
BASIC Zgrass--A ~ophisticated Graphics Language
for the Baliy Home Library Computer

Tom DeFanti, University of illinois
at Chicago Circle

Jay Fenton, Dave Nutting Associates
Nola Donato, University of Illinois

at Chicago Circle

Abstract
Home computer users are just now discovering

computer graphics. Modest extensions to BASIC al-
low plotting but not much more. The Bally Home
Library Computer, however, has hardware to aid im-
plementation of video games. Custom integrated
circuits working on a 160XI02 pixel (2 bits per
pixel) color television screen allow certain forms
of animation in real time. To give this power to
the user, BASIC Zgrass has been designed and im-
plemented. It is an extension of BASIC that al-
lows parallel processes, picture objects that
move, scale and group together as well as several
drawing modes. There are also software controls
of a three-voice music synthesizer, interactive
input devices, a film camera and an IEEE bus in-
terface. We will concentrate mainly on the
language design for making it all easy to learn
and use.

Content Indicators

1.51, 1.52, 2.12, 3.41, 3.44, 3.80, 4.13,
Keywords: interactive computer graphics,
tepreters, real-time, graphic language, art

Introduction and General Motivation

4.22
in-

Zgrass can be called an immodest extension of
BASIC (Ted Nelson refers to it as "Super BASIC"
[I]}. It is an extension in that graphics support
and user instruction facilities have been added to
the capability of running BASIC programs copied
out of a hobbyist computer magazine. It is immod-
est in that great liberties have been taken to
weed out some of BASIC's undesirable programming
conventions. Zgrass is actually a video game pro-
gramming language designed specifically to en-
courage creation of beautiful animations in short
order. It is also designed to teach many of the
important concepts of interactive systems and 2-D
computer graphics.

The hardware used is the Bally Home Library
Computer built around the Bally Arcade unit. It
is a Z-80 based machine with special integrated
circuits which help the processor manage the
160xi02 2-bit-per-pixel color output connected to
any standard color tv set. The alphanumerics gen-
erated by program output and keyboard input are
video mixed over the color graphics so text is not
constrained to the 160xi02 format. The two bits in
each pixel indicate one of four bytes from which
an index into a 256-element color map is taken.
Thus, four of 256 colors can be on the screen at
once. The hardware also includes some tricks
which have been found useful in professional video

arcade units, its projected cost, without color
tv, is about $750.00, including the arcade unit.

Zgrass itself takes up 16k bytes of ROM
storage and has 16k bytes of RAM for user storage
and system use. An additional 16k ROM (referred
to as the 'extension' below) plugs into the side
and provides room for a compiler and other
features. Audio cassette storage and modem link-
age to other computers is provided. Software for
driving optional intelligent floppy disk drives is
also built-in. Further hardware in this unit in-
cludes four hand controls, a 24-key pocket calcu-
lator keyboard, a three-voice sound generator and
an IEEE Bus interface. Zgrass is the operating
system for this computer as well.

Zgrass design concepts are rather different
from those apparently underlying the current batch
of home computer systems. Home systems are now
trying very hard to be cheap minicomputers for ex-
pert users. These users when at home can be
likened to the ham radio operators of the nineteen
fifties, able to change diodes, violently shake
intermittent boards and, in general, understand
the innards. These persons can also get gratifi-
cation from fighting with manuals and the trials
of the latest software release, just as we profes-

sionals do for a living.
Zgrass, however is designed for the two-

hour-a-week user. This type of person is
guaranteed to continually forget the syntax and
semantics of whatever software exists. Zgrass is
designed (certainly at the cost of computer time
and memory use) so the user does not have to rely
on a manual to decipher everything. In short,
this system is trying to be the Model T of the
home computer industry, with all that implies. We
shall see.

Above all, Zgrass is designed to be as at-
tractive and as fun as pinball but considerably
more intriguing and useful.

General Zgrass Concepts

"Right away" is the foremost design concept
of Zgrass. Positive experiences in the first two
hours of play are essential. When it is not part
of your job or intended career, you must be able
to do interesting, beautiful things right away,
without reading a five-pound manual.

BASIC is now the home computer language.
BASIC was designed as a teaching language and
shines in its simplicity and easy matrix opera-
tions. It is, however, a poor language for the

33

manipulation of anything but numbers. It has no
features that make writing large progams (over 200
statements) easy. Its subroutine capability is
archaic. But, it is obviously a success in what
the designers intended, otherwise it could not
presently be the universal home computer language.

In particular, though, BASIC is a poor
language for animation. To be sure, plotter art
and decaying sine curves are well suited to BASIC.
But our almost eight years of experience with the
GRASS language[2] and Dan Sandin's color video Im-
age Processor[3] as well as being directly or in-
directly involved with roughly half of the most
popular arcade video games, has given us insight
into the potenti~± of a color tv set, and you just
cannot do a tv set justice in BASIC.

The next several pages will give details on
syntax of Zgrass, but first we will further con-
sider the "right away" criterion. Anyone who al-
ready knows BASIC should be able to write Zgrass
programs immediately. For those persons in Ameri-
ca who do not religiously read "BYTE" or "Creative
Computing" (a sizable part of the population), we
have been developing self-paced instructional
software for Zgrass. The prototype system now
functions quite well in GRASS (see paper by Towle
and DeFanti, these proceedings). Both GRASS and
Zgrass have enough supervisory functions and error
trapping features to allow a good
programmer/educator to write programs which exe-
cute and verify instructional programs written by
beginning students. We feel that the chief prob-
lem in teaching programming is that it, as an ac-
tivity, is poorly simulated by the examples and
the Backus-Naur-type syntax information usually
found in manuals. Normal programmers have fellow
workers, consultants or at least other students
around to help out. The home user has no such
recourse.

The essence of the teaching problem stems
from the fact that novices have tremendous prob-
lems with meaningless (to them) error messages.
You really have to know nearly everything about a
system before you can start knowing why what you
have typed does not work. This is absolutely not
an overstatement of the problem.

All this commentary leads directly to comput-
er aided instruction. While CAI has not quite
lived up to its expectations for teaching other
subjects, it can be used to teach people how to
program. It is rel~tively straightforward to lead
the user through commands, interactively teach
looping concepts and verify the results of care-
fully chosen problem sets. All possible errors
can be trapped and explained in detail. Our ex-
perience with this type of teaching is very
supportive--non-programmers (primarily art stu-
dents and a few university officials) can be doing
fascinating graphics of great beauty in half an
hour. The whole process has the feeling Of a game
and is consistently rewarding. Providing internal
system support for these teaching programs is no
doubt the second most important design concept of
Zgrass, after "right away" of course.

Note that few (if any) programming languages
allow you to write programs to interactively teach
programming. Smalltalk[4] and Logo[5] teach by
user experimentation in surroundings not lacking
professional help. Plato[6] has no student pro-
gram or storage space (only authors can write and
store TUTOR programs). One could probably design

some CAI programs in Snobol or Lisp but these are
hardly languages for novices and they are not
known for their lucid error message handling, or
availability on micros. Perhaps a graphics-
extended APL might do. It would be wonderful if
the experience with Zgrass encouraged others to
design extensions to languages with teaching in

mind.

Zgrass Technical Details

Zgrass is an interpreter of commands and as-
signment statements stored internally as ASCII
strings. These strings may be entered and execut-
ed line by line, formed into programs (called
"macros"), edited, and even built and pulled apart
by string manipulation primitives. (A compiler
which eliminates most of the interpretive overhead
and which takes better advantage of the resident
hardware floating point unit is part of the 16k
extension ROM.)

We are determined to maintain compatibility
with at least TINY BASIC (it is hard to say what
"standard" BASIC really is). Since BASIC has line
numbers, Zgrass labels must start with a number
(e.g. 100, 1obekenobe, 707crash, etc.). A BASIC
program copied out of "BYTE" would simply have a
lot of extraneous labels. Labels in Zgrass are
obviously not used to order and edit the state-
ments as in BASIC since one would hardly like to
have alphabetically ordered labels and Zgrass has
a good on-screen editor anyway. Our definition of
compatibility is r~stricted to executing perfect
programs written in BASIC. Getting them in, edit-
ing, executing and debugging them is done dif-

ferently.
Commands are made up of a keyword followed by

zero or more operands. Examples of commands are:
goto 4jail
move deathweapon,xl,yl
clear
input dea,fbi,c
print beep,"who loves ya, baby?"

(some of the more idiosyncratic BASIC commands,
notably "if" and "for" have their peculiar syntax
retained for compatibility).

Commands are gentle to users. If not enough
arguments are supplied, if an incorrect argument
is given or the argument is non-existent, a spe-
cial error fixup routine is entered. This routine
prints out the command in error, points at the ar-
gument in error and says, for example, "NO! this
command wants a variable name here." The user can
then type in a correct argument and the command
goes on. He can also elect to enter command mode
to create a missing name, for example, and then
resume the above process. All this will happen
whether commands are entered line-by-line or exe-
cuted as part of a macro.

Note that all commands are more or less self
documenting. You can type the command name and it
asks you for the operands. This error facility
allows one to get by trivial syntax errors without
constant re-editing. It is also a sloppy way to
get input to macros, although there are several
conceptually clearer (to computer folk) ways.

Many commands have options indicated by post-
fixing the command name with a hyphen plus a
modifier (e.g. "input-string" which can be shor-
tened to "in-str" or even "i-s"). The hyphenated
option construction is more English-like than

34

single-character switches and it helps keep down
proliferation of command names.

Since every command has an internally stored
list of what argument types it wants, the "help"
command can easily print these out with options
(there are about 20 different argument types in
Zgrass, like number, string, expression, picture
prototype, array and so on). Further syntax and
semantic information is available in the manual
but the information you need most often is at your
fingertips "right away."

A few more details about variables are neces-
sary. Variable names (macros are actually string
variables) can ~e any length and must start with
an alphabetic character. Variables used as macros
may not have names ~hich conflict with system
names. Global variables start with lower case
letters and local variables start with upper case
letters. The system decides whether a variable is
a numeric or string variable by examining the con-
text in which it is first used.

(Commands are terminated by semicolons or
carriage returns. The alphanumeric generator
which is video mixed over the color graphics or
routed to a separate monitor puts up sixteen
32-character lines. The alphanumeric handler au-
tomatically folds lines over 32 characters long
for display purposes but does not insert a car-
riage return. A special character indicates folded
lines.)

Arithmetic statements are similar in format
to assignment statements in BASIC or FORTRAN, with
the exception of the left arrow used. The parser
automatically changes equals signs (which are used
for conditionals) to left arrows to maintain com-
patibility with BASIC yet allow a sophisticated
expression evaluator to operate unambiguously by
not having to deal with multi-purpose operators.
Examples of arithmetic assignment statements are:

abc~sin(argl)+cos(arg2)
babarum@1.2
c~whodunit(f,g,huh)

where the last example contains a user-defined
function (a macro, of course).

Numeric variables are kept in fixed or float-
ing point by the system, switching mode as neces-
sary without user knowledge. The luxury of a
floating point arithmetic unit helps calculation
speed considerably. There are also reserved sys-
tem variables which hold the values of the hand
controls, keypad keys, external I/O strings and
other special things.

Strings are assigned as follows:
tom~'this is a single line"
sam@tom&tom&babarum ;.concatenat
er~'
' ;.to enter a carriage return
mymacro@<print tom,cr,tom," again"

stuff~hello> ;. stuff gets "hell~
for a=1 to 10
print stuff,a
next a>

The last example shows nested assignments and a
way to create a macro. Note that acceptable

string delimiters are ",',<,>,[, and], the last
four of which must be balanced. String decomposi-
tion is handled by a variety of string commands in
the 16k extension.

Macros

Any string can be executed in Zgrass. If it
contains meaningful commands, it can be used as a
program. Again, programs in Zgrass are called
"macros." Macros can call other macros, call them-
selves, execute in foreground or in parallel with
other macros in the background, supervise other
macros and interact with macros running on other
Zgrass machines.

Zgrass differs from BASIC greatly when it
comes to subroutine linkage. Zgrass has a very
convenient and conceptually clear way of passing
arguments--you simply make believe the macro is a
command and use standard command syntax• Further-
more, the "input" command (for numbers) and the
"input-name" and "input-string" commands (for
strings) fetch the arguments passed in a way that
automatically request user input from the terminal
if not enough arguments are passed. This linkage
is discussed in more detail below•

Looping and control transfer is done with

"goto," "for/next" and "gosub." (Gosub is re-
tained for compatibility.) A version of goto
called ',skip" has the option of jumping relative a
number of lines, a good feature for those quick
loops in which you forgot to put the label• There
is also a "return" command which can pass an argu-
ment back if it is a function call like "whodun-
nit" above.

When a macro is asked to execute (by typing
its name as the first thing on a line, like a com-
mand), the system builds a macro invocation block
(MIB). The MIB holds information about local
variables, for/next blocks, argument and data
lists and so on. When the macro is done, the MIB
is deleted along with all the pieces hanging off
it. The storage allocation/reclamation algorithms
used are again similar to GRASS's.

Numeric arguments are passed using the "in-
put" command. It is similar to "input" in BASIC
but it first checks the argument list. If there
is an argument, it is grabbed. Otherwise, the user
is requested to enter the value. Input works in
concert with "print" which supresses output when
arguments are present. (Of course, there are op-
tions to input and print which force terminal
I/O.) Thus, a macro that has lots of prompting in-
formation can be called by another macro without
all sorts of editing to remove the prompts, but
the macro will wake up and start asking questions
if not enough arguments are supplied. One can
create self-documenting macros which are effi-
cient, yet help out when necessary. (How many
times have you forgotten the arguments to a
subroutine?)

The "input-name" command functions similarly
for strings and is used to get names passed as ar-
guments. You use the "@" operator to indirectly
reference strings. For example:
getandmove@<lagain print "gimme a pixname"

inp-name gettemp ;.get name
if gettemp='',return ;.if null, return
get-tape @gettemp ;.get it from tape
move @gettemp,x3,Y3 ;.attach control3
display @gettemp ;.and show it
goto lagain>

getandmove apple,witch,~itles,,

35

where the last line is the call and the lines
above are the macro definition presumably entered
before the call. Comments are lines or sub-lines
which start with a " "

The "input-string" command expects string
delimiters around arguments passed so that whole
commands can be arguments (you cannot pass a comma
with the input-name option). This is important for
the construction of teaching and verification pro-
grams, among other things. If the argument is not
there, input-string will require input from the
keyboard, but without the string delimiters, just
like input-name.

The principle here is to make macros look
like system-defined commands as much as possible,
a rather loose definition of extensibility, but
one that is meaningful when speaking about inter-
preters (a conclusion adapted from comments in
[7]).

Picture and Pattern Drawing

Zgrass has several predefined variables which
cause drawing on the screen when they are written
into. To display a point, you set variables xs
and ys to the x and y coordinate. When you set
variable cs to a value from one to four, the point
is displayed with the color value indicated by the
value of cs. There are also the "line," "box," and
"circle" commands which draw vectors, and filled
rectangles and ellipses on the screen.

Picture Animation

Once a picture is drawn on the screen, all or
part of it may be stored as a picture prototype
with the "snap" command. Picture prototypes are
pixel lists in this case and are kept in user 16k
RAM rather than in the screen 4k RAM. So, a pic-
ture is something you see on the screen and a pic-
ture prototype (or "prototype" for short) is its
representation in user memory.

One then attaches the prototype to a vari-
able, time-based variable (a user-defined special
variable whose value varies automatically over a
given time period), hand control, or user-defined
function. The prototype is displayed with the
"display" command. After that, anytime the vari-
able or function changes, the prototype will be
erased with an "exclusive or" write and rewritten
with its updated translation or other transforma-
tion with an "exclusive or" write. This technique
lets pictures of one color pass over pictures of
another color without leaving holes (using stan-
dard bit plane raster scan graphics techniques).
There is an interrupt level routine which manages
movements of prototypes and a host of other de-
tails, along the lines of a conventional refresh
graphics driver. The user has a simple way to in-
dicate wha~ maximum percentage of time should be
allocated to interrupt level updating, the rest
being left for command processing.

The same interrupt routine also manages pic-
ture prototype lists made up of lists of points,
vector endpoints, box and circle drawing informa-
tion. With the 16k extension, rotation and scal-
ing of these lists is possible. Prototype lists,
of course, have to be built up rather than snapped
using options to the line, box and circle com-
mands. The user can access individual endpoints
and manipulate the prototype as a whole. Of

course, there can be maDy prototypes floating
around at once.

Again, the user's aesthetics and perceptions
are essential. Since everything is real-time (or
close to it) the user can easily see the effect of
various commands on the screen, the implications
of varying amounts of interrupt processing time,
the ways of using different colors, and so on.

Prototype lists and patterns can be grouped
into a tree structure which allows concatenation
of transformations. Moreover, the "select" com-
mand specifies a sequence of pictures to be put up
and erased in round-robin fashion (imagine several
views of a walking "man" being switched to provide
the illusion of walking). A simple Super 8 camera
hookup ailows more complex, synchronized sequences
to be filmed, if desired.

Conclusions

Zgrass is designed to be a first programming
language which encourages both novices and experts
to learn about color graphics, generate meaningful
and pretty displays, possibly make Super 8 movies,
and perhaps even access governmental databases and
control electric train sets. The software is
designed to be multi-leveled and rich with feed-
back. Considerable research into the teaching as-
pects has been folded into the design.

Continuing developmental elfort along these
lines now concerns higher resolution displays,
much faster mfcroprocessors, parallel programming
techniques and connection to videodisks and other
television equipment. Zgrass is one way you can
control the amount of sex and violence on your tv
set.

References

[1] Nelson, Ted, The Home Compute__rr Revolution,
1977, p. 79.

[2] DeFanti, T.A., "The Digital Component of the
Circle Graphics Habitat," Proc. NC_~C, 1976.

[3] DeFanti, T.A., Sandin, D.J., and Nelson, T.H.,
"Computer Graphics as a Way of Life,"
Computers & Graphics, Vol. I, No. I, May
1975.

[4] Goldberg, A. and Kay, A., Smalltalk-72
Instruction Manual, Xerox PARC #ss176-6,
March 1976.

[5] Papert, Seymour, A Computer Laboratory for
Elementary Schools, Logo Memo I, MIT Artifi-
cial Intelligence Lab, October, 1971.

[6] Alpert, D., and Bitzer, D., "Advances in
Computer-Based Education, Science, Vol. 167,
March 1970.

[7] Feldman, J.A., "Proceedings of the Extensible
Languages Symposium," SIGPLANNOTICES, Vol.
4., No. 8., August 1969.

Addendum: Zgrass Command List (in addition to
BASIC)

(The commands beginning with a '*' are in the 16k
extension.) (Not all options are indicated.)

36

command name

box

*change

circle

clear
*close

colors

*compile
copy

delete

display

*film

*fetch

get

group

help

ieee
input

line

memory
move

*onerror

*open

*pattern

play

p u t

rename

*rotate

*scale

function

draws a rectangle on the screen &
has options for building picture
prototype lists
changes t~e values of an endpoint
in a picture prototype list
draws an ellipse on the screen &
has options for building picture
prototype lists
clears the screen
closes off an open picture proto-
type list
chooses 4 colors of 256 for screen
use
compiles code for speed
makes a copy of a picture proto-
type with a new name
deletes and reclaims storage of a
named thing
causes a picture prototype to be
exclusive or'ed onto the screen
and be updated when necessary
sets up filming mode for a Super 8
camera
retrieves a given endpoint in a
picture prototype list
gets a macro, array, picture pro-
totype list, etc. from tape,
disk, etc.
collects picture prototypes into a
group which can be referenced with
a single name. Transformations
may be done to the group as a
whole or to individual members.
prints commands and required argu-
ment types
provides interface to IEEE bus
used to input numbers, strings
from terminal or passed argument
lists
draws a vector & has options for
building picture prototype lists
gives a usage map of memory
attaches a picture prototype to
two variables, devices, etc. so
that when they change, the proto-
type is automatically erased and
redrawn in the new position with

options for "exclusive or" or
"load/store" read and write to
screen
traps errors to a user's routines

allocates storage and starts up a
picture prototype list
allows a pixel list to be directly
built rather than snapped
interprets a string, array or pic-
ture prototype as a musical score
to be played by the three-voice
synthesizer
stores a macro, array, picture
prototype list, etc. on tape,
disk, etc.
renames a named thing to a new
name
like move but the prototype is ro-
tated
like move but the prototype is
scaled

37

select

snap

sync

*rip

causes picture prototypes to be
switched round-robin fashion on
the screen
takes a screen image in rectangu-
lar bounds and makes it into a
movable picture prototype
tells the system how much time to
devote to interrupt-level updating
versus command processing
allows a macro to be executed at
interrupt level (stands for "very
important program")

