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Certain defects, such as jagged edges and 
disappearing detail, have long been an annoyance in 
digitally generated shaded images. Although 
increasing the resolution or defocusing the display can 
attenuate them, an understanding of these defects 
leads to more effective methods. This paper explains 
the observed defects in terms of the aliasing 
phenomenon inherent in sampled signals and discusses 
prerdtering as a recognized cure. A method for 
evaluating filters is presented, the application of 
prefiltering to hidden-surface algorithms is discussed, 
and an implementation of a filtering tiler is shown 
accompanied by examples of its effectiveness. 
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Introduction 

Shaded computer-synthesized images of opaque 
objects with only visible surfaces displayed have be- 
come relatively common in recent years. The primary 
commercial use of such images has been visual simula- 
tors, which require the most realistic possible image 
obtainable at real-time rates. To create realistic images, 
relatively complicated scenes must be depicted, and 
defects due to the quantization necessary for computer  
generation must be minimized. 

A close look at virtually any shaded synthetic image 
reveals that major problems exist in the rendition of 
detail (Figures 1 and 4). These problems characteristi- 
cally occur in three specific situations: (1) along edges 
on the silhouette of an object or a crease in a surface, 
(2) in very small objects, and (3) in areas of compli- 
cated detail. The most obvious problems occur on 
object silhouettes, where edges often have an annoy- 
ingly jagged appearance. If computer-synthesized im- 
ages are to achieve a greater degree of realism, it will 
be necessary to generate images of arbitrarily compli- 
cated scenes which contain many potentially jagged 
edges, small objects, and details. 

Small objects pose a problem because they can 
disappear between the dots. This occurs because each 
dot in the image represents a sample point in the 
scene, an infinitely small spot on some surface being 
depicted. If an object is small enough it is possible that 
no part of it will coincide with a sample point. There- 
fore a very small object may disappear entirely; a long 
thin object may appear in some places and not in 
others, giving the appearance of a string of beads; and 
a highly detailed object such as a human face may lose 
some of its features. 

In animated sequences of images these problems 
become very obvious. Armies of ants appear to run 
along edges as their slopes change; small objects and 
details flash on and off distractingly; slightly larger 
objects appear to change shape and size without rea- 
son; even a simple horizontal edge which looks fine in 
a still picture can be seen to jump from one raster line 
to another  as it moves vertically in the display. 

There are essentially three techniques for improving 
the rendition of detail. The first is to increase the 
resolution, causing sample points to occur more fre- 
quently. This allows representation of finer details and 

Fig. 1. Jagged edges can be attenuated by convolutional filtering. 
The horizontal resolution in this image is approximately 128 samples. 
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diminishes the obtrusion of jagged edges. However, it 
is impractical to increase the resolution sufficiently to 
accommodate small, bright objects owing to the in- 
creased cost of image production. The expense of the 
most commonly used hidden-surface algorithms is pro- 
portional to the resolution, and the number of dots 
which must be produced grows as the square of the 
resolution. 

The second technique is to process the output 
image by blurring it or applying contour-smoothing 
algorithms such as those suggested by Freeman [3]. 
Although this approach can lessen the impact of jagged 
edges, it can do nothing to restore objects or details 
which have been lost. Furthermore, the image loses 
sharpness which may be retained by other methods. 

The third and most attractive technique is to make 
each sample point represent a finite area in the scene 
rather than an infinitesimal spot. Thus a very small 
object would occupy a part of such a small area, 
causing the intensity of the corresponding dot in the 
output image to be computed as a weighted average of 
the colors of the small object and its local background. 
This approach corresponds closely to what actually 
takes place in television and screen printing processes 
[5, 10]. While the first two techniques offer somewhat 
ad hoc approaches to improving rendition of detail, it 
will be seen that the third technique is based on sound 
principles. 

Making each sample represent a finite area has the 
effect of applying a convolutional filter before the 
scene is sampled. It is well known that a signal may be 
faithfully reproduced from digital samples only if the 
highest frequency in the signal does not exceed one- 
half the sampling frequency [7]. Convolutional filtering 
may be used to satisfy this condition closely enough to 
greatly improve the output image. 

The consequence of failing to filter the signal 
properly before sampling is known as "aliasing." Alias- 
ing occurs when a lower frequency signal appears as 
an "alias" of a high frequency signal after sampling 
(Figure 2). Therefore highly periodic images of scenes 
involving, for example, picket fences or venetian blinds 
may appear, when sampled, to be made up of a few 
broad strips rather than many fine lines. 

Reproducing the signal involves representing each 
sample in such a way that the reproduced signal has no 
frequencies higher than the original signal. This can be 

Fig. 2. Aliasing. x ' s  represent  a sampling rate of  10 samples  per 
unit on 12 cycle and 2 cycle signals. Samples are the same in both 
cases. 
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accomplished by representing each sample as a rectan- 
gular pulse and then low-pass filtering the resulting 
signal. In the two-dimensional case, the result of failing 
to filter the signal properly during reconstruction is 
known as "rastering." Rastering is an artifact of the 
structure of the displayed image. If the beam in a 
television monitor is incorrectly focused, the resulting 
effects are due to rastering. 

Filtering Shaded Synthetic Images 

To produce an image by computer, the scene is 
first modeled by approximating all surfaces with easily 
handled entities (e.g. line segments, polygons, or bicu- 
bic patches). These entities are then stored in memory 
at a precision determined by the available word size. If 
N bits of precision are available, the scene is defined 
to a resolution of 2 N elements (Rs). To produce an 
image, the scene definition is sampled at the image 
resolution (R~). 

To ensure that the high frequencies in the scene do 
not exceed one-half the sampling rate, the scene must 
be convolved with a two-dimensional filter. Fast con- 
volution methods [8] involving the two-dimensional 
fast Fourier transform (FFT) are impractical since 
taking the FFT would require producing an image of 
resolution Rs, not to mention the 2R~ log R8 operations 
each FFF would require. Direct convolution can be 
much more easily applied since the convolution need 
only be evaluated at the sample points. This requires 
R~ times R~ operations, where Rs is the resolution of 
the filter. If Rs is chosen to be 2RJR~ (empirically 
found by us to be adequate), then the number of 
operations needed to compute the direct convolution 
is 4R~ z , much less than a single FFT. Nevertheless, this 
is still an excessive amount of computation. In the 
following discussion, an algorithm which simplifies the 
computation by approximating direct convolution is 
presented. 

This algorithm assumes a filter which is nonzero 
over a square region two sample intervals wide and 
separable into functions in x and y .  The scene is 
abstracted so that all features within the compass of a 
single superposition of the filter are modeled as rectan- 
gular areas of constant intensity. This allows the inten- 
sity of an image element to be calculated as a weighted 
average of the contributions of the rectangular areas. 
The weighting is, of course, determined by the filter 
function. 

Two-dimensional discrete convolution can be ex- 
pressed as follows: 

o0 c~ 

G(i,j)= ~ ~ F ( k , m ) H ( i - k , j - m ) .  (1) 
k = - o ~  m = - o o  

Since H must be separable, it can be expressed as 

H(i, j) = H~(i)H~q). (2) 

With this restriction, the discrete convolution becomes 
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G(i,j)  = ~ ~ F(k ,m)Hi( i  - k)H~(j - m) (3) 
]~=--w m = - - o o  

where G represents the filtered scene produced by 
convolving the scene F with the filter H. 

Furthermore,  if the function F is approximated by 
rectangular blocks, then the function over any such 
block becomes constant. This greatly simplifies evalu- 
ation of the filtered function. The summation can now 
be rearranged so that the contribution of each rectan- 
gular block is independent.  The function G then be- 
comes 

ql  81 

G(i,j) = ~ ~ C~Hi(i - k)Hjq - -  m) + ... 
k=p, m=r, (4) 

qn $n 

+ c . n i ( i  - k ) n j ( i  - m )  
I~=p n r a = r  n 

where [p,, q,]  and [r,, s,] represent the bounds of a 
given rectangular block of intensity C, and n such 
blocks give the approximation to the filtered scene at 
( i , j ) .  

To allow Hi and Hj to be considered separately for 
a given rectangular block, the summation can be rear- 
ranged as follows: 

qn 8n 

~ C.H,(i - k )Hjq - m) 
k = p  n m = r  n 

qn $n 

= C. ~ Hi(i - k) ~ Hjq - m). (5) 
k = p  n m = r  n 

The implementation of an algorithm for discrete con- 
volution over the scene description becomes relatively 
easy as a result of this rearrangement.  Note that by 
making the rectangular blocks arbitrarily small an 
arbitrarily good approximation to G can be obtained. 

Implementing the algorithm involves building 
lookup tables for summations over the functions H~ 
and Hi. Since H is always of limited nonzero extent,  
two finite tables can be built, one for Hi and the other 
for Hj (in practice these have usually been the same). 
Each table will consist of entries which represent 
partial sums across the function from the lower nonzero 
bound to each point below the upper nonzero bound. 
To obtain the sum over the function between any two 
nonzero points, it is sufficient to find the difference 
between the table entries for these two points. With 
the help of lookup tables, any of the independent 
summations (see eq. (5)) giving the approximation to 
G for a given i and ] can be found with four lookups, 
two subtractions, and two multiplications. 

To evaluate the filter functions used with the con- 
volution algorithm, a test pattern which emphasizes 
the defects due to aliasing may be used. A test pattern 
has been invented which generates moire patterns in 
response to improperly represented edges and detail. 

The pattern is produced by generating almost par- 
allel sections of parabolas by using second-order differ- 
ences (Figure 3). The curvatures of the parabolas 
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Fig. 3. Test pattern consisting of closely spaced parabolic arcs 
(moire patterns in this figure and some of those in Figures 5-8 are 
caused by the half-tone printing process). 

Fig. 4. Test pattern synthesized at a resolution of 256 samples by 
using techniques similar to those of conventional hidden-surface 
algorithms. 

decrease linearly from a maximum on the left to zero 
on the right. In addition, the distance between any 
two adjacent parabolas decreases linearly from left to 
right across the pattern,  causing jaggedness along edges 
to be repeated with slight variation from curve to 
curve. The effects along groups of curves form elliptical 
patterns which are much easier to detect than jagged- 
ness along a single edge. Furthermore,  toward the 
right side of the pattern where the detail is too fine to 
be resolved by the display, similar patterns are caused 
by improper summing of the details represented in a 
sample (Figure 4). 

A program has been developed to display the 
pattern convolved with various filters. An interactive 
filter design routine allows quick design and modifica- 
tion of a filter. The pattern can then be regenerated in 
a few minutes to allow visual evaluation. Equipment  
calibration routines are also included; the test pattern 
sensitivity is great enough to make consistent calibra- 
tion an absolute necessity. 

Figures 5-8 illustrate the effectiveness of various 
filters. In each figure, the curve at the lower left 
represents the presampling filter while the upper left 
curve represents the calibration function. 

Having developed a method for applying convolu- 
tional filters and having found effective filters, we 
must find methods to restrict filtering to those parts of 
the image where it is necessary. In other words, the 
filtering process must be made adaptive. 
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Fig. 5. Pattern convolved with a filter consisting of nine equally Fig. 7. Pattern convolved with a roughly triangular filter having a 
weighted discrete points (equivalent to tripling the resolution), base width of one sample interval. 

Fig. 6. Pattern convolved with a filter consisting of 25 unequally 
weighted discrete points. 

Fig. 8. Pattern convolved with a roughly triangular filter having a 
base width of two sample intervals. 

Improved Efficiency Through Selective Filtering 

To isolate most of the conditions which contribute 
to aliasing before the hidden-surface computat ion is 
begun,  certain parts of the data can be tagged for 
special t reatment .  Tagging the data allows the hidden- 
surface routine to operate  normally over  most  of the 
image,  applying the more  expensive convolution tech- 
niques only where necessary. 

Nearly all the difficulties in shaded images appear  
where abrupt  changes in intensity and thus high spatial 
frequencies occur. If the elements  of the scene descrip- 
tion which Cause these occurrences can be tagged, the 
difficulties can be localized. As noted above,  the abrupt  
intensity changes typically occur in the following three 
cases: (1) along the silhouette of an object ,  (2) along 
creases, corners,  or other  sharp changes in the direction 
of a surface, and (3) at the edges of colored patches 
on a surface. 

If  polyhedral  objects are represented,  every poly- 
gon edge is a potential  source of aliasing problems.  On 
the other hand, if curved surfaces are represented by a 
polygonal approximation,  shading techniques may be 
used to conceal the polygon boundaries over  smooth 
areas [1, 4]. A curved surface approximated  by poly- 
gons can be made to look smooth by calculating 
intensities based on the orientation of the surface at 
the vertices of the polygons and then using interpola- 
tion to find the intensities for the rest of  the surface. 
The data structure for describing the polygons is usually 
arranged so that adjacent  polygons can share data 
where they have common vertices. If  there is a sharp 
change of surface orientation or color across a polygon 
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border ,  there can be two sets of vertices defining the 
edge which joins the two polygons. Therefore  creases 
and color changes define two different edges over  the 
same position, and this proper ty  can be used to isolate 
such edges. 

Since the most noticeable jaggedness occurs on the 
silhouettes of objects,  it is clearly necessary to find 
those edges which lie on the silhouettes. Any edge 
which lies on the silhouette must join a polygon facing 
the viewer to one facing away from the viewer. Of  
course an edge associated with only one polygon may 
also lie on the silhouette of an object.  In this case the 
edge must be a surface edge as opposed to a silhouette 
edge. A surface edge occurs wherever  the surface 
halts, for example,  at the edge of a sheet of paper  or a 
hole in a surface (Figure 9). 

To save space, polygons facing away from the 
viewer (backfacing polygons) are often discarded be- 
fore the hidden-surface computat ions are done,  in 
which case silhouette edges become surface edges (and 
therefore belong to only one polygon).  Note  that this 
step cannot be taken until all vertex coordinates have 
been t ransformed into the perspective space in which 
the image will be computed.  After  backfacing polygons 
have been discarded, creases, color changes,  and sil- 
houette edges occur at edges belonging to only One 
polygon, a characteristic which can be used to find and 
tag all such edges. 

Although an exhaustive search could be used to 
find all the edges associated with a single polygon,  a 
far more  attractive alternative is to add an adjacent 
polygons list to the data for each object ,  providing a 
pointer  to the adjacent  polygon for each polygon edge. 
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Fig. 9. Silhouette edges and surface edges. Fig. 10. Tiling a convex polygon. 
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- TOPMOST VERTEX LOCATED (4 )  

- FIRST LEFT EDGE BLOCK FORMED 

FROM TOPMOST VERTEX (4) AND 

SUCCEEDING VERTEX (i)  

- FIRST RIGHT EDGE BLOCK FORMED 

FROM TOPMOST VERTEX (4 )  AND 

PRECEDING VERTEX (3 )  

All neighboring polygons are then immediately acces- 
sible. With this arrangement,  a null pointer immedi- 
ately indicates an edge associated with a single polygon. 
Without the adjacent polygons list, tagging edges which 
are adjacent to polygons facing away from the viewer 
is a difficult task. With the list, a graph in which all 
adjacent nodes are bidirectionally linked is provided 
and tagging silhouette edges by nullifying appropriate 
adjacent polygon pointers is straightforward. 

It is then necessary to consider the problem of 
small objects. It is quite possible to encounter  a sharp 
change in intensity which is not caught by edge tagging. 
Consider the case of a cube with rounded corners 
defined by three or four polygons running the length 
of each edge. When the image of such a cube is large 
enough that each edge polygon spans several dots in 
the output image, no problems occur; the rounded 
edges appear rounded. However ,  when the cube is 
viewed from a considerable distance, the total span of 
the edge polygons may be considerably less than a 
single dot. In this case, the edge will appear as jagged 
as it would if the cube were made from the usual six 
square polygons. Therefore ,  in addition to tagging 
edges, it would be wise to tag small or thin polygons. 

Having developed a method for efficient applica- 
tion of adaptive convolutional filtering, we must now 
integrate this method into ordinary hidden-surface 
algorithms. The following discussion outlines this inte- 
gration with respect to different classes of hidden- 
surface algorithms. 

Application of Filtering to Hidden-Surface Algorithms 

Hidden-surface algorithms for shaded images can 
be reduced, for this discussion, to three classes: scan- 
ning algorithms, in which the image is generated scan 
line by scan line; depth-priority algorithms, in which 
the image is generated from the rear forward, without 
regard to vertical or horizontal order; and depth-buffer 
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algorithms, in which the order  of generation is imma- 
terial [9]. 

In order to properly compute the intensity at a 
sample point, all visible surfaces which lie under non- 
zero areas of the superposed filter must be taken into 
account. Of the three classes of hidden-surface algo- 
rithms, only the scanning algorithms make all necessary 
information simultaneously available. Both the depth- 
priority algorithms and depth-buffer algorithms deliver 
the necessary information for a given sample at inter- 
vals while accumulating the image in a frame buffer, 
and there is no way of knowing whether two surfaces 
involved in the same sample lie next to each other or 
overlap. 

By using pointers to neighboring polygons, some 
of these problems can be resolved since neighboring 
polygons must lie next to each other.  This allows 
creases to be handled correctly. However ,  where sil- 
houette and surface edges are involved, a correct 
intensity cannot be guaranteed.  If surfaces are ren- 
dered in strictly back-to-front order  as in some depth- 
priority algorithms [6], an acceptable edge can be 
obtained under most conditions. However ,  the depth- 
buffer algorithms, which render surfaces in any order,  
clearly violate this constraint. To be able to calculate 
the proper  intensities where a surface appears behind 
a previously rendered edge, the intensity of the edge 
and the extent of its contribution to the sample must 
be recorded.  A more complete discussion of these 
problems can be found in [2]. 

It should be noted that where scanning algorithms 
are used with a frame buffer to achieve greater image 
complexity by separating foreground and background 
objects, all the problems of the depth-priority algo- 
rithms can be expected. Therefore ,  if a correct intensity 
must be guaranteed at every sample point, a single- 
pass scanning algorithm is required. However ,  if an 
occasional error may be accommodated or sufficient 
memory space and processor time may be devoted to 
maintaining records on all filtered samples, the frame- 
buffer-based algorithms can be used. 

In the interests of simplicity, the results obtainable 
with convolutional filtering are demonstrated by using 
a filtering tiler (a tiler is a procedure which generates 
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the individual dots, or "t i les,"  from the description of 
a polygon). The tiler is simple enough to be described 
in this space yet demonstrates generally applicable 
techniques for displaying surfaces. 

Implementation of a Filtering Tiler 

Only convex polygons are considered in this imple- 
mentation; thus each scan line intersects a polygon in 
a single segment. Therefore  it is sufficient to establish 
the position and intensity of the end points for each 
scan segment and pass them to a shader-interpolator 
routine which generates the intensity for each sample 
point. Assuming the tiler proceeds from top to bot tom, 
the polygon is first searched for its highest vertex. The 
vertices of the polygon are known to be stored in a 
given order  (usually clockwise or counterclockwise). If 
the vertices are stored clockwise the vertex preceding 
the top vertex defines an edge which lies to the left of 
an edge defined by the topmost vertex and the succeed- 
ing vertex (Figure 10). 

Thus a left-edge block is formed which stores 
attributes for the left edge; similarly a block is formed 
for the right edge. The attributes for each block include 
present position, increments yielding the position at 
the next scan line, and shading attributes associated 
with their increments. Each block also includes a count 
of the number  of scan lines remaining until the bottom 
of the line segment is reached. The increments are 
used to update the edge blocks after each invocation 
of the shader-interpolator routine. When a vertex is 
reached, the appropriate edge block must be recalcu- 
lated to reflect the attributes of the edge below. The 
algorithm terminates when the next vertex for a block 
lies above the current one, when both edge blocks 
reach the same vertex, or when the lowest extent of 
the polygon, determined by the bottom-most  vertex, is 
reached. 

Figure 11 shows a flowchart for the tiler just 
described, and Figure 12 shows the tiler extended to 
include a presampling filter. One important difference 
between the filtering and nonfiltering tilers is that the 
filtering tiler may not " ignore"  edges with a vertical 
range of less than one scan line. In particular, an edge 
block which lies along the top or bot tom of a polygon, 
and thus may have considerable horizontal extent,  
must be properly filtered. 

The filtering and nonfiltering tilers also differ in 
their treatment of edge blocks. In the nonfiltering 
tiler, edge blocks which may be " ignored" are imme- 
diately marked "done"  and a new edge block made. 
The filtering tiler, on the other hand, must keep track 
of as many edge blocks as may affect intensities on a 
given line. Therefore  a queue of edge blocks must be 
provided for both the left and right sides. In practice, 
the length of these queues rarely exceeds two edge 
blocks, and images can usually be made by using 
queues restricted to that length. 
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Fig. 11. Conventional tiler for convex polygons. 
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Fig. 13. Calculating the weighted area of a small polygon. 

J 
Left Areas Right Areas Area 

Fig. 14. Three images each from the filtering tiler (left side), the 
conventional tiler (middle, top to bottom), and a doubled-resolution 
tiler (lower right) displayed together. 

Conclusion 

The intention here has been to provide a discussion 
of the aliasing problem and to offer a solution based 
on the theory of sampling and reproduction of two- 
dimensional signals. The examples shown here have 
been chosen to illustrate aliasing at its worst. Although 
such cases can sometimes be avoided in still pictures, 
animated sequences virtually always exhibit obvious 
defects due to aliasing. It follows that genuinely realis- 
tic images will require more than token efforts at 
resolving the problems discussed above. A general 
approach to a solution has been offered here. Further 
ideas and more specific suggestions are offered in [2]. 

Fig. 15. A particularly difficult object, a slender, nearly horizontal 
triangle, rendered by the conventional tiler (top four), the filter tiler 
(middle five) and the doubled-resolution tiler (bottom four). 

The process of filtering the left and right edges 
proceeds as described earlier. The approximate area 
lying to the right of each left edge in each intersecting 
filtered area is weighted and then added to the intensity 
for the corresponding image dot. Conversely, the areas 
lying to the right of right-hand edges are subtracted 
from the intensity for the affected image dots. Note 
that since the final sum is the weighted area covered 
by the polygon, very small polygons are treated cor- 
rectly (Figure 13). Figures 14 and 15 compare the 
filtering tiler with conventional tilers. 

A detailed evaluation of the performance of the 
filtering tiler in comparison with conventional tilers 
awaits further research. However ,  observed execution 
times were two to five times longer for the filtering 
tiler than for a conventional tiler working at the same 
resolution. Such figures can be expected to range 
widely, varying inversely with the size of the polygons 
displayed and the amount  of computing overhead 
included. 
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