
A SYSTEM FOR SCULPTING 3-D DATA

Richard E. Parent
Computer Graphics Research Group*

The Ohio State University
Research Center

1314 Kinnear Road
Columbus, Ohio 43212

the object and inputting the coordinates of each
point desired. In the other approach, the object
definition is directly "created" or synthesized in
the machine. In this case, the resultant object
definition need not correspond to any physical
counterpart, but rather, is specified for its
visual attributes only. Of course, in practice
one might adopt stances intermediate to these
polarities such as reading in some "primitive"
objects and then synthesizing more complex objects
out of the primitive ones.

Our work in data generation is heavily influenced
by the fact that, historically, the Computer
Graphics Research Group (OGRG) at The Ohio State
University has had as one of its aims for its
graphics systems ease of use by artists and other
non-programmers. Thus, the graphics language,
Graphics Symbiosis System or GRASS (2), could be
learned by persons with little computer background
in a short time to create two-dimensional figures
of nontrivial complexity. The WHATSISFACE system
(3), developed at the CCRC enabled nonartists and
nonprogrammers to draw on the CRT a facial image
with remarkable likeness to a target photograph.
The ANIMA II language currently in use at CCRG
allows the nonprogrammer to easily specify complex
time-dependent motions in 3-D for producing color
animation sequences. In this historical context,
we were naturally led to the notion of opening up
the possibilities of the computer as a medium of
expression for sculptors and animators of three-
dimensional objects.

2. APPROACHE TO 3-D DATA GENERATION

Elsewhere (1), we have discussed in detail various
attempts at solving the data generation problem.
Suffice to say, there can be no one solution to the
problem of generating 3-D data. Inputting the
description of a particular object one has at hand
requires different techniques from synthesizing an
object in the machine. Objects occurring in

138

A major research area in 3-D computer graphics is
the inputting of complex descriptions. This paper
describes our current attempt at solving that prob-
lem: creation of a sculptor's studio-line environ-
ment in which the user is provided with various
tools to shape, cut and join objects. The emphasis
of the implementation has been on naturalness and
habitability. The issues involved in designing
such a system, especially in a minicomputer-based
color raster-scan animation environment, are
discussed. The basic algorithms are described in
some detail and a fast efficient implementation
of a hidden-line algorithm is explained.

1. INTRODUCTION

A major problem in three-dimensional computer
graphics is that of making available to the
computer descriptions (or "models") of complex
objects in a form suitable for various graphics
manipulations. This paper represents an updated
report of the research presented in (1). Some
of the issues involved in the design of an inter-
active minicomputer-based 3-D data generation
system are discussed, as is our current attempt
at the creation of a sculptor's studio-like
environment, in which the "sculptor" can create
complex 3-D objects in the computer, as if
moulding a piece of clay. The data generated is
used by the ANIMA II system to create animation
sequences which can be played in real time to a
color video monitor.

There are two typical approaches to the 3-D data
generation problem. In one, the objective is to
recreate an existing object by constructing a
definition of it in the graphics system by some
means. This requires digitizing the surface of

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
Siggraph ’77, July 20-22 San Jose, California

engineering and architectural applications could be
described by simpler techniques than free-form
objects occurring in art contexts. These tech-
niques necessarily place more of a burden on the
user (4,5,6) usually in the form of preparing
special 2-D projections of the data to be input, or
on special hardware (7,8) such as scanning devices.
Systems which allow the user to completely specify
the object desired (2,9,10,11) have typically been
severely restrictive in the class of objects
describable or difficult to use.

Any approach to data generation must also take into
account the internal representation of objects and
the class of objects to be handled. Baumgart (8)
presents an excellent survey of the different rep-
resentations that have been proposed and their
relative advantages and disadvantages. We have
chosen the planar polyhedral representation because
it lends itself to hidden-line removal, visible
surface shading and other graphics processing.
However, since our aim is to "sculpt" interactively
even objects which are only moderately complex con-
ceptually can take on a quite complex polyhedral
representation (e.g. a sphere). This fact places a
great demand on the efficiency of all of the under-
lying routines. For instance, the standard imple-
mentations of hidden-line elimination routines
become quite inefficient. As a result, we have
written a powerful, fast, extremely efficient
hidden-line elimination routine which is briefly
described in Section 7.

3. COMPUTi GRAPHICS SCULPTOR'S STUDIO

Hardware

The CPU is a PDP-11/45 with 96K 16-bit words of
memory, out of which 64K is magnetic core and 32K
is MOS. In addition, an 88 megabyte disk as well
as several disks of 2 megabytes each are available.
The display is a Vector General with 4096 x 4096
addressable points. The peripherals include a joy-
stick, 16 function buttons, sonic pen and 10 dials,
all of which are used to interact with the system.

Command Language

When he is sculpting, a sculptor's natural mode of
thinking is in terms of transforming a lump of clay
in front of him by operating on it by means of
various tools. It is possible to design a command
language in which the graphics sculptor can specify
what transformations he wants done on the object on
the screen. We believe that for our aims, vis., to
give maximum opportunities for the sculptor to be
creative by letting him operate in a mode most
compatible to his thinking, this kind of command
language is unnatural. We should not force him to
think in terms of numerical coordinates etc., but
rather to feel as if he is operating on the object
as directly as possible. For this reason, we make
extensive use of the dials and function buttons.
Scaling, rotating, translating, joining, intersect-
ing, choice of "tools" etc., will be done by the
sculptor by means of these analog devices or func-
tion buttons. The system still provides the
sculptor with a "language" to communicate with it,
but this is not a conventional command language.

Primitive Object Input

The system provides the user with certain primitive
objects, the sculptor might desire to generate his
own primitive object. This can be done by select-
ing the sonic pen input routine in which the
sculptor draws an orthogonal projection of the
object desired. The system then forms the cylin-
drical extension of the projection forming a 3-D
object. This object can then be used as is, or
another projection of the object may be drawn with
resulting cylindrical extension, and the two 3-D
objects intersected at appropriate orientation
forming an object with orthogonal views consistent
with the two drawn.

If the user consistently uses certain higher-level
primitives, i.e., objects which he has sculpted
using the system's primitives, it is a simple
matter to save these and then substitute them for
the system's primitive objects during subsequent
data generation sessions. Related to this is the
ability by which a user may work on a "sculpture"
but not complete it, even save it and then retrieve
it the following day or the following week and
finish his creation.

The Scenario

The scenario envisioned can be typified as follows.
The sculptor either starts with a polyhedral object
provided to him by the system or a primitive object
created by him by the methods described in the pre-
vious section. In this case the sculptor is making
a whale and thus selects a polyhedral approximation
to a sphere. By means of dials the user can
rotate, position and then scale the sphere along
any axis to the appropriate size for the head and
body. With group warp, the user can form the tail
section by positioning and then attaching a cursor
to a surface point and, in this case, pulling the
point out (Fig. 1). An interpolation routine pulls
neighboring points proportionally. How many points
to warp in the group and the weighting function are
selected on dials. The eyes are added simply by
joining a cylinder (polyhedral approximation, of
course) which has been scaled, rotated and trans-
lated appropriately. The mouth is formed by using
a wedge as a cutting tool. This can now be tempor-
arily stored away so that the sculptor can create
the fins. In this case the tail fin is a low-
resolution sphere which is scaled and then cut with
a wedge (Fig. 2). The side fins are half of the
tail fin which have been scaled down more. The
resulting object appears in Figure 3, which has
been made from the primitive objects shown in
Figure 4. The sculptor, however, is also an anima-
tor who wishes to use the whale in a sequence swim-
ming. For this he must now make the whale in the
extreme positions of swimming so that the in-
between positions can be interpolated by the anima-
tion language. The user does this by bending the
tail section and the side fins. He can bend the
tail by drawing a "skeleton" through the whale.
The system maps the surface points of the whale
onto the line segments of the skeleton. After the
control points of the skeleton are repositioned by
the animator/sculptor, the system remaps the
surface points onto the skeleton maintaining their
relative positions with respect to the skeletal
line segments (Figs. 5 & 6).

.139

Figure 1

Figure2

140

141

The sculptor can also, if necessary, fashion his
own tools to do specific kinds of cutting, because
after all, all the tools are "objects" and all
operations of one object on another can be executed
by the intersection routine.

It should be noted that as these operations are
being done, the objects appear in the wire-frame
mode (i.e., with hidden lines not deleted). This
is due to the fact that the data structures for the
input to the hidden-line processing routines are
generated by a preprocessing routine which is not
resident in memory except when specially called
for. In order to increase the interaction, we have
opted to do the sculpting operations in the wire-
frame mode, since the basic algorithms do not need
this preprocessing. However, at any time, the
sculptor can have the hidden-line eliminated ver-
sion on the screen to increase his perceptual com-
fort before deciding on where to cut or how to
shape the object. Another aspect of the system is
that the sculptor, after a sequence of shapings,
can go back to an earlier part of the sequence that
he has saved on a LIFO stack, if he happens not to
be satisfied with the current state of his sculp-
ture.

We next give brief descriptions of the basic algo-
rithms. The intersection, warping and bending
algorithms are explained in Sections 4, 5 and 6,
respectively. Hidden-line processing in a minicom-
puter environment has been generally slow, however,
fast efficient hidden-line implementations are
essential for many applications. Our hidden-line
processing routine is described in Section 7.

4. THE INTERSECTION ALGORITHM

The intersection algorithm, as noted earlier, is an
important part of the sculptor's studio. It oper-
ates on two overlapping closed polyhedra, say 01
and 02, and can calculate any of the four resulting
polyhedra: the object defined by the intersection
of 01 and 02, that defined by their union and
either of the two objects formed when using one
polyhedron to cut into the other.

Although intersection algorithms are not new, the
one presented here is an advancement in generality
over others found in the literature. Braid (9)
describes two types of "addition" for two objects.
Besides planar polyhedra, Braid also handles cylin-
drical surfaces when certain conditions are met
(e.g. two curved surfaces cannot intersect). The
first type of addition is the fusing of two objects
when they meet at juxtaposed flat faces. The
second type of addition is the actual intersection
of two objects as long as one object is a (possi-
bly transformed) cube or cylinder. Cutting or
joining is treated as a property of an object in
that a "negative" object cuts and a "positive"
object joins to another positive object.

Baumgart (8) describes an algorithm which seems to
be based on geometric principles similar to ours,
but the data structures and actual algorithm are
different. Further, his algorithm imposes the re-
striction that the objects intersected have convex
polygons for faces. This not only makes the
objects more visually complex but since the basic
computation in calculating the intersection is

comparing each edge against each face for inter-
section, the operations required are increased.
Our algorithm imposes no such restriction and is
quite general.

The data structure which is common to all of the
routines is organized as a list of faces. Organi-
zation by faces facilitates the recording of pro-
perties of faces such as color, planar equation,
the object the face belongs to, the subpart of the
object the face belongs to, etc. Each face defini-
tion consists of a face header (FH), followed by a
list of pointers to the vertices' coordinates (VP)
as they appear clockwise when viewing the face from
the "front" with the first vertex pointer repeating
at the end of the list. Between each two vertex
pointers in the face definition there is an edge
header (EH). Thus, a triangle's definition takes
the form: FH, VP1, EH, VP2, EH, VP3, EH, VP1. In
the implementation each item is one word long.
Notice that vertice pointers and headers alternate
throughout the entire data structure since the face
header for the next face follows immediately after
the last vertex pointer of a preceeding face. The
high order bit of a header indicates whether it is
a face header or an edge header. The face header
contains color information, object membership spec-
ification and an offset into a work area where the
planar equation and pointers to linked lists for
intersections and new edges are kept during the
intersection calculation. The edge header contains
a bit indicating whether it is the first or second
occurrence of that edge. If it is the second
occurrence, the remaining bits are a pointer back
to the edge header of the first occurrence. The
remaining bits of the header of the first occur-
rence of an edge are a pointer to a linked list of
the intersections already found for that edge dur-
ing the intersection calculation. The vertex
pointers merely point into a list of coordinate
triples.

The algorithm uses the fact that the resulting
object will have faces which are either portions of
faces or entire faces of either 01 or 02. Each
face of both objects must be compared against the
other object (i.e., the object that the face is not
a part of) to determine exactly what portions of
the face lie inside of the other object. Once this
is done for each face, the type of operation
desired dictates which portions (those inside
versus those outside of the other object) will be
included in the final object and they completely
define the final object. For example, if 01 cuts
02 the resultant object consists of those portions
of faces of 01 which are inside of 02 together with
those portions of faces of 02 which are outside of
01.

As is readily apparent, the major issue is the
organization of the edge-face intersection informa-
tion during the actual intersection calculation.
The data structure described allows for efficient
organization of partial results obtained during the
calculation. Faces and edges can be searched for
efficiently and simply yet the data is compact
which is a major consideration when working in a
32K partition.

142

In order to simplify the description of the algo-
rithm, let UB define by Fij, the j-th face of
Wect Oi, and by 33, the k-th edge of Pace Fije
The algorithm can now be infomally described as
Pollovs:

MAIN: For i = 1, 2 and all j, give eubroutine Al
the Pace Pij and information about the type of
operation desired. At the conclusion of MAID, all
the Paces and portions oP Paces belonging to the
reeulting object will have been generated.

Al: Given face Pij, for Pij and P,, u+i and all v,
give eubroutine A2 the Paces Fij and Fuv. A2 com-
pares the two Pace6 to find edges of intersection
yd to find the intereection points along the edges
eij while noting vhether the edge is "going into"
or "coming out of" the Pace Fw at that point.
When Pace F~J has been compared against all Paces
Fw (i.e., all poeeible values of v) those portions
of Pace Pi
the operat on) il

lying imide (or outside, depending on
can be defined in teram of old edge

segments of the e$j and the new edgee generated by
the face-Pace intersections (see Diagram 1).

-- - - new edges
- - l l l edge segments of

results in either:

depending on operation.

or
cl

Diagram 1. Face-Object Intereection Calculation.

AS: Given Paces Fij and Fuv for e$j and F, for
all k, and for e& and Fi.

Al
for all RI, thie calcu-

lates the coordinates of e point of interrection
between the edge and the Pace if such a point
exiets and sets up an inforlgation structure relat-
ing the edge, the intersection point aud an indica-
tion of which vertex of the edge is In "front" of
the Pace. The planar equation of tbe Pace is cal-
culated so that it reflects the Pact that Paces are
deilned by a clockwise list of vertices if one
looke at the Pace fron the "front." All the inter-
section pointe generated, say pl, . . .,pa are
sorted. They will be collinear and n even (see
Diagram 2). 'Paire (pi, pi+l), i odd, define edges
that belorg to the nev object. At the conclusion

of A2 the algorithm will have available new edges
as well 88 information that will be ueed by Al to
generate segment6 of edges of the original objects
which are to be included in the resultant object.

---- new edges
/ /

Diagram 2. Face-Face Intersection Calculation.

Figure 7a and b show two primitive objects: a
sphere and a cube. Piwee 8 through 11 show the
Pour results obtainable Prom the intersection
routine: the joining of the two (Figure 8), the
intersecting of the two (Figure 9), the sphere
cuttiug the cube (Figure 10) and the cube cutting
the sphere (Figure ll). Figures 12 and 13 show
example objects created using the eyetern.

Fiswe 7a.

Figure p.

143

Figure 8.

Figure 12.

Figure 9.

Figure 13.

Figure 10.

Figure ll.

5. wARPIlGAlmR1Tm

The ability to warp an object ie the ability to re-
poeition a single point, or a group of points,
independent of the reet of the object. As provided
here, the user poeitione a cursor near the point to
be warped, and then at the prese of a button, can
pick up the point and move it ae he moves the cur-
8or. The user can also specify, by meant?. of a dial
how many adjacent points to vsrp along with the
Initial point. Th0 adjacency of a particular point
ie epeclfled by the fewest number of edgee which
must be traversed from the lnltial point to reach
the particular point. Also specified on a dial 16
the selection of a velghting function to use on the
adjacent points being warped, giving the illuelon
of elasticity. The weighting functions poesessee
the attribute of being both easy to implement and
visually what one vould like to see.

If I (positive) le the adjacency Indicator, all
points B or less edgee away from the initial point
vlllbe warped along with the initial point. If d,
repreeentB the delta movement in the X-axis dlrec--
tlon of the initial point and k (-64<k<63, for
example) Ia the weighting function eelector, a

144

point I edges away from the initial point will be

warped dI along the X-axis where:

locates a point relative to a skeletal edge.

Figures 5 and 6 show a simple example of skeletal

bending.

7. HIDDEN-LINE PROCESSING IN A MINIC(XPUTER

ENVIRONMENT

Sutherland et. al. (12) and Encarnacao (13) give

surveys of available hidden-line elimination algo-

rithms. Our hidden-line routine is based on

Loutrel's algorithm (14) which employs what is

called the path-of-edges technique. Though some

changes have been made to the algorithm, mainly in

the handling of special cases and the treatment of

boundary vertices, we omit a detailed discussion of

the algorithm in view of the easy availability of

(14). Instead, we discuss the special considera-

tions arising out of the fact that the implementa-

tion was to be close to real time (here meaning

refresh of 30 frames per second and update less

than one second per frame) in a minicomputer

environment.

In our system, clipping in X and Y directions is

provided and if desired, the scene can be displayed

in perspective. All transformations are done by

software. In addition, the following features are

noteworthy. First, it is interactive. The user is

provided with a joystick, various dials and buttons

for interacting with the program. Dials control

rotation, placement of the picture plane (for the

perspective calculation) and scaling. The joystick

is used for three-dimensional translation. Func-

tion buttons provide for, among other things, trans-

formation speed changes, temporary halt, specifica-

tion of scene or object for transformation, and

exit. The second feature is the speed of process-

ing, obtained by programming in assembler and per-

forming all computations in integer arithmetic.

Third, is the ability to transform (rotate and

translate) independently each object in the scene

as well as transforming the entire scene.

6. BENDING ALGORITBM

Bending, as implemented here, is similar to the

idea discussed by Wein (15) in controlling motion

by key frame animation. In both, the basic prin-

ciple is to alter the shape of an already existing

object. Wein's skeletal representation "provides a

definition of some coordinate space within which

the image, described in relative coordinates, is

distributed." The relative coordinates are based

on a polygonal mesh over which the object is de-

fined. This requires either an irregular mesh to

be defined over the object or the object to be

distorted over a regular mesh.

The skeleton used'in bending is, conceptually,

merely a collection of (possibly connected) 2-D

edge segments which a 3-D object is mapped onto.

There is no interference caused by multiple uncon-

nected skeletons. This skeletal bending also

easily lends itself to implementation in three-

space, if one is willing to program the mathema-

tics. Not only is the skeletal bending powerful,

but at the same time it is easy for the user to

employ since all he must be concerned with is

drawing and manipulating the skeleton itself as

opposed to a coordinate grid. Because of the

interactive nature of the implementation the user

can repeatedly reposition points in the skeleton

and remap the surface until the correct amount of

alteration is attained. The time taken for the

initial mapping is required only once.

Ease-of-use stems from the fact that the system

automatically maps each surface point to a skele-

tal edge segment. This is accomplished by first

calculating "dividing" lines along the skeleton.

These are lines which bisect the angle made at

each skeletal edge-edge junction (a perpendicular

is used at the ends of the skeleton). For each

surface point, it is first determined which skele-

tal edges are possibilities for mapping. The

surface point must lie between the dividing lines

of a skeletal edge (and the dividing lines have

not crossed each other) for that edge to be con-

sidered a possibility for mapping. For all such

possible skeletal edges, the perpendicular distance

from the surface point to the infinite line con-

taining the skeletal edge is calculated and the

closest skeletal edge is used for the mapping. The

actual mapping consists of an indication of which

skeletal edge is being used, the perpendicular
distance as explained above and shown as distance

dl in Diagram 3, the length of the line parallel to

the skeletal edge which passes through the surface

point and lies between the dividing lines (d2 in

Diagram 3), and the position of the surface point

on that line (d3 in Diagram 3). This completely

145

The limitations are two-fold. First, because of
the size of the data structures used, the routine
is restricted to handling less than nine hundred
edges. This still allows for reasonably complex
models. Second, due to the use of integer arith-
metic on a 16-bit word machine, overflow and under-
flow errors occur at times. These, however, are
usually few and far between and appear only as
occasional flashes in normal operation.

The routine resides in a 32K partition and con-
sists of two parts. The first part is the pre-
processor which builds the data structures needed
by the second part to efficiently calculate the
visible edge segments. These data structures are
built separately for each object and an object list
is maintained. The requirement of real-time or
close to real-time operation when the objects are
being manipulated imposes the requirement that the
preprocessor output should be basically indepen-
dent of the vertex position data. Thus, the data
structures have information about faces, edges and
objects with respect to one another, and not with
respect to the user, and refer to the vertices,
not by their coordinates, but by pointers to them.
Further, in order to minimize cumulative inaccura-
cies because of integer arithmetic, the position
data are recomputed for each dial setting. An
arbitrarily chosen "initial" position and size are
operated on by transformation matrices whose para-
meters are set by the dial information.

Figures 14 and 15 give an idea of the results ob-
tainable by the program. Figure 14a represents a
615-edge scene with hidden lines drawn, while
Figure lkb is the same scene with hidden lines
removed. Processing time was approximately nine '
seconds. Figure 15 shows an Sl-edge scene with
four objects, the time taken for this being about
0.1 second. It should be mentioned that edges are
counted only once, not once for each face they
appear in. These timings compare favorably with
the five seconds required by Loutrel's implemen-
tation on a CDC 6600 for a 20+edge object.

Figure 14a. Figure lkb.

Figure 15.

8. 3-D PAIDT

Once our color video playback system became opera-
tional, it was obvious that it would be useful if
the data generation system could make multi-colored
objects. In order to keep the data generation
interactive, however, it was necessary to retain
the wire-frame representation of the objects.
Thus, the user has no visual feedback of color in-
formation during the generation process, other than
being able to selectively display only those faces
of a certain color on a particular object.

Introducing color into the data generation system
was facilitated by the fact that the data was
already organized by faces. Three bits were set
aside in the face header to specify color. When an
object is input to the system, the user has the
option of setting the color bits in each face
header to a specific color, or he may leave them
the way they are set. The intersection algorithm
maintains the color information with those portions
of the faces kept in the resulting object. Thus, a
cutting operation leaves the color of the cutting
object wherever that object cuts into the other
object. This provides a very easy and natural
means by which the user can build or sculpt a
multi-colored object.

The second method of coloring an object to speclf-
ically pick out a face with a cursor and leave a
particular color on that face. When the face is
picked, the color bits in the face header are set
according to three function buttons. Albeit this
can be a bit tedious, it provides the significant
ability of painting color designs on an object.

146

9. CONCLUDING RMARKS

It is hoped that the preceding discussion has
given the reader a fair idea of the issues

involved in the problem of generating 3-D data and

of the merits of our attempt at a solution. The
reader should especially note the kinds of human
interaction permitted. The system has been tail-

ored for use in generating colored objects for

animation and the operations available to the user

reflect this.

Almost all of the limitations of the system stem

from the 16-bit word length of the machine: the

limit on complexity (about 2600 edges), inaccuracy

in numerical calculations (an occasional problem),

necessity for overlay structure of the program. A

32-bit minicomputer would solve many problems.

Once allowing for the handling of greater complex-

ity, however, the interactiveness of the system,

and therefore, the naturalness of use would

deteriorate with the higher-complexity objects.

ACKNOWLEDGEMENTS

The author wishes to thank Professor Charles Csuri

and the Computer Graphics Research Group for pro-

viding the facilities and a stimulating environ-

ment. I would also like to personally thank NSF

Grant DCR 74-00768. I am indebteded to Ron

Hackathorn for some of the data generation and

photography.

REFERNCES

1. Chandrasekaran, B.; Parent, R. "Moulding
Computer Clay - Steps Toward a Computer
Graphics Sculptors' Studio," Pattern Recogni-
tion and Artificial Intelligence, Academic
Press, 1976.

2. Defanti, T. A. "The Graphics Symbiosis System

- An Interactive Minicomputer Graphics

Language Designed for Habitability and Exten-

sibility," Ph.D. Thesis, The Ohio State

University, 1973. Also technical report,
Computer Graphics Research Group.

3. Gillenson, M. L.; Chandrasekaran, B. "A

Heuristic Strategy for Developing Human Facial

Images on a CRT," Pattern Recognition, Vol. 7,

1975, Pp. 187-196.

4. Sutherland, I. E. "Three-Dimensional Data

Input by Tablet," Proc. of the IEEE, Vol. 62,

Ho. 4, April 1974.

5. Thorton, R. W. "MODEL - Interactive Modeling

in Three Dimensions Through Two-Dimensional
Windows," Master Thesis, Cornell University,

1976.

6. Lafue, G. "Computer Recognition of Three-

Dimensional Objects from Orthogonal Views,"

Carnegie-Mellon University, Institute of

Physical Planning, Research Report No. 56,

September 1975.

7. Shirai, Y.; Tsuji, S. "Extraction of the Line

Drawings of 3-Dimensional Objects by Sequen-

tial Illumination from Several Directions,"

Second International Joint Conference on Arti-

ficial Intelligence, London, September 1971.

8. Baumgart, B. G. "Geometric Modeling for

Computer Vision," Stanford University, Depart-

ment of Computer Science, available from ETIS

as AD-A002, October 1974.

9. Braid, I. C. "The Synthesis of Solids

Bounded by Many Faces," CACM, Vol. 18, No. 4,

April 1975.

10. Yoshimura, S.; Tsuda, J.; Hirano, C. "A Com-

puter Animation Technique of 3-D Objects with

Curved Surfaces," Proc. of the 10th Annual

Meeting of UAIDE, Los Angeles, October 1971.

11. Davis, J. R.; Nagel, R.; Guber, W. "A Model

Making and Display Technique for 3-D Pictures,

Proceedings of the 7th Annual Meeting of UAIDE,

San Francisco, October 1968.

12. Sutherland, I. E.; Sproull, R. F.; Schumacker,

R. A. "A Characterization of Ten Hidden-

Surface Algorithms," AC4 Computing Surveys,

Vol. 6, No. 1, 1974, pp. 1-55.

13. Encarnacao, J. L. "A Survey of and New Solu-

tions to the Hidden Line Problem," Proc.

Interactive Computer Graphics Conference,

Delft, Holland, October 1970.

14. Loutrel, P. "A Solution to the Hidden Line

Problem for Computer-Drawn Polyhedra," IEEE

Trans. Computers, March 1970.

15. Burtyk, N.; Wein, M. "Interactive Skeleton

Techniques for Enhancing Motion Dynamics in

Key Frame Animation," Comm. Association for

Computing Machinery, Vol. 19, No. 10,

October 1976.

16. Myers, A. J. "An Efficient Visible Surface

Program," Technical Report, Computer Graphics

Research Group, The Ohio State University,
July 1975.

147

