
GLIDE: A LANGUAGE FOR DESIGN INFORMATION SYSTEMS

Charles Eastman and Max Henrion

Institute of Physical Planning,
School of Urban and Public Affairs

and Department of Architecture,
Carnegie-Mellon University

keywords: design, database, architecture, engineering, languages.
CR Classifications: 3.20, 3.40, 4.22, 8.2.

1 An IMAGE that contains sufficient
information for generation of graphics, possibly
including hidden line or surface elimination.
This usually consists of an unstructured set of
planar or curved faces.

2 A SHAPE model represents elements as
solid bodies, usually polyhedral. It is
spatially complete, meaning that it has a closed,
volume-containing surface which contains
sufficient information to determine whether any
point is inside or outside. For the shape
sculpting operations of union, intersection and
difference on spatial domains, such a
representation is essential [3].

3 An OBJECT model extends this shape
model to include functional information, such as
material, weight, rigidity etc. Thus shape may
be only one attribute among many others which
describe the object.

There now exist a wide range of computer
languages for 2-D graphics applications,
implemented as subroutine packages, or as
extended or entirely new languages. While many
of these can and have been extended to deal with
3-D IMAGES, only recently has there been work in
developing general Shape models [1,17].

Most systems capable of full Shape
modeling are controlled by a non-extendable
interactive command language [2,3,8]. A few are
imbedded in general procedural languages, both
interpretive and compiled [4,10,11]. Several of
these can store command strings on disk and in
this way represent large physical system projects
that can be repeatedly accessed and modified over
a period of time. A few store information on
disk in a run-time format, allowing interactive
manipulation of large amounts of data [8,16]
Several large CAD systems also support object
models with comprehensive non-spatial attributes,
but whose shape models do not extend to general
polyhedra [5,12,20].

In GLIDE, we have attempted to combine
the most desirable mix of these features that
would be useful as a high level environment for
physical systems CAD. The authors are members of

1. INTRODUCTION

A primary means for evolving more
polierlful computer software is through the
embedding of higher level features into
probl em-or i ented languages. To late, CAD
(computer -aided design) systems have had to
begin development from FORTRAN, PL/1 or language
of similar level. Yet there are needs common to
many CAD applications which could be provided in
the language or system foundation from which they
are developed. GLIDE (Graphical Language for
Interactive DEsign) is an attempt to organize the
commonly -needed database. features and operations
for the design of physical systems into a high
level computing environment. By "physical
system" we mean artifacts such as buildings,
ships and machines, that are made up of a
3-dimensional components and in which spatial
arrangement is an important concern. GLIDE is
intended to provide an efficient computer
representation for physical systems in sufficient
detail for their design and construction.

The provision of a complete and coherent
computer-based model of 3-dimensional objects and
their spatial arrangement offers many advantages
over conventional specifications and drawings.
Given a complete 3-dimensional spatial
representation of the artifact being designed,
the designer is guaranteed that all 2-dimensional
projections generated from it will be consistent.
Shape information, normally represented in
drawings, can be integrated with functional and
performance information so that application
programs can access and manipulate both kinds,
wi thout the manual translation now required for
draw i ngs. These application programs can check
data consistency, evaluate the design's
structural, thermal or other properties, estimate
cost, or add conventional details. Others can
generate displays, construction drawings and
numerical control tapes from the stored shape
information, which will have guaranteed
correspondence with the design. Many such
programs already exist and more can be imagined
for specific applications in different fields of
des i gn.

One can distinguish three levels of
representation for 3-dimensional elements:

24

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
Siggraph ’77, July 20-22 San Jose, California

a team at Carnegie-Mellon University that earlier
implemented a prototype interactive design
database called BDS (Building Description System)
(8]. GLIDE incorporates many. of the principles
developed in BDS, including the compact
representation of a large number of complete
shape models, the shape -manipulating operations
of union, intersection and difference, and
several methods for the user definition of
shapes. It embodies those facilities in a
general high-level language and extends them with
addcitional constructs for making functionally
complete object descriptions and for relating
objects to each other.

GLIDE is intended to combine the
advantages of an interpreted command language for
interactive design with those of a procedural
programming language. It does not provide highly
specialized programs for particular applications,
but rather is a general language, with object
modeling capabilities in a database environment
that incorporates disk management facilities and
specialized accessing schemes. It is intended to
form a convenient basis for constructing a new
generation of more powerful CAD applications. In
this paper, we outline the conceptual approach
taken in the design of GLIDE. We shall focus of
the features which we consider to be of
particular importance in the design of design
information systems.

The complete specification of GLIDE is
available in [6]. It has been implemented on a
PDP-10, under the TOPS-18 operating system. using
the Bliss implementation language.
Implementation is also planned for a PDP-11/34,
under the UNIX operating system. Versions are
anticipated for both storage tube and refresh
display graphics.

2. USER ENVIRONMENT:

In its development GLIDE was considered
from two different perspectives: Firstly as a
set of data types and commands for interactively
defining, arranging and inspecting a design; and
secondly, as a general high level language for
extending the range of structures and operations
available at the first level so as to meet the
requirements of a particular application. From
the first perspective, the language ought to be
easily used by a designer with minimal computer
experience. From the second perspective, it
should provide good facilities for the
experienced applications programmer, so as to
allow easy extension of the capabilities of the
sys'tem.

As naive users of the system gain
experience, they should be encouraged to expand
their use of the more general features. While we
do not see designers becoming programmers (or
vice versa) overnight, we hope that such a system
will allow the naive user to find the system
useful with minimal learning and that as he or
she demands more powerful capabilities, they can
be easily learned in small increments. We see

this as a way of reducing the gap between these
two classes of people. This is a prerequisite for
the development of systems which are tailored
closely to the requirements of individual
designers and their practices and which
incorporate valuable kinds of design knowledge.
This is in contrast to most existing systems,
which enforce a strict separation between the
command language and the system implementation
language.

The requirements of interactive design
dictate that GLIDE be interpretive. Each command
entered by the designer is executed immediately
so that its effects can be inspected. An
important form of inspection is graphical; the
user is able to view the spatial effects of his
actions as they are made.

Programs incorporating special operations
relevent to a particular design field or to the
practices of an organization also need to be
entered as procedures and stored for subsequent
use. These are checked syntactically as they are
entered, a line at a time, by an incremental
translator. The pre-translation of procedures
requires that translation be independent of the
particular state of the database and that any
external data or procedures needed are linked at
run-ti me.

A design project will be developed over
an. indefinite period of time and many terminal
sessions, requiring millions of words of storage.
Thus a project, while under development, should
exist in a run-time format directly available
online. The GLIDE operating environment keeps a
small subset of the database in core and the rest
on disk, and the management and swapping of
records is handled automatically without
conscious intervention by the user.

3. BASIC FEATURES:

GLIDE incorporates the basic features of
a general purpose Algol-like language. These are
fairly conventional and so we will not describe
them in detail. They include the following: the
simple data types of INTEGER, REAL, BOOLEAN and
TEXT (i.e. character string); variables of these
types mus't be declared before use and may be
scalar or vectors; the standard arithmetic,
comparative and logical operators; the
single-value assignment operator; control
structures including, the IF <bool> THEN e ELSE
e, and FOR and WHILE loops; a hierarchical
structure of blocks delimited by BEGIN and END,
with dynamic declaration of local variables, and
user-definable procedures. Flow of control can
also be changed by the escape statements: LEAVE,
EXIT and RETURN, for escaping from a BEGIN...ENO
block, the body of a loop, and of a procedure,
respectively.

The language is "expression-oriented"
that is, every statement returns a value and can
be used as part of a higher level expression.
The value of 'an assignment is the value assigned.

25

The value of an IF statement or block is that
part of the last statement executed. Procedures
may act as functions and return a value when
cal led. The escape statements return the value
of the expression fol lowing it to the construct
from which they escape, eg. the value RETURNed by
a procedure. Wherever a statement is treated as
an expression, its type must match that expected
by the context.

As a database definition language GLIDE
calso contains the means for creating record
types for defining objects, their shapes and
their relationships. The general record type for
defining a class of objects is a FORM, whose
instances are COPIES. There are also two special
record types for defining shapes: TOPO for
defining surface topologies, and POLY for
defining polyhedral shapes. A SET consists of a
collection of Copies or other Sets. Copies and
Sets can be treated as equivalent in many
contexts and the union of their types is an ITEM.
These record types will be described in more
detail.

4. FORMS AND COPIES:

FORMS are user-defined complex datatypes
somewhat analogous to the Record of PL/1 and
Pascal. Struct of Algol-68, or Record class or
the Relation of database definition languages.
In design databases it is usual to encounter
families of objects that have many but not all
properties in common. Examples might be a class
of doors in a building which have similar shape
hut different locations, finishes and handles; or
a class of container vessels in a chemical
process plant. In this situation it is
convenient to define a FORM not only as a
"schema" which defines the ATTRIBUTES of a class
of objects, but also as a "prototype" which
contains the initial default values for objects
derived from it. For this reason the instances
or occurences of a Form are known as its COPIES.
To define a COPY it is only necessary to specify
its Form and those Attribute values which differ
from it. This allows more concise entry of data
and is also used in the current implementation
for achieving compact storage of data. The
advantages of this organization will become
especially apparent when we consider the spatial
Attributes for shape and location.

The functional properties of importance
in different areas of design vary greatly. User
defined Attributes are provided for representing
these properties of an object. Attributes may be
of any simple type, including vectors of fixed
size, or any record type (actually references to
records). Since the same Attribute name, eg.
COLOR or MATERIAL, may be relevant to many
different Forms, they are declared global rather
than local to a particular Form definition.
Attribute declarations are introduced by the
keyword ATTRIB:

26

This dynamic extension of record formats
is not allowed in most languages and it adds some
complexities to implementation. However we feel
it to be important in a database system oriented
to interactive design, where simple structures
may be created initially which are later refined
and elaborated in ways that could not have been
anticipated at the start of the process. It also
allows set membership information to be added to
objects incrementally without any prior
restriction on the range of Sets. Attributes
needed for a particular kind of analysis may also
be appended to objects whenever the need is
identified.

Outside a definition or modification
block an Attribute value can be accessed by the
syntax:

Form identifiers and Copies are bound
permanently to their definition and cannot be
reass i gned. The bind operation is denoted by

=, as distinct from the assignment operator
"-". However, the individual Attribute values
can be modified and a Form or a Copy can be
dynamically expanded by the addition of new
Attributes. Note that changing a Form Attribute
uill affect all Copies with the default value;
but new individual values may be assigned to an
Attribute of a Copy that was originally
defaulted. These changes are achieved in a
modification block, attached to the object name
w ith a ":":

Copies are identified by subscripts
appended to their Form. The Form in its role as
"prototype" may also be treated as the zeroth
Copy.] In the Copy definition the subscript may
be specified or defaulted, as the integer after
the previous highest. The Copy definition block
delimiters are "I" and "I".

A Form definition consists of a block
containing Attribute initializations and possibly
other statements enclosed between BFORM and
EFORM. (These block delimiters are intended to
aid type checking, but for conciseness can be
replaced by "(" and "I", as can the delimiters
for all the other record definition blocks to be
descr i bed.)

<attrib> OF <copy>

Since the names of Forms and hence of
Copies are permanently, bound it is frequently
desirable to use a variable. to refer to such
objects. These may be declared to be of type
ITEM. An Item can be either a Form, a Copy or a
Set of Items. An Item variable may be assigned
and reassigned by the "-" operator.

needed to define a Polyhedron and is also used in
GLIDE as a means to greatly compact the storing
of shape information [7]. We introduce the shape
definition facilities in the approximate order in
which they might be learned, from the simplest to
the most complex to use, in order to emphasize
the possibility of a gradual progression, as
users become more familiar with the facilities.
Thus in the later examples we shall show how to
construct entities such as Topologies, which are
earlier treated as primitives.

S. PROCEDURES:

Procedures serve both their conventional
role in the development of code for application
programs and as means to extend GLIDE as a
high-level user-oriented command language adapted
to particular design tasks. Accord ing I y, in
addition to the conventional calling syntax with
the parameters enclosed in parentheses; a
"command" syntax is provided. In this syntax the
parentheses are omitted and alphanumeric
separators can be used instead of commas.

6. SHAPE DEFINIIION:

Shape is an Attribute of particular
importance for physical systems design. While
Shape may represent a solid object it may also
represent a void, such as the space in a room, or
the envelope of a set of objects. It is
represented in GLIDE by a record of type POLY,
representing planar-faced polyhedra. A Form
record may be associated with a Polyhedron- by
binding it to the SHAPE Attribute of the Form.
All Copies of this Form will have the same Shape,
possibly with parametric variations.

The representation of a general
poluhedron needs a large amount of data and
efficient means of entry are required. Below, we
describe the language constructs for defining
polyhedra. Several different methods can be
used, each based on a partial description that
can be created and named for later reference.
The partial descriptions are related
hierarchically, as shown in Figure 1. This
hierarchy facilitates the entry of information

The type of a procedure and of its
parameters are given in the declaration, together
4ith the seperators if any.

6.1 Copies:

Given an existing Form with defined
Shape, new objects are easily derived as Copies
at different locations. Location consists of the
system -defined Attributes: LX, LY, LZ, which
define a translation, and AX, AY, AZ which define
an orientation specified as rotations in degrees
round the three axes. These can be initialized
and accessed like other Attributes, but a more
convenient syntax for location is:

The transform is relative to the <item>, or if
that is omitted, is relative to "world" axes.
Omitted trailing values default to zero.

27

A regular arrangement of Copies can.be created
.with the use of a FOR loop:

6.2 Parameter i zed Shapes:

Any well-used system will have built up a
large library of standard shapes which may
suffice for simple applications, but clearly
there must be means for creating new ones. One
method is to use parameterized shapes, which are
procedures that define and return a Polyhedron
that is defined parametrically from within a
class. A simple example is Cuboid, parameterized
by length, width and height.

Storing a catalog of parameterized Shapes
has become a conventional technique in most CAD
systems. Different classes of applications may
be served by libraries containing different sets,
eg. pipes for process plants, I-section beams
for structural steel design, etc. GLIDE provides
the means of defining new ones as procedures
which create classes of Polyhedra.

The shape of an object is specified by
binding a Polyhedron record to the SHAPE
Attribute within the Form definition.

6.3 Shape Operators:

An extremely powerful method for
constructing complex Polyhedra is by joining
simpler ones together, or by subtracting one from
another. The Shape operators that do this create
a new Polyhedron, with a new Topology and
Geometry. There are three to perform the union,
intersection and difference operations on the
spatial domains represented by the Polyhedra:

An example of their use is shown in
figure 2. The various cuboids ir 2a were located
interactively and subtracted from the centre one,
with the resulting Polyhedron in 2b.

The LAP operation is the ultimate test
for spatial conflicts. Note that type coercion
can occur from a Copy to its Shape and hence the
above and other operations expecting a Polyhedron
will also work with operands which are Copies of
a Form.

28

6.4 Defining a Polyhedron:

A Polyhedron consists of a number of
components: FACES, EDGES and VERTICES. Each
Face and each Vertex consists of an ordered ring
of Edges and each Edge contains two Vertices and
two adjacent Faces. The information associated
with these components is divided into two parts:
the TOPOLOGY and the GEOMETRY. Topology defines
the number of these components and there
interconnections. The GEOMETRY specifies their
spatial position and physical dimensions. Note
that here "topology" means the network of
vertices, edges and faces of a polyhedral
surface, which is not the quite the same as its
use in the field of mathematics of that name. A
Topology may be common to many different
Polyhedra and so it can be entered independently
from any particular one and referenced by rrame.
See Figure 1.

A Polyhedron definition is delimited by
BPOLY and EPOLY (or "I" and "I"), and starts with
the specification of a Topology, which defines
the numbers of faces, edges and vertices and
their connections. The Geometry is then
specified by a set of statements which bind to
the vertex coordinates (VX, VY and VZ) a value
relative to the origin. These have the form:

Lihere <sublist> is a list of one or more vertex
ind i ces. Those co-ordinates not mentioned
default to zero.

After the creation of a Polyhedron, the
system checks that the Vertex coordinates define
planar Faces, and that the bounded domain is
inside. A Polyhedron can be treated as a Form
with only a Shape Attribute, and Copies can be
made and moved, and other Attributes added.

G.5 Defining a Topology:

A Topology may be constructed by means of
Euler operators, which create and link new
Vertices, Faces and Edges. (They are named after
Euler who showed that they are sufficient to
construct any legal polyhedron. For a description
of their use see [2,83.)

These Euler operations and other
statements are combined into a Topology
definition block enclosed between BTOPO and
ETOPO. BTOPO generates a primitive point
Topology consisting of a single Vertex on a Face.
Further Faces. Edges and vertices are added and
linked by the following Euler operations:

MERGE(F1, F2, VI, V2) to merge two
Faces Fl and F2 starting by merging VI on Fl and
V2 on F2, and finally eliminating the two Faces.
Thus it can create a Polyhedron with a hole, or
merge two into one.

Variables of type VERTEX, FACE and EDGE
may be declared within a block defining a
Topology or Polyhedron, or as parameters of a new
Euler procedure. The Faces,Edges and Vertices
are uniquely numbered for each Topology in the
order they are created. This index can be used
to identify them, and thus type coercion can can
take place from an integer to the expected
subrecord type.

29

The following system-supplied "clocking '

functions provide ways of accessing the
topological relations:

Other complex shapes may most easily be
defined graphically, as for example in several
programs which can construct a 3-0 shape from two
or more 2-D pictures drawn on the
tablet[13,18,19]. We regard these as a
particular class of application program, which
can be interfaced to GLIDE.

Notice that the hierarchy of Polyhedron
definition facilities, when combined with a
procedural language and database features, gives
the user a range of alternatives for storing
information, both procedurally or as data. Thus
a Polyhedron may be defined as a procedure and
invoked only when it is needed, with only local
declarations. Alternatively it may be stored as
data permanently. Thus no particular bias is
made with regard this sometimes hotly debated
issue [14,151. The application programmer can
select that means of storing information that
best reflects the conditions regarding space,
speed and needed information.

7.1 ACCESSING SHAPE INFORMATION:

The Attributes of a Shape can be accessed
in the same way as the other Attributes of an
object, either within a modification block or as
<attrib> OF <item>. Modification of these
Attributes, however, is limited. The following
Attributes describe the number of Topological
components, the Vertex coordinates and the Face
coefficients (which are computed from them):

The NEXT functions produce the next
follpponent following the the first argument in the
ring, clockwise looking inwards on a Face and
anti-clockwise round a Vertex. The OTHER
function produce the other component to the first
argument on the given edge. In the case that the
first argument is null (index 0) they return any
component of the requested type that is connected
to the second argument.

7.2 FORMS WITH VARIABLE SHAPES:

Shape Attributes may not be directly
ulndated. since they are bound at definition.
However the vertex coordinates may be bound to a
Real Attribute of the Form, and hence changing
the value of the Attribute referred to by the
ecometry also alters the Shape. Thus by

initial Il defining a Polyhedral geometry in terms
of a set of Attributes, the Shape can be
parametrically variable for each Copy.

By setting up a Form in the above manner,
each of its Copies may have a cuboid Shape but
with different dimensions. The initial values
assigned to the Attributes are the Form's default
va I ies.

By allowing copies of a Form to vary in
this way, great convenience is allowed in the
treatment of objects cut from standard stock.
Al pipes or beams of a certain section may be
Copies of the same Form, but with variable
lengths, allowing quantities of materials to be
conveniently aggregated.

8. SETS:

The Set provides a way of referencing a
number of objects together, allowing them to be
treated as a single entity. Conceptually. a Set
is an unordered list and it can contain objects
and also other Sets. Thus multi-level
hierarchies can be defined. All operations which
take an Item for their argument can operate on a
Set.

30

The name is implicitly declared as an
Itbm with the scope of the loop body, which is
executed for each successive Item. The
difference between them is that FORMEM accesses
on ly the top members of the set, whereas FORALL
accesses all the objects at the Jowest level
contained within sets within the set,
recursively.

Two special loop statements have been
provided for accessing the members of a Set:

In other contexts members of a Set are
inserted or removed thus:

Like other definition blocks a Set
definition can contain general statements, and if
any of these evaluate to an Item, then that will
be also placed in the Set. This provides a
convenient means of collecting and accessing all
the objects created or accessed during a
clelimited part of a design session, and
encourages (although it does not enforce) a
hierarchical structure for organizing the design
database.

A Set may be defined simply by a list of
Items, between the delimiters BSET and ESET (or
"I" and "I" again.) A list of several Copies of
the same Form can be specified concisely by
listing the index range as the subscript. The
subscript ALL means all the Copies of the Form.
An origin for rotation may be specified as the
first statement:

9. SPATIAL SEARCH:

Accessing objects by their location in
space is an important method of access to a
-latabase representing a physical system. No
general methods of database organisation are
sufficient to perform this efficiently, but a
number of special techniques have been developed
to deal with it [9]. In Glide the function

will generate the Set (which may be
empty) of objects in the vicinity of the given
Polyhedron.

16. GRAPHIC DISPLAY:

To obtain graphic output of the Shapes
and arrangements of objects, two things are
necessary: A specification of the VIEW and a
specification of the DISPLAY SET. The View is a
Copy of a system defined Form named VIEW, which
contains the parameters needed for graphic
display. This has a Shape consisting of a two
vertex line, representing the reference point and
view point. The reference point and line of
sight of a View Copy is specified by its location
and orientation. [The point of view can also be
changed by the . FROMX, FROMY and FROMZ
Attributes.] Other Attributes control other
parameters of the View. The default definition
of the View is:

31

11. GRAPHIC INPUT:

GLIDE contains special functions which
return information from a graphics satellite
process which can read data from graphical input
devices such as digitiser or light pen. LOCA
returns a 3-Dimensional location in project
coordinates and and PICK returns a reference to
an Item which has been selected on the display.

MOVE PICK TO LOCA;

In an environment with dynamic graphics
these procedures pass control temporarily to the
display process, which can allow considerable
dynamic interaction before returning the final
values to the GLIDE executer. These functions
hopefully provide GLIDE programs with a degree of
clevice -independence.

12. DECLARATIONS, BLOCK STRUCTURE AND SCOPES:

It expected that multiple users will
access a design database. It would be
impractical to anticipate all the variable names
to be used in some project. Also, it must be
possible to define application procedures
independent from the database contents. Some
procedures, however, should be able to add new
records directly to the database and provide
names for them.

Within this context, we believe that
explicit declarations with local and global scope
distinctions within a hierarchical block
structure are the best means for allowing
unambiguous referencing and efficient memory
management. A design project may last over many
sessions at the terminal. Conceptually the scope
of a project corresponds with the outermost block
level. This outer block begins at the initiation
of a project and is the outer block level during
a terminal session. Therefore entities declared
at this top level are GLOBAL and continue to

GLIDE provides two special Item
variables: LOOK and OSET. To LOOK the user
assigns the required current View (or Set of
Views if several simultaneous views are wanted as
in the traditional three orthographic engi.neering
drawings:

LOOK*-lplan; front; side: birdseye);

OSET contains the current Set of Items to be
displayed. Thus the basic OISPLAY commands can
be defined as follows:

exist between sessions over the length of the
project.

The scope of the name of a variable or
record is the range of code over which it can be
referenced by that name. The default scope of
declarations is Local to the block in which they
appear. However it is possible to override the
default local scope by prefixing the declaration
as GLOBAL. In GLIDE, definition blocks for all
kinds of records can contain general statements
including declarations and are as much part of
the scope block structure as BEGIN ... END
blocks. Declarations are not constrained to be
at the beginning of the block.

Local variables of simple type (both
scalar and vector) are allocated on a stack and
hence are deallocated on exit from the block in
-ihich they were declared. Records on the other
hand are allocated on a heap, managed by the
dcatabase system. Even though they are no longer
accessible by name after exit from a block in
iwhich they were declared as local, they may still
:'e referenceable via any Global Sets or Item
variables to which they have been assigned. For
example any Items created within a Set definition
block wi I I automatically be put into that Set.
Garbage collection of such records is managed by
keeping a reference count for each one, and
deleting only when this falls to zero.

I13. FINAL REMARKS:

We have described only the major features
of GLIDE. Other constructs are provided for
mov i ng Items, to change the coordinate axes for
local detailing, for Copying Sets, and for input

-and output of alphanumeric data. In adldition the
Set type includes features to facilitate the
cdefinition of hierarchical and network database
organizations. The language as we have descibed
it here is a preliminary version, and it will
evolve no doubt as feedback is gained from users,
both designers and expert programmers.

We expect GLIDE to be used as a
laboratory for developing a variety of design
information systems. Initial application areas
under investigation include building design, with
inte'-faces to a variety of performance analyses,
and the design of chemical process plants.

We have said little about the
i ml: I emen tat ion and operat i ng env i ronmen t.
-lowever these are particularly critical to an
interactive database system, since speed and
convenience are- essential if the full advantages
of direct interaction are to be obtained. The
system is modular and should allow investigation
of alternative representation schemes. Thus the
GLIDE interpreter could be interfaced with a
standard database management system, or the shape
modeling structures could be extended to include
curved objects. In this way, we expect to use it
both in the development of new CAD applications,
and also as an experimental tool for developing
new forms of support software.

This work was supported by the National
Science Foundation, Division of Mathematical and
Computer Sciences.

REFERENCES:

(1) Baer A., C.M. Eastman and M. Henrion, "A
survey of geometric modelling systems", Institute
of Physical Planning Research Report No 66,
Carnegie Mellon University 1977.

(2) Baumgart, B. G., "A Polyhedron Representation
for Computer Vision," Proceedings of the National
Computer Conference, 1975.

(3) Braid, I.C. and C. Lang, "The design of
mechanical components with volume building
bricks" COMPUTER LANGUAGES FOR NUMERICAL CONTROL,.
J. Hatvany, ed. North-Holland Publishing Co.
London, 1973.

(4) Brun JM "EUCLID: Manual", Equipe graphique du
LIMSI, B.P. 38. Orsay, France.

(5) Chalmers, J., "The development of CEDAR"
International Conference in Computers in
Architecture, York, 1972.

(6) Eastman,C. and M. Henrion, "Language for a
Design Information System", Institute of Physical
Planning Research Report No. 58, Carnegie-Mellon
University, February, 1976 (revised).

(7) Eastman C, "The concise structuring of
geometric data for CAD" in DATA STRUCTURES FOR
PATTERN RECOGNITION AND COMPUTER GRAPHICS. A
Klinger, H fu and T Kunii (eds) Academic Press
1976a.

(8) Eastman, C. "General Purpose Building
Description Systems", COMPUTER AIDED DESIGN,
8:1(January, 1976c) pp.17-26.

(9) Eastman, C. and J. Lividini, "Spatial
Search", Institute of Physical Planning Research
Report No. 55, Carnegie-Mellon University, May
1975.

(18) Engeli, Max. "A language for 3D graphics
applications" INTERNATIONAL COMPUTING SYMPOSIUM
1973, North Holland Press, 1974.

(11) Hosaka, M., T. Matsushita, F. Kimura and N.
Kakishita, "A Software System for Computer Aided
Activities", Proceedings IFIP W.G.5.2 Conference
on CAD Systems, Austin, Texas, 1976.

(12) Hoskins, E.M.,"Computer aids in
building",COMPUTER AIDED DESIGN, J.J. Vlietstra
and R.F. Weilinga (eds.) American Elsevier, N.Y.
1973.

(13) Lafue, G. "Recognition of Three-Dimensional
Objects From Orthographic Views", SIGGRAPH
NATIONAL CONFERENCE PROCEEDINGS, ACM, N.Y., 1976,
p.103-108.

32

(14) Newell, M. and D. Evans. "Modeling by
Computer", Proceedings of the IFIP W.G. 5.2
Conference on CAD Systems, Austin, Texas,
February, 1976.

(15) Newman, W. "Display Procedures" CACM 14,No
10 651 Oct 1971

(16) Production Automation Project "An
introduction to PADL", TM-22, University of
Rochester, NY 1974

(17) Shu, H. H., "Geometric Moleling for
Mechanical Parts" 4th NSF/RANN Grantees'
Conference on Production Research and Technology,
Chicago, November 1976.

(18) Sutherland, I. "Three Dimensional Data Input
by Tablet", PROCEEDINGS OF THE IEEE, 62:64,
(Apri I ,1974).

(19) Thornton, R., "MODEL: Interactive Modeling
in Three Dimensions Through Two-Dimensiona
Windows" unpublished, MS thesis, Cornell 1976.

(28) Brainin, Jack "Use of COMRADE in engineering
design", 1973 National Computer Conference, AFIPS
Press, Montvale NJ,1973

EXAMPLE:

Be I ow is a simple example of some GLIDE
code to generate the Spiral staircase shoi-n in
the i lustration. It uses as primitives some of
the procedures given previously in the text.
"Spiral.step" is a parameterized shape procedure
Iihich constructs a Polyhedron from three
cleil. ents: "Plate" is the surface of the step,
"support" is a bracket and "Collar" attaches' the
assembly to the "centre" column, which is passed
as a parameter. These are welded together with
the shape operator, COMBINE, and then the
"centre" column is CUT out of the "collar" so
that it fits closely around it. The
"spiral.stair" procedure computes the number of
steps and exact riser height to make the total
height and calls "Spiral.step" to create an
appropriate step. Repeated Copies of this are
made at successive locations, and the procedure
retur-ns the "centre" and all the steps and the
centre as a Set. It constitutes a simple
detai ling routine for creating a class of spiral
staircases. The particular example illustrated
is created as "stairl".

33

