A Dataflow Toolkit for

Visualization

D. Scott Dyer
Ohio Supercomputer Center

established. The landmark report, Visualization in Scien-
tific Computing,' published in late 1987, clearly presents
the need for the visual analysis of information. We will not
belabor this point with a discussion about the importance
of visualization. Our focus; instead, will be on the process
of building software 1o address this neod ‘Rather than

The value of visualization in scientific computing is well -

~adapting an existing system to scientific visualization, we

set out to create new software based on the needs of the
user community. The toolkit described in this article is
known as “apE.” Originally, this was an acronym for “ani-
mation production Environment,” but gradually apE came
1o be known as a software designed for more than just
animation.

Visualization in scientific computing is not a new
idea. Scientists have long known the value of pictures
in the analysis of information. Our ability to generate
scientific data, though, far outstrips our ability to turn
that information into pictures. As the definition of
visualization has widened to include everything from
CAD to CFD, so too have the demands increased upon
an embarrassingly weak graphics software base.

60 0272-17-16/90/0 " G0-00KGS01.00 ©1990 TEFE

Due to a lack of contrast between text and background, this page did not

Advances in computer hardware dwarf advances in
software technology. Large software systems can re-
quire years to complete and are obsolete long before
they reach users. An increasingly complex array of
problems could benefit from visual methods, but the
software tools simply do not exist. We must build a
software architecture that can grow with its users, that
can be supported and maintained for many years, and

TFEE Computer Graphics & Applications

. reproduce well.

|




In 1984, Ohio State University competed with institu-
tions across the United States to host a National Super-
computer Center. While its proposal was highly ranked,
Ohio State lost its bid for National Science Foundation
funding to obtain a center. However, the highly motivated
group of computational chemists that spearheaded Ohio
State’s efforts then received help from the state. In 1987,
the legislature appropriated funds for the Ohio Board of
Regents’ supercomputer initiative to create a center serv-
ing academic and industrial users in the state of Ohio. In
June 1987, a Cray X-MP was installed at the Ohio Super-
computer Center, followed by a Cray Y-MP in July 1989.

One of the early supporters of the Ohio Supercomputer
Center was Professor Charles Csuri, a pioneer in the field
of computer graphics and Director of the Advanced Com-
puting Center for the Arts and Design at Ohio State. He
foresaw the rise of scientific visualization in the early eight-
ies and built a significant graphics research component
into the base of the then fledgling Ohio Supercomputer
Center. Today, 10 computer graphics professionals com-
prise the Ohio Supercomputer Graphics Project.

OSGP members include, from left to right (top row): H.
Stephen Anderson, John C. Donkin, and Jeffrey T. Faust

The History of the Ohio Supercomputer Center

(software), Jill L. Kempf and Robert E. Marshall (applica-
tions), and (second row) John Andrew Berton Jr. and Peter
G. Carswell (animation). In addition, Michelle Messenger
provides project coordination and user support and Bar-
bara Helfer-Dean operates the Ohio Visualization Labora-
tory. Stephen N. Spencer and Jeffrey Light (front row) from
the Advanced Computing Center for the Arts and Design
also provide software in the construction of apE. Joan
Staveley, Chitra Sriram (not pictured), and Mark
LeScoezec (not pictured) provide documentation support
and help to operate the Ohio Visualization Laboratory.

that can keep pace with changes in hardware—in
short, we must develop a new software methodology
to meet the challenge of visualization.

Previous work

The rise of visualization as a computer-graphics
buzzword has generated an enormous amount of
work, some of it very good, much of it simply adapta-
tions of old research in other areas, retitled and resub-
mitted. Much current work is centered around the
notion of dataflow as an ideal abstraction for the visu-
alization process. The Application Visualization Sys-
tem? is in many ways remarkably similar to the
software described in this article. Both AVS and apE
were constructed at about the same time, though with
little communication between the developers. While
the same dataflow decomposition is used, along with
a visual programming paradigm, significant differ-
ences in construction, data elements, and portability
are apparent to users familiar with both AVS and apE.
Researchers at the State University of New York at
Stony Brook have constructed a system, known as
VERITAS, aimed more at the user interface for scien-
tific visualization.? Zabusky and Bitz have built a sys-
tem known as DAVID that encompasses the
interactive and multimethod visualization tech-
niques common to dataflow systems.* Commercial
systems such as PV-WAVE® present alternative, albeit

July 1990

more traditional, approaches to the visualization
problem.

Designing a beast

In late 1987, the Ohio Supercomputer Graphics
Project set out to design an effective software system
for visualization. Rather than dictate to the scientific
community a particular methodology, we spent ex-
tensive time with potential users to understand the
real needs of scientific research. We listened to users
of all kinds of current graphics software and hard-
ware. We discovered the realities of fixed budgets that
permit only modest hardware acquisition and the ef-
fects of slow network connections on high-speed
computing. In short, we tried to face the real world,
and to design and build a product that would outlast
current hardware platforms while providing a high
degree of flexibility to today’s users.

The construction of a large graphics system is as
much a matter of avoiding the mistakes of the past as
breaking new ground in software engineering. McCor-
mick et al.! jokingly refer to “doorstop manuals,”
those large, bulky “reference” books that are common
among many of the most popular graphics software
systems today. We wished to avoid constructing a
large, monolithic library; we wished to avoid imple-
menting lots of separate, difficult programs and data

61



Simula

ey +

Map + chder+ Interpret

-

Figure 1. The visualization pipeline.

formats; we wished to avoid building a system whose
life span was less than our interest in the project.

Efforts in the mid-eighties at the Computer Graphics
Research Group (now known as the Advanced Com-
puting Center for the Arts and Design) at Ohio State
University led us to select a dataflow model for the
apE system. Dataflow maps very well to the general
steps followed in visualizing scientific data. Most re-
searchers follow a five-step process, beginning with a
computational or experimental simulation, and con-
cluding with interpretation.® Intermediate steps in-
clude preparation, mapping, and rendering (the prep
stage is occasionally omitted or merged with the map
stage). Ideally, the results of interpretation can be fed
back into the original experiment or simulation. This
kind of feedback is known as steering, and has been
used with great success in limited applications.” New
software technology is needed to investigate the steer-
ing issue completely.

The mapping stage is the key to the visualization
pipeline, shown in Figure 1. Often ignored, it is
clearly the hardest step. Data preparation includes
normalization or other mathematical steps already
well known te-most researchers, and rendering is in
the domain of the graphics community and has been
nearly beaten to death in every variety. The mapping
stage is the natural juncture of scientific and graphical
data. Vendors often proclaim certain workstations or
software products to be ideal for visualization, be-
cause they can produce X polygons per second or Y
vectors per minute, but they are really only solving
one step in the pipeline, and not providing a visual-
ization solution. Visualization is much more than
high-quality rendering, radiosity, or real-time texture
mapping. For the needs of most scientists, the com-
puter-graphics community has solved the rendering
stage of the pipeline. What the graphics community
has not provided to date is an effective method for
converting generic scientific data into graphical
forms. The dataflow model is an attractive abstraction
because it naturally highlights the mapping stage and

62

can provide a powerful mechanism for interactive ex-
ploration of a variety of mapping methods (see Figure
2).

The dataflow abstraction is ideal for remote execu-
tion and parallel operation. Network computing envi-
ronments are commonplace, and distributed
computation is a requirement for maximum resource
use. Dataflow systems can naturally distribute each
execution element on a separate machine or proces-
sor. Because our notion of dataflow is data-driven and
not demand-driven, we also get the benefit of parallel
execution for time-dependent or multiframe data sets.
Each element operates not under the control of some
central authority but only as input data, frame bound-
aries, and other local conditions dictate. Successive
elements in a visualization pipeline can be operating
on separate groups of data, all in concert, without any
additional user interaction. This notion of distributed
computing reflects the situation researchers often
face—finding themselves far from their super-
computers but possibly near some local computing
power.

Once we were firmly committed to the dataflow
concept, we examined the requirements for a data
language. Incompatible binary formats are common in
a heterogeneous network environment. While trans-
mission of data as text files would mitigate this prob-
lem, the operational overhead for such transmissions
was out of the question in an interactive system. Thus
a dataflow language was born, designed not only to
represent common data elements from the scientific
domain (such as grids and variables) but also such
common forms as objects, images, and geometries.

With the system mapped out, we began to plan its
implementation. We recognized early on that tradi-
tional programming methods for design, communica-
tion, and maintenance would be insufficient for this
effort. It was also clear that a project of this size could
not be fully planned and documented prior to begin-
ning the work, especially with a limited staff and bud-
get. The advantages of working within the academic
world are enormous, but it meant we would have to
design and implement the system as well as test, doc-
ument, and support it.

Building any beast

Our approach in determining the needs and goals of
the software system prior to implementation may
sound obvious, but it is often abandoned in favor of
rapid, market-driven development. We were guided
by four simple principles.

IEEE Computer Graphics & Applications



.

color img_show

Figure 2. An example visualization pipeline from apE 1.1. Data moves from the simulation, left to right, and

is rezoned, normalized, colored, and displayed.

1. Build the software around the users. One funda-
mental mistake that is often made in planning and
executing a large software system is an initial fail-
ure to gauge the needs of the eventual users ade-
quately. For example, graphics software is often
(quite naturally) designed to display graphical
data, such as patches, polygons, and vectors. In the
case of scientific visualization, however, such enti-
ties are both potentially unknown to users and fun-
damentally irrelevant. Visualization software must
be designed around the users’ data, not graphical
data. This concept extends naturally into all facets
of software development. Developers must keep in
touch with their user community.

2. Base the software on market reality, not hype. It is
tempting to design software around ideal platforms
or for systems that do not exist. Too often, we de-
velop systems that require exotic configurations or
work on only a small number of existing systems.
This applies not only to hardware but software as
well—for example, everyone claims to have graph-
ics library A or B and high-level window system C
or D—but few actually ship it as a part of a normally
configured system. It is important to take the time
to see things as potential users see them, not as
software developers with nearly infinite budgets.

3. Let the users control the software. Longevity is
achieved only by allowing the user community to
control the software. This does not necessarily
mean that the developers must relinquish com-
plete control, only that the users must have a stake
in the software development. This translates to an
active user community, availability of source, and
a strong willingness to tailor the software to the
users.

4. Distribute it widely and cheaply. This point cannot
be emphasized enough. Software is a vital produc-
tivity resource, and needs to be widely available.

July 1990

Restrictive licensing or an attempt to profit from
the development strongly limits the downstream
success of the project. The long-term benefits of a
loose distribution policy are tremendous. Even for
profit-making companies, it is better to sell several
thousand copies of the software at a low price than
several dozen at a high price.

Kawasaki® lists four key elements in any successful
product: depth, indulgence, completeness, and ele-
gance. Deep products satisfy all levels of users, from
the novice to the expert. Indulgent products are often
overkill for most of the tasks they are used for. Com-
plete products provide all levels of user service, infra-
structure, and growth path. Elegant products are both
creative and inspiring—they seem to achieve their
functions almost transparently—and are easy to learn
and use. ApE was designed to be deep, indulgent,
complete, and elegant. By providing complete docu-
mentation (and tutorials), we address the novice, but
the presence of source code guarantees the interest of
the expert. ApE contains a complete interface design
system, data language, and source-code management
system, as well as significant tools for graphics at all
levels. ApE provides user services through a user
group, electronic mail, documentation, and a desire to
redistribute the extensions that come from the users.
ApE is based on a model that allows the exotic appli-
cation to benefit fully from visualization—transpar-
ently distributing execution and permitting the best
use of local resources.

A set of development objectives such as these are
valuable for establishing the “feel” of a project. Those
developing the system must “buy” into it at an early
stage, and believe in it as gospel as the project rises
and falls through its history. ApE has been under de-
velopment for more than three years, and has perhaps
10 or more person-years invested in it. Over a million

63



Convex (C-1)
Cray X-MP, Y-MP

Silicon Graphics Personal Iris

Silicon Graphics 4D Series

Decstation 3100 Stardent GS1000/2000
HP 300 & 800 series Sun 386i

Macintosh II (A/UX) Sun 3

Next Sun 4

Figure 3. Machines currently supported in apE de-
velopment.

lines of code have been written; many have been dis-
carded. To date, not one of the original developers has
left the project. One measure of a system’s value is
purely technical—does it solve a problem or achieve
the correct result?—but another equally important
measurement criterion looks at longevity and use.
The chief goal of the Ohio Supercomputer Graphics
Project is to create a usable, stable, long-lived environ-
ment for scientific visualization.

Building a large beast

As all programmers know, there is a great difference
between writing a small piece of personal software
and constructing a large software environment. The
challenge of machine and device independence and
portability made our task more difficult, as did the
demands of making a software that is to be distributed
not as a closed system but as source code to be modi-
fied, improved, and extended as required.

Using existing software and hardware technology,
we tried to build a graphics environment that is as
portable as possible. Clearly, measures of portability
have changed since 1987, when we began this project.
However, many of the design decisions we faced then
are still faced today by large-scale developers. These
decisions can be summarized as three primary turn-
ing points: the selection of an operating system, the
selection of a graphics library, and the selection of a
user interface.

On the Unix platform

We chose to build our system on the Unix platform.
The mid-eighties saw an explosive growth in a new
breed of personal computer known as the “worksta-
tion.” Performance, power, and software resources
that were once only part of large mainframe systems
rapidly became available on the desktop, and the
Unix operating system quickly became the de facto
standard operating system. Manufacturers who did

64

not, could not, or chose not to respond to this trend
saw their sales diminish.

Implementation under Unix has its share of difficul-
ties, however, because Unix is not a standard. An apE
library is devoted to hiding the various differences
and peculiarities unique to each version of Unix we
encountered. The software is implemented entirely
in C, with some Fortran extensions to support scien-
tific users. While Objective-C® and C++'° both offer
advances in software engineering and would aid in
this development, we chose not to use them because
neither has yet achieved a sufficient following to be
declared a de facto standard and because neither is
typically found on a generic workstation.

Our decision to implement apE on multiple Unix
platforms required a carefully planned system for
source, object, and executable code storage. A series
of scripts were designed to provide top level manage-
ment tools for the software environment known as
forge. The forge technology allowed us to handle ma-
chine dependencies, multiple source files, and re-
compilation dependencies all from a single set of
declarations. A single command is capable of recom-
piling all source code on all supported systems, with-
out any user intervention. At the time of this writing,
the apE source is supported on a wide variety of
equipment (see Figure 3).

Dependencies for optimization, debugging, and pro-
filing are all transparent to developers, as are the me-
chanics of removing, compiling, and installing
software on any system. The forge system was crucial
to our completion of the software and will remain
vital as we enter the support stage. For maximum
portability, the entire forge system is implemented
using C-shell syntax, so no compilation of these tools
is necessary. Actual source code is stored using
sccs.M

No embedded graphics library

We chose not to embed any graphics library in the
basis of our system. We have been criticized, and per-
haps somewhat correctly, for not building our soft-
ware upon a graphics-software layer such as CORE,
GKS, PHIGS, PHIGS+, PEX, or others. In late 1987,
when we faced this decision, the number of compet-
ing standards was large, and no clear winner had
emerged. None of the standards available then were
really sufficient for scientific visualization. Indeed,
we would argue today that this situation really hasn’t
changed. Constructing our software on such a plat-
form would be a tacit endorsement of one of these
standards and would require users to obtain the nec-
essary licenses to actually program within apE. Most

IEEE Computer Graphics & Applications



workstation vendors do not currently ship a PHIGS
product, for example, as no-cost, bundled software
with their systems. If we linked apE with PHIGS or
any other standard, additional cost would be incurred
in purchasing, installing, and maintaining a graphics
library in addition to apE. All you need to run apE is
apE.

An even more restrictive problem comes from the
fact that most of the functions performed by apE are
not currently part of any graphics standard. The map-
ping stage of the visualization pipeline is not ade-
quately addressed by any standards at this time.
Therefore, the only real value of a graphics standard
lies in the rendering stage. A later port of the system is
likely to use PHIGS"? as the basis for rendering, just as
the current version uses custom software on non-
graphics workstations and Silicon Graphics’s GL'* on
those geometry engines that support it.

New interface layer

We chose to build a new interface layer on top of
existing “standards.” Just as we have been criticized
for not choosing a graphics standard, we also did not
choose to build on one of the existing window sys-
tems. Clearly today the only “standard” window sys-
tem is the X Window System'?; in 1987, though, a
number of pretenders to the throne threatened to steal
the glory from X. Three years later, software and hard-
ware developers alike still deserve better than the
current state of the X Window System. Some vendors
ship X11 Release 2; others ships X11 Release 3 or 4;
still others are using variants of X10. Despite the
claims, the intense battle between such competing
higher level standards as Motif'® and Open Look™
will continue this uncertainty. Sun Microsystems’s
SunView continues to dominate as the window sys-
tem of choice on their systems, and most applications
written for Silicon Graphics machines are done either
directly in their GL language or NeWS. Even today it
simply is not the case that a user-level window inter-
face standard exists, and it is unclear that the fog will
lift in the near future.

Given this somewhat bleak outlook, we carefully
examined the window systems on platforms we were
likely to support, and came to the conclusion that
three separate ports were required: SunView,'” low-
level X (at the toolkit level or below), and SGI's GL.
Therefore, we designed an upper level, known as face,
to serve as the standard “window system” for all apE
software (see Figure 4). All interface implementation
was done in the face library, thus making the “port” a
matter of building the face layer on top of the three
chosen window systems. At this writing, this work is

July 1990

Figure 4. In this composite, the X11 version of face
occupies the top half of the image while the Sunview
version occupies the lower half.

primarily complete for X and SunView and is under-
way for SGI's GL.

This is not an ideal outcome in a large-scale software
system development, since we have devoted nearly
one third of our total person-power resources to the
interface problem. The X Window System is far from
solving the higher level problems of user interface. It
is woefully complex, poorly documented, and exists
in far too many vendor-customized versions. Portabil-
ity is difficult or impossible to obtain above its lowest
levels. It also suffers from a poor abstraction model of
the workstation (too dependent on resolution) and
countless inefficient implementations. Better inter-
face systems, though, such as Sun’s NeWS,' have
been swept away in the self-aggrandizing rush to pro-
claim a standard. While the original concept of the X
Window System may have been elegant, it now shows
the unmistakable signs of design by committee and is
a serious detriment to widespread interface develop-
ment. The recent addition of Nextstep'® to the fray
and IBM’s apparent endorsement of it further obfus-
cates the issue.

With source code control, interface, and (lack of) a
graphics library in hand, we were ready to actually
implement the application software. This phase of the
development was divided into three logical elements:
the construction of the libraries, the construction of
the individual dataflow elements (or modules), and
the construction of the tools and interface that would
comprise the look and feel of apE to the average user.
We began by implementing the library in phases and
completing the Unix-level hiding functions first. The
data language, user interface library, and graphics
functions were done in preliminary test forms prior to

65

U-M-1

Due to a lack of contrast between text and background, this page did not

reproduce well.

. I l

S B



Figure 5. Pipeline construction and imagery created
using apE 1.1.

full implementation. The resulting test software was
released (as version 1.1) and used to help motivate the
full implementation of apE version 2.0.

Design and construction of apE
1.1

In the fall of 1988 the first version of the apE soft-
ware was released for testing in the state of Ohio. In
April 1989, the software was released to all Ohio
Supercomputer Center users in what has become
known as “version 1.1” (see Figure 5). Finally, in Au-
gust 1989, thissoftware was placed in the public do-
main and made available by tape or anonymous FTP
for all academic and research users in the world. It
remains available today from suna.osc.edu.

In addition to traditional tools for scientific visual-
ization (such as contour and color plots), apE was
unique in providing a flexible data language, a visual
programming paradigm, a network-distributable exe-
cution syntax, and a generic user interface. While in-
complete, these elements served as ideal test
platforms for the concepts and goals set forth in the
apE design.

The flow data format was implemented for use in
apE 1.1. Binary independence was achieved by build-
ing on top of Sun Microsystems’ XDR?° data language.
Initial flow elements included variables, grids, im-
ages, maps, and various control elements. Both C and
Fortran bindings were included.

66 U-M-1

At {1 i b 0,

O (i - Y SR
L

=

Figure 6. Pipeline construction and imagery under
apE 2.0.

As a dataflow system, we felt it was very important
that the user program it not by typing but by dragging
iconic representations of operations onto a drawing
grid and connecting them into the desired pipelines.
This technique, recently popularized by AVS, was a
part of the first apE release in early 1989.

The individual elements that comprise a pipeline in
apE 1.1 all execute as separate processes in a data-
driven mode and operate (to the extent possible) in
parallel. They can be distributed to any local worksta-
tion (or to the Cray) by simply changing the name of
the execution host for any desired module.

As a testbed for the face library concepts, a generic
user interface was developed under SunView known
as sv_util. This gave the apE system an entirely differ-
ent look and feel from any commercial products. New
buttons, sliders, scanners, alerts, and browsers made
for a clean, functional interface that was replicated
throughout all the tools distributed with apE 1.1.

While the visualization capabilities of apE 1.1 were
limited to two dimensions, it remains a popular pack-
age, and has been used extensively at the Ohio Super-
computer Center.”*? In addition to the graphical
programming tools, apE 1.1 includes contouring,
color, and carpet plotting, as well as various data ma-
nipulation utilities. Time variant or multiframe data
can be played back in flip-book style on a Sun work-
station. A histogram tool provides a direct interactive
interface for the normalization and preparation of sci-
entific data. FORTRAN linkages allow direct connec-
tion of graphical pipelines to simulations, executing
locally or on a remote supercomputer.

IEEE Computer Graphics & Applications

Due to a lack of contrast between text and background. this page did not

reproduce well

1



Figure 7. Iso-surface detection and rendering of
Lake Erie’s temperature (apE 2.0).

Design and construction of apE
2.0

The lessons of apE 1.1 were used to improve the
software iteratively for the second release, yet in
many ways apE 2.0 represents the culmination of the
concepts and ideas presented in this article (see Fig-
ure 6). The first release of the apE software taught its
creators valuable lessons about software design, im-
plementation, and distribution.

The data-language flow that had been developed for
apE was enhanced, extended, and renamed flux. Spe-
cifically designed to deal with large amounts of data
in user-designed grouping, flux is a powerful informa-
tion management tool.?* All data entities, from images
to variables to pipeline descriptions to icons, are rep-
resented in flux. Even interfaces defined in the face
system can be described in flux.

The generic user interface, first presented in apE as
sv_util, was expanded and renamed face. The face
libraries provide a complete, window-system-inde-
pendent interface for program development. Face ele-
ments include most of the standard interface items,
such as buttons, menus, sliders, scanners, and text-
entry boxes. On top of this layer more complex ele-
ments are provided as well, such as alerts, browsers
(for selecting a text element from a list), and collectors
(for selecting several text elements from a list). Face
provides a generic, application-based interface for in-
teractive tool design that allows a single application
to execute under SunView, X, and GL without signifi-
cant source code changes.

The operational tools provided in the first release
have also been significantly reworked. The pipeline
construction tool has been reworked to increase inter-
activity and to handle different connection methods
between the elements. (ApE 1.1 used Unix pipes to
connect the dataflow elements; apE 2.0 uses both

July 1990

Figure 8. Realistic rendering of Lake Erie (apE
2.0).

Unix pipes and sockets for connections.) A central
console provides an outlet for error messages and ac-
cess to documentation. An interactive image viewer
allows manipulation of single and multiple images
and real-time “playback” of image sequences. A ge-
ometry viewer allows interactive viewing of geome-
tries.

While apE 1.1 was limited to nearly linear pipelines,
apE 2.0 is designed to allow complex pipeline config-
urations, including multiinput, multioutput, and cy-
clic graphics. This cyclic capability provides apE 2.0
users with the ability to investigate connections be-
tween graphics and supercomputer simulations, and
to attempt to “steer” a simulation through visual feed-
back. These additions are all natural extensions of
apE 1.1.

Finally, the filters/modules have been extended to
include 3D elements as well as the traditional 2D ones
found in the first release of apE. Visualization tech-
niques include carpet and contour plots, surface de-
tection, terrain generation, and all forms of rendering
from scan-line polygonal techniques® (see Figures 7
and 8) to ray tracing. A volumetric rendering system
based on methods developed by Levoy?® (see Figure
9) is also included. Particle tracing, advection, and
surface feature detection (such as stream lines) are
also included. In addition, full prototypes are pro-
vided to allow extension of the system by the addition
of new filters, data types, tools, and interface ele-
ments.

Distribution philosophy

One of the real keys to the current and future success
of the apE software effort has been the distribution
policy. While a corporation must be concerned about

67



Figure 9. Volumetric rendering of Lake Erie’s
temperature distribution (apE 2.0).

profits, competition, market analysis, and other fac-
tors, we were able to concentrate solely on providing
the best tools for the research community, knowing
that our success would be judged by the productivity
of our users, not the corporate bottom line. The best
and only result we hoped for was widespread usage
and increased productivity among Ohio’s researchers.

The first version of apE was released in binary form
only. For many of our users, this was insufficient,
because it prevented them from using the software
fully. Many people needed to modify the code to suit
particular needs or demands in a particular applica-
tion or field of interest. Some needed to make changes
to suit local equipment or configurations. Finally, for
many, not being able to see the source code caused a
lack of confidence in the final results. Even if the code
is not modified, it is of great value to examine sections
to understand how a particular function is imple-
mented or why an unexpected result is seen. Univer-
sity environments typically enjoy source code for
most applications for precisely this reason.

We are now able to distribute the second version of
the software in source code form. All of the apE sys-
tem, including window-system layers, program-de-
velopment layers, data-format layers, and all existing
filters and tools will be released in source code form
with the software. Academic and nonprofit institu-
tions can request this software (with manuals) for a
nominal duplication fee.

Advantages of academic
software development

Clearly, many of the decisions and techniques de-
scribed here are appropriate only because the devel-
opers are a part of an academic institution. Normal

68 U-M-1

commercial firms cannot respond to market demands
in the way we did because they are driven by corpo-
rate-profit responsibility, not an altruistic (and per-
haps unrealistic) desire to change the way science is
done. We were and are very lucky that our funding
sources are predisposed to support this kind of large-
scale development, and to make the final results
widely available.

In many ways, though, we believe our success is
indicative of the advantages that academic software
development enjoys over commercial efforts. While
traditionally academic software is poorly docu-
mented and distributed “as is,” it is possible to build
a high quality product within the university environ-
ment. The support we have received at Ohio State
University and the Ohio Supercomputer Center has
enabled us to make this software available widely—
and cheaply.

Conclusion

The apE system does not represent a breakthrough
in computer graphics. Most of the technology that has
been harnessed to construct apE has been in existence
for a number of years, and precious little of it could in
any way be considered to be state of the art. However,
the apE system does represent a significant new step
in placing sophisticated tools into the hands of users.
At the same time, our work and our distribution pol-
icy has helped to push industry toward a greater real-
ization of the nature of the scientific visualization
problem. The potential of visual methods for data
analysis is enormous, and we need to recognize that
the grand challenge that faces us today is not in mak-
ing faster silicon but in finding new ways to improve
the productivity of our research community. |

Acknowledgments

I thank Charles Csuri, director of the Advanced
Computing Center for the Arts and Design, who mar-
shalled the resources to bring this project into being,
and Charles Bender, director of the Ohio Super-
computer Center, who provided continuing support
as the project grew. OSGP owes a great debt to these
individuals, without whom this project would not
have been possible.

I would also like to acknowledge some of our dedi-
cated users, who have helped us bring apE from con-
cept to reality. G. Comer Duncan of Bowling Green
State University was instrumental in debugging the
first release, and has been a source of inspiration

IEEE Computer Graphics & Applications

Due to a lack of contrast between text and background, this page did not

reproduce well.

l



throughout the project. Keith Bedford of Ohio State
University supplied the Lake Erie data. Shoichiro
Nakamura supplied the gas-flame data. Many other
Ohio Supercomputer Center users deserve our
thanks.

This work was supported by the Ohio Board of Re-
gents, through the Ohio Supercomputer Center, and
by Ohio State University. This work was supported in
part by a grant from Cray Research, by an equipment
grant from Apple Computer, and by an equipment
loan from Silicon Graphics.

References

1. B.H. McCormick, T.A. Defanti, and M.D. Brown, “Visualiza-
tion in Scientific Computing,” Computer Graphics, Vol. 21,
No. 6, Nov. 1987.

2. C. Upson et al.,"The Application Visualization System: A
Computational Environment for Scientific Visualization,”
CG&A, Vol. 9, No. 4, July 1989.

3. A. Giacalone et al., “VERITAS : Visualization Environment
Research in the Applied Sciences,” Proc. 1989 SPIE Conf. on
3D Visualization and Display Technologies, SPIE, Bellingham,
Wash., 1989, pp. 127-134.

4. FJ. Bitz and N.J. Zabusky, “David and Visiometrics,” to be
published in Computers and Physics, July 1990.

5. Precision Visuals’ Workstation Analysis and Visualization En-
vironment, Precision Visuals, Boulder, Col., 1988.

6. H.S. Anderson, “Distributed Supercomputer Graphics Using
Unix Tools,” Proc. USENIX Workshop on Unix and Super-
computing, Boston, Sept. 1988, pp. 25-32.

7. R. Marshall, ]. Kempf, S. Dyer, C-C Yen, “Visualization Meth-
ods and Simulation Steering fora 3D Turbulence Model of Lake
Erie,” 1990 Symp. on Interactive 3D Graphics, Computer
Graphics,Vol. 24, No. 2, March 1990.

8. G. Kawasaki, The Macintosh Way, Scott, Foresman and Com-
pany, Glenview, I11., 1990.

9. Objective—C Compiler Version 4.0, The Stepstone Corp.,
Sandy Hook, Conn., 1988.

10. B.Stroustrup, The C++ Programming Language, Addison-Wes-
ley, Reading, Mass., 1986.

11. Project Ingres, the University of California at Berkeley, An In-
troduction to the Source Code Control System, University of
California at Berkeley, Calif., 1980.

12. Programmer’s Hierarchical Interactive Graphics System
(PHIGS), Draft Standard ISO dp9592-1:1987(E), International
Standards Organization, Geneva, Oct. 1987.

13. The Graphics Language Programming Guide, Silicon Graph-
ics, Mountain View, Calif., 1989.

14. R. Scheifler and J. Gettys, “The X Window System,” ACM
Trans. on Graphics, Vol 5, No 2, Apr. 1986, pp 79-109.

15. HP Motif Developers Release, First ed., Hewlett-Packard,
Corvallis, Ore, 1989.

July 1990

16. R. Probst, “OPEN LOOK Toolkits,” USENIX Computing Sys-
tems, Vol 1, No 4, Autumn 1988, pp 76-86.

17. SunView Programmer’s Guide, Revision A, Sun Microsystems,
Mountain View, Calif., 1986.

18. Sun NeWS Technical Overview, Sun Microsystems, Mountain
View, Calif., 1987.

19. NeXT Technical Documentation I. NeXT, Inc. Palo Alto, Calif.,
1988.

20. Network Programming Guide, Revision A, Sun Microsystems,
Mountain View, Calif., 1990.

21. G. C. Duncan, “Head-on Collision of a Black Hole and a Star,”
Proc. Fourth Science and Engineering Symp., Cray Research,
Minneapolis, Minn., October, 1988.

22. ].S.Hobgood and R.S. Cerveny, “Ice Age Hurricanes and Tropi-
cal Storms,” Nature, 333, 1988, pp. 243-245.

23. |. Faust and S. Dyer, “An Effective Data Format for Scientific
Visualization,” Proc.1990 SPIE Conf. Extracting Meaning from
Complex Data, SPIE, Bellingham, Wash., Feb. 1990.

24. S. Dyer, “Supercomputer Rendering,” presented 1987 Convex
Users Group Meeting, Richardson, Tex.

25. M. Levoy, “Volume Rendering: Display of Surfaces from Vol-
ume Data,” CG&A, Vol 8, No 3, May 1988, pp. 29-37.

D. Scott Dyer is an associate director of the
Ohio Supercomputer Center. He has directed
the apE project since its inception in 1987.
Before joining OSC, he was on the staff of
Cranston/Csuri Productions and an associate
director of the Computer Graphics Research
Group at Ohio State University. His research
interests include high-quality realistic render-
ing, distributed processing, and the construc-
tion of software environments. He is a member
of ACM and IEEE Computer Society.

Dyer received a BS in Mathematics from Carnegie Mellon Univer-
sity in 1981.

Dyer can be contacted at The Ohio Supercomputer Center, 1224
Kinnear Road , Columbus, Ohio 43212. Information about the
availability of the apE system can be obtained through Michelle
Messenger, apE Project Coordinator, at the above address, fax
614-292-7168 or through electronic mail at mi-
chelle@rhett.osgp.osc.edu.

69



