the rest of the surface.
The data structure for describing the polygons is usually
arranged so that adjacent polygons can share data
where they have common vertices. If there is a sharp
change of surface orientation or color across a polygon

802

border , there can be two sets of vertices defining the
edge which joins the two polygons. Therefore creases
and color changes define two different edges over the
same position, and this proper ty can be used to isolate
such edges.

Since the most noticeable jaggedness occurs on the
silhouettes of objects, it is clearly necessary to find
those edges which lie on the silhouettes. Any edge
which lies on the silhouette must join a polygon facing
the viewer to one facing away from the viewer. Of
course an edge associated with only one polygon may
also lie on the silhouette of an object. In this case the
edge must be a surface edge as opposed to a silhouette
edge. A surface edge occurs wherever the surface
halts, for example, at the edge of a sheet of paper or a
hole in a surface (Figure 9).

To save space, polygons facing away from the
viewer (backfacing polygons) are often discarded be-
fore the hidden-surface computat ions are done, in
which case silhouette edges become surface edges (and
therefore belong to only one polygon). Note that this
step cannot be taken until all vertex coordinates have
been t ransformed into the perspective space in which
the image will be computed. After backfacing polygons
have been discarded, creases, color changes, and sil-
houette edges occur at edges belonging to only One
polygon, a characteristic which can be used to find and
tag all such edges.

Although an exhaustive search could be used to
find all the edges associated with a single polygon, a
far more attractive alternative is to add an adjacent
polygons list to the data for each object , providing a
pointer to the adjacent polygon for each polygon edge.

Communications November 1977
of Volume 20
the ACM Number 11

Fig. 9. Silhouette edges and surface edges. Fig. 10. Tiling a convex polygon.

4

1

2

- TOPMOST VERTEX LOCATED (4)

- FIRST LEFT EDGE BLOCK FORMED

FROM TOPMOST VERTEX (4) AND

SUCCEEDING VERTEX (i)

- FIRST RIGHT EDGE BLOCK FORMED

FROM TOPMOST VERTEX (4) AND

PRECEDING VERTEX (3)

All neighboring polygons are then immediately acces-
sible. With this arrangement, a null pointer immedi-
ately indicates an edge associated with a single polygon.
Without the adjacent polygons list, tagging edges which
are adjacent to polygons facing away from the viewer
is a difficult task. With the list, a graph in which all
adjacent nodes are bidirectionally linked is provided
and tagging silhouette edges by nullifying appropriate
adjacent polygon pointers is straightforward.

It is then necessary to consider the problem of
small objects. It is quite possible to encounter a sharp
change in intensity which is not caught by edge tagging.
Consider the case of a cube with rounded corners
defined by three or four polygons running the length
of each edge. When the image of such a cube is large
enough that each edge polygon spans several dots in
the output image, no problems occur; the rounded
edges appear rounded. However , when the cube is
viewed from a considerable distance, the total span of
the edge polygons may be considerably less than a
single dot. In this case, the edge will appear as jagged
as it would if the cube were made from the usual six
square polygons. Therefore , in addition to tagging
edges, it would be wise to tag small or thin polygons.

Having developed a method for efficient applica-
tion of adaptive convolutional filtering, we must now
integrate this method into ordinary hidden-surface
algorithms. The following discussion outlines this inte-
gration with respect to different classes of hidden-
surface algorithms.

Application of Filtering to Hidden-Surface Algorithms

Hidden-surface algorithms for shaded images can
be reduced, for this discussion, to three classes: scan-
ning algorithms, in which the image is generated scan
line by scan line; depth-priority algorithms, in which
the image is generated from the rear forward, without
regard to vertical or horizontal order; and depth-buffer

803

algorithms, in which the order of generation is imma-
terial [9].

In order to properly compute the intensity at a
sample point, all visible surfaces which lie under non-
zero areas of the superposed filter must be taken into
account. Of the three classes of hidden-surface algo-
rithms, only the scanning algorithms make all necessary
information simultaneously available. Both the depth-
priority algorithms and depth-buffer algorithms deliver
the necessary information for a given sample at inter-
vals while accumulating the image in a frame buffer,
and there is no way of knowing whether two surfaces
involved in the same sample lie next to each other or
overlap.

By using pointers to neighboring polygons, some
of these problems can be resolved since neighboring
polygons must lie next to each other. This allows
creases to be handled correctly. However , where sil-
houette and surface edges are involved, a correct
intensity cannot be guaranteed. If surfaces are ren-
dered in strictly back-to-front order as in some depth-
priority algorithms [6], an acceptable edge can be
obtained under most conditions. However , the depth-
buffer algorithms, which render surfaces in any order,
clearly violate this constraint. To be able to calculate
the proper intensities where a surface appears behind
a previously rendered edge, the intensity of the edge
and the extent of its contribution to the sample must
be recorded. A more complete discussion of these
problems can be found in [2].

It should be noted that where scanning algorithms
are used with a frame buffer to achieve greater image
complexity by separating foreground and background
objects, all the problems of the depth-priority algo-
rithms can be expected. Therefore , if a correct intensity
must be guaranteed at every sample point, a single-
pass scanning algorithm is required. However , if an
occasional error may be accommodated or sufficient
memory space and processor time may be devoted to
maintaining records on all filtered samples, the frame-
buffer-based algorithms can be used.

In the interests of simplicity, the results obtainable
with convolutional filtering are demonstrated by using
a filtering tiler (a tiler is a procedure which generates

Communications November 1977
of Volume 20
the ACM Number 11

the individual dots, or "t i les," from the description of
a polygon). The tiler is simple enough to be described
in this space yet demonstrates generally applicable
techniques for displaying surfaces.

Implementation of a Filtering Tiler

Only convex polygons are considered in this imple-
mentation; thus each scan line intersects a polygon in
a single segment. Therefore it is sufficient to establish
the position and intensity of the end points for each
scan segment and pass them to a shader-interpolator
routine which generates the intensity for each sample
point. Assuming the tiler proceeds from top to bot tom,
the polygon is first searched for its highest vertex. The
vertices of the polygon are known to be stored in a
given order (usually clockwise or counterclockwise). If
the vertices are stored clockwise the vertex preceding
the top vertex defines an edge which lies to the left of
an edge defined by the topmost vertex and the succeed-
ing vertex (Figure 10).

Thus a left-edge block is formed which stores
attributes for the left edge; similarly a block is formed
for the right edge. The attributes for each block include
present position, increments yielding the position at
the next scan line, and shading attributes associated
with their increments. Each block also includes a count
of the number of scan lines remaining until the bottom
of the line segment is reached. The increments are
used to update the edge blocks after each invocation
of the shader-interpolator routine. When a vertex is
reached, the appropriate edge block must be recalcu-
lated to reflect the attributes of the edge below. The
algorithm terminates when the next vertex for a block
lies above the current one, when both edge blocks
reach the same vertex, or when the lowest extent of
the polygon, determined by the bottom-most vertex, is
reached.

Figure 11 shows a flowchart for the tiler just
described, and Figure 12 shows the tiler extended to
include a presampling filter. One important difference
between the filtering and nonfiltering tilers is that the
filtering tiler may not " ignore" edges with a vertical
range of less than one scan line. In particular, an edge
block which lies along the top or bot tom of a polygon,
and thus may have considerable horizontal extent,
must be properly filtered.

The filtering and nonfiltering tilers also differ in
their treatment of edge blocks. In the nonfiltering
tiler, edge blocks which may be " ignored" are imme-
diately marked "done" and a new edge block made.
The filtering tiler, on the other hand, must keep track
of as many edge blocks as may affect intensities on a
given line. Therefore a queue of edge blocks must be
provided for both the left and right sides. In practice,
the length of these queues rarely exceeds two edge
blocks, and images can usually be made by using
queues restricted to that length.

804

Fig. 11. Conventional tiler for convex polygons.

I J

EDGE BLOCK DONE LEFT VERTEX

12o EDGE BLOCK

~_~ - FIND NEXT

~ I G H T EDGE BI.O~ DONE? RIGHT VERTEX

NO EDGE BLOCK

[GENERATE IMAGE ~ T S BY]
INTERPOLATING BETWEEN

, , EDGE BLOCKS

C Eo M ,GHED,) n°

Fig. 12. Filtering tiler for convex polygons.

,,@
INITIALIZE :
- FIND TOP VERTEX
- FIDO NEXT LEFT VERTEX
- F~DO NEXT RIGHT VERTEX
- FIDO BOTTOM VERTEX

i:
¢o E TO VEETEX) .t DOGH

1~0

I ~D WEIGHr~ 'a~-~ FOR LEr~ [
~UB TO CO~SVODOInG Dots

4
17 s

SUBTRACT WEIGHTED AREA FOR
HIGHT EDGE FROM CORREs-

PONDInG DOTS

C ~ o~ E~GHT DouB Q~E 9 no
I YES

I INC~ ALL EDGE BLOCKS I

VEHTEX DO

Communications
of
the ACM

--I Et~ QUBUB Poz~rFRJ----

-I Et~ Qt,~uB POI~EE l--

November 1977
Volume 20
Number 11

Fig. 13. Calculating the weighted area of a small polygon.

J
Left Areas Right Areas Area

Fig. 14. Three images each from the filtering tiler (left side), the
conventional tiler (middle, top to bottom), and a doubled-resolution
tiler (lower right) displayed together.

Conclusion

The intention here has been to provide a discussion
of the aliasing problem and to offer a solution based
on the theory of sampling and reproduction of two-
dimensional signals. The examples shown here have
been chosen to illustrate aliasing at its worst. Although
such cases can sometimes be avoided in still pictures,
animated sequences virtually always exhibit obvious
defects due to aliasing. It follows that genuinely realis-
tic images will require more than token efforts at
resolving the problems discussed above. A general
approach to a solution has been offered here. Further
ideas and more specific suggestions are offered in [2].

Fig. 15. A particularly difficult object, a slender, nearly horizontal
triangle, rendered by the conventional tiler (top four), the filter tiler
(middle five) and the doubled-resolution tiler (bottom four).

The process of filtering the left and right edges
proceeds as described earlier. The approximate area
lying to the right of each left edge in each intersecting
filtered area is weighted and then added to the intensity
for the corresponding image dot. Conversely, the areas
lying to the right of right-hand edges are subtracted
from the intensity for the affected image dots. Note
that since the final sum is the weighted area covered
by the polygon, very small polygons are treated cor-
rectly (Figure 13). Figures 14 and 15 compare the
filtering tiler with conventional tilers.

A detailed evaluation of the performance of the
filtering tiler in comparison with conventional tilers
awaits further research. However , observed execution
times were two to five times longer for the filtering
tiler than for a conventional tiler working at the same
resolution. Such figures can be expected to range
widely, varying inversely with the size of the polygons
displayed and the amount of computing overhead
included.

805

Acknowledgments. This paper has been greatly im-
proved by the helpful comments of the referees. They
deserve praise for their careful reading of an earlier
version. It should also be noted that the presence of
excellent research groups in both computer graphics
and signal processing at the University of Utah made
this work possible.

References
1. Bui Tuong Phong. Illumination for computer-generated images.
UTEC-CSc-73-129, Dept. Comptr. Sci., U. of Utah, Salt Lake
City, Utah, July 1973. Abridged in Comm. ACM 18, 6 (June
1975), 311-317.
2. Crow, F.C. The aliasing problem in computer-synthesized
shaded images. UTEC-CSc-76-015, Dept. Comptr. Sci., U. of
Utah, Salt Lake City, Utah, March 1976.
3. Freeman, H. Computer processing of line-drawing images.
Computing Surveys 6, 1 (March 1974), 57-97.
4. Gouraud, H. Computer display of curved surfaces. UTEC-CSc-
71-113, Comptr. Sci., U. of Utah, June 1971. Abridged in IEEE
Trans. Comptrs. C-20 (June 1971).
5. Hunt, R.W.G., The Reproduction of Colour in Photography,
Printing and Television. Fountain Press, England, 3rd Ed., 1975.
6. Newell, M.G., Newell, R.G., and Sancha, T.L. A solution to
the hidden-surface problem. Proc. ACM 1972 Annual Conf.,
Boston, Mass., Vol. I, pp. 443-450.
7. Oppenheim, A.V., and Schafer, R.W. Digital Signal
Processing. Prentice-Hall, Englewood Cliffs, N.J., 1975.
8. Stockham, T.G. Jr., High-speed convolution and correlation.
Proc. AFIPS 1966 SJCC, Vol. 28, AFIPS Press, Montvale, N.J.,
pp. 229-233.
9. Sutherland, I.E., Sproull, R.F., and Schumaker, R.G. A
characterization of ten hidden-surface algorithms. Computing
Surveys 6, 1 (March 1974), 1-55.
10. Zworykin, V.K., and Morton, G.A. Television. Wiley, New
York, 2nd Ed., 1954.

Communications November 1977
of Volume 20
the ACM Number 11

