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Abstract

This paperdiscusaes anew, symbolic approach to geometric modeling called
generative modeling. Tbc approach allows specification, rendering, and
maiysis of a wide variety of ahapes including 3D curves, strrfaees, and
solids, as well as higfrer-dimenaionsd shapes such as surfaces deforming in
time, and volumes with a spatially varying mass &nsity. The system also
supports powerful operations on shapes such as ‘“repammeterize this curve
by arclengtb”, “compute the volume, center of mass, and moments of inertia
of the solid bounded by these surfaces”, or “solve this constraint or ODE
system”. The system haa been used for a wide variety of applications, in-
cluding creating surfaces for computer graphics animations, modeling the
fur and body shape of a teddy bear, constructing 3D solid models of elastic
bodies, and extracting surfaces from magnetic resonance (MR) data.
Shapes in the system are specified using a language which builds mtrkidi-

merrsiorralparametric functions. Tbc Imgustgc is baaed on a set of symbolic
operators on continuous, pieccwise differentiable parametric functions. We
present several shape examples to show bow conveniently shapes can be
specified in the system. We also discuss tbe kinds of operators useful in
a geometric modeling system, including arithmetic operators, vector and
matrix operators, imegration, differentiation, constraint solution, and con-
strained minimisation. Associated with each operator are several methmta,
which compute proprties about the parametric functions represented with
the operxom. We show how marrypowerful rendering and snafyricsf opera-
tions can be supported with only three methods: evahsation of the parametric
function at a point, symbolic dlffererrtiation of the parametric function, md
evacuation of artinclusion function for the parametric function.
Like CSG, and unfike most other geometric modeling approaches, 3Ms

modeling approach is closed, meaning that further modeling operations cart
be applied to any results of modeling operations, yielding valid models. Be-
cause of this closure propeny, the symbofic operatora cartbs composed very
flexibly, stlowing the construction of higher-level operators witbout charrg-
ing the underlying implementation of the system. Because the modeling
operations are described symbolically, specified models can capture the de-
sigtw’s intent without approximation error.

CR categnriex 1.3.5 [Computer Graphics]: Computational Georne~ and
Object Modeling - curve, surface, solid, and object representatio~, g-
metric algorithms, languages, and systems

Additional KeyWords: geometric modeling, parametric shape, SW*P

1 Introduction

One way of representing a limited class of shapes uses sweeps. A sweep rep
resents a shape by moving artobjed (called a generator) afonga trajectory
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through space. The simplest sweeps are extrusions and srsrfaccsof revo-
lution, which sweep 2D curves. SWezpawhose generator can change sixe,
orientation, or shapeare calfed general aweepa.General sweeps that use 2D
curve generators are esrfkd gerrerafii cylinders [BINF71 ].
Several maearchersbave sturfkd sweeps [GOLD83,CARL82b,WANG86,

COQU87]. Barr’s sphericolpro&rct [BARR81], is an exampleofa aweep
thatusesaconstant2Dcurvegeneratorwithtranalatiorrandacaliig.Carfaon
[CARU32b] introduced the idea of varying the sweep generator. Wang and
Wang [WANG86] explored sweeps of surfaced for use in manipulating nu-
merical] y controlled milting machine cutter paths. Sweepa have been used in
solid modeling systems for many years (e.g., GMStrtid, ROMULUS). Loss-
ing and Esbtemarr [LOSS74] developed a system using sweeps of cmnstant
2D curves. Alpha. 1, a modeling system developed at the University of U*
has a much more sophisticated sweeping facility [COHE83].
One of the advantages of sweeps is tfreii naturatnesa, cmmpcmeaa, and

controllability in representing a huge class of man-made objects. For exattt-
ple, artairplane wing is naturafly viewed as so airfoil cross section which is
translated from the root to the tip of the wing. At the same time its thickness
is modified, it is twisted, swept bwk and translated Wrticdy according to
other schedules. Two crucial questiona remain concerning bow sweq tit
into a general shape tilgn and manipulation program:

● how cart sweeps be specified by the human designer in a general and
powerful way?

● what tads am appropriate to aflow swept shapes to b rendered and
simulated?

w generative modeling approach presented here extends the kinds of
sweeps that can be conveniently specified, and providea high-level tools for
their rendering and simulation. llte approach specifies sweeps pmcedmfly,
in a fashion similar to other procedural specification methods in cumptrter
graphics: shade trees [cOOK84], Perlin’s texturing language -5],
and the POSTSCRIPT language [ADOB85].
A prototype system cafkd GENMOD has beersdeveloped implementing

these ideaa, which includes a C irrterpmter,a curve sdkor, methods for sev-
eral dosen primitive symbolic operatom, and a mukidimerrsional visuafka-
tion library. WbiIe each piece of the system is fairly simple, we have found
that combining atl the pieces into a single system produces an extremely
powerful geometric modefing tool.

2 Generative Modeling Overview

A genercafivemodel is a shape generated by the continuoustransformation
of a sba~ cafledthegenerator.As anexample,considera curvegenerator
~(u) Rt ~ R3, andaparsmeterizedtranaformation,6(P,v) R3 x R ~ R3,
thatsumonpointsp E R3 given a parameter v. A gertcrstive surface, S(si, v),
may be formed consisting of all tbe points generated by the transformation
6 acting on the curve T, i.e.,

S(u,v) = (f(’y(u), v)
A cyfinder is an example of a generative model. The generator, a citck

in the .ryplane, is translated along the z axis. l%e set of points generated 88
the circle is translated yield a cylinder. Mathematically, the generata and
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transformation for a cylinder are

‘(”)= (~’? ‘@v)=(P:O

yielding the surface

()

cos(27ru)
~(Is, V) = 6(7(u), V) = sin(2ff u)

v

2.1 Parametric Functions and the Closure Property
If a generator is expressed as a parametric function, then a generative model
built by fransforrning this generator is afao a parametric function. General-
izing from the cylirtdsr example, 1* a generator & represented by the para-
metric function

F(x): 1# ~ R“
A continuoussetof transformations can be represented as a pararneterked
transformation

T~, q) R“ X Rk * R“
where p ~ R“ isa point to be transformed, and q E Rk is anaddkional
parameter that defines a continuous set of transformations. The generative
model is the parametric tltnction 1

T(F(x] q): R’* + R“

Thetillity to usea generative mcdel as a generator in another genera-
tive model will be cafkd the closure propsrfy of the generative modeling
representation. The use of parametric generators and transformations yields
closure because transformation of a generator can be exprssaed as a simple
composition of parametric functions, resulting in another parametric func-
tion. In fact, the use of pararrwtricgenerators and transformations blurs the
distinction between generstorand tranaformatirm. Both are parametric frmc-
tion~ the domain of a generator must he c0mple4ely specified, while the
domain of a transformation is partly specified and psrtfy &termined as the
image of a generator.

22 Terminology
M FR” + R“ be a pmumtric function with scalar variables
X1,X2, . . ..%. Cdkd h PISmtnetriC variobfss or paranrstric coomlnafes.
‘The number of pssametric coordinates on which F depends, n, is called the
inptu dimension of the parametric function. The number of components in
the result of F, m, is cafkd the outpuf dirnenswn of the parantdc function.
In this work the domain of F is a rectilinear region of R“,cafkdahypsr-
recrongle, of the form:

[al, bl] X [caz,bz] X . . . X [a”,b”]

Hyper-rsctangks are convenient for sampling and integration of the para-
metric functions in a computer implementation. The image of F over a spec-
ified byper-rectangle defines the shape of interest.

2.3 Operatom and Methoda
Onewayof s~ifying pmumlrw“ functionsisbyselectingasetofopem-
10rs.Anoperstorisafunctionthattakesparametricfunctionsasinputand
produces a parametric firrtctionas output. For example, addition is an op
erator that wts on two parametric functions ~ and g, and produces a new
parametric furrction,~ + g. llre addition operator is recursive, in that we can
continue to use it on its own results or on the results of other operators, in
order to build more complicated pammdric functions (e.g., (f+ g) + h).
Lke the addition operahx, all operators in the system are recursive; their

resul!s can he used as inputs to other operators. 2 Together with the closure

lMw~y, *~w*ltiti*Of*u htie0fnmk9)---
u c d+k.
2ttkmkdtiti ddMwwti4wapkd **b~w.
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PXY of -c gcnemtora, this recursive natr2reof operators yields
a modeling systemwith closure. That is, the designer is not prevented from
using any reasonable combiiiorr of operations to specify shapes. For ex-
ample, the addition operafor can be applied to pararnhc functions of my
input dimemion ( e.g., curvss or surfaces). It can also k applied to parsnwt-
ric functions of any output dknension, to perform vector addition, as long as
the output dimension of its two arguments is identical.
of courss, it is not enough to rspreaent pammetmo functiotq we must alm

he able to compute properties about the parametric functions for rendering
and analysis. Such computations can be implemented by defining a set of
methods for each operator. One method evaluates the pametric function at
a @rtt in its pammeter space. other methods include symbolic differentia-
tion of the parametric function and evsfustion of an inclusion function (see
[SNYD92a] for a discussion of inclusion functions). Section 3,2 discusses
methods in more detaiL

3 Symbolic Operators

3.1 specific operatora
In this section, we examine specific operators that fcfrtt a bask for a flexible
variety of shapes. TIds set of operators wifl be used in Section 4 to show the
capability of the generstivemodeling approach forcomblning swh operators

to build interesting shapes.

Elementary Operators Elemsrrtary opcrafcm irrchdeconatarrts, paramet-
ric coordhates, arithmetic opsratom, square root, trigonometric functions,
exponentistiow and logarithm. 3 The constant operator representa a paramet-
ric function with a real, constant value, such SS$(X) = 2.5. The pammeuic
coordkate operator reprcssnta a particular parametric comxhate, such as
~(x) = XZ,where X* is the second comfxxtent of the pmnwtric domain, in
a global rmordhate system. ArithrtAc operators are addkion, subtractimk,
multiplication, divisio~ and negation of pmmetric functions. They are use-
ful for such geometric operations as scaling and interpolstio~ and in many
other snore complicated operations. They cso also be cornbii to represent
bicubic patches, NIJRBS, and other parametric polynomials.
other elementary operators srv uaefid in sprciaf c“UcrmWances. The

square root operator, for example, is useful to compute the dutamx between
points. The sine and cosine operators are useful in buildlng pmmetric cir-
cles and arcs.

Vector and Matrix Operators Vectoroperatorsareprojection,cartesian

sian product aflow extraction and rearrangement of coordi&tes of paramet-
ric functions. Vector length, dot product, and cross product find many appli-
cations in defining geometric cmrm-aints on pammeterizuf shqxm
Veztor operator analogs of the aritfunedc operators are also usefuf for ge-

ometric modeliig. These operators inchsde ddkion and subfraction of vec-
tors, and multiplication and dhidon of vectors by scafara. Matrix operators
include mtdtiplicatiott and addkion of rnatri=, matrix determinant, and in-
verse. Matrix multiplication is especially trseftd to define aftine trsnsfortna-
timts, which are used extensively in simple swosps (see Section 4.2). While
these operators can be defined in terms of simple projecti~ cartesiarrprod-
uct, and arithmetic operators, they are included as primitive opators for the
sake of efficiency.

Differentiation and Integration Operators The differentiationoperator
returnsthepartialderivativeof a parametricfimUionwith respectto oneof
its parametriccoordkrates. This is useful, for example, in findhtg tangent or
normal vectors on curves and surfaces.
Ths integration operator integrates a parametric function with respct tn

one of its parametric cmrdinafea, given two parametric functions represent-
ing the upper and lower limits of integration. Forexarnpk, the function

/
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can be formed by the integration operator applied to three pammtric func-
tions, where J@, 7) is the integrand, a(u, v) tlw upfrw limit of integration,
and b(u) the lower limit of integration. In general, pammehic frmclions hav-
ing any nurnberofinputparameterscanbeusedas theintegrand,orlimits of
integration. Integration can be used to compute arckngth of curves, surface
men of surfac4a, and volumes and moments of inertia of solids.

IndexIng and Branching Oparaton A uscfuf operation in geometric
modeling is concatenation, the piccewiac linking together of a colkc-
tion of abapcs. For example, the concate~ion of the set of n curves
m(u),- nt(~),. . . . TR(IO. -h &fi~ OVLWtbc pammebic variable u E
[0, 1], maybe detinedas

f
-n Ofu) u G [0, I/n]
-y2(nu – 1) u C (1/rr,2/nl

\ -yn(fru- (n - 1)) u E ((n- 1)/n,l]

The concatcn~ion of surf= or functions with many Parartrelerscart be
&fined simikrty, wham tbc concatenation is done with rqrcct to one of the
cmrdinatca. Tlria tdnd of concatenation is uniform cmncatctiiom bccausc
each concatenated segment is defined in an interval of equal length ( 1/n) in
parameter space. It is cmnmonly uacd in defining picccwise CUWICcurves
suchasB-splines.
Uniform concatenation is implemented using an irrdexingopcrotor, which

takea as input an array of parametric functions and an indsx function that
controls which hmction is to be evaluated. Given tbc same T i(u) curves
used in the previous example, and an index function q(x), the index opxator
is defined as

indcx(q(x), -fl (u), . . . . ‘h@)) = ?LAx)J (u)

where q(x) . nu results in tbc uniform concatenation of tbc T i functions.
In addition to the indexing operator, it is afao useful to haves substirulion
operofor to define uniform concatenation. The substitution operator sym-
bolically subatitutcs a given parametric function for one of the parametric
coordktates of another parametric function. For example, this can be used to
represcru~i(nu – (i- 1)) given ~i(~). by substituting the function nu - (i- 1)
for the parametric coordkmte u.
The index operator is a speciaJ caac of a branching opcroror, an operator

that takes as inputa sequence of condhionrd functions and evacuation func-
tions. The rcsuh of the branching operator is tbc result of the first evaluation
function whose corresponding conditkmal is true. This mukiway branch op-
erator can be uacd to define a nommijorm concatenation of parametric func-
tions where each concatenated aegmcnt need not bc &fincd on an equally
sired intend. Branching operators are also usefid for tindkg the minimum
and maximum of a pair of functions, for dcfming deformations that act only
on certain parts of space, and for rfctecting error conditions (e.g., tafringthe
aquarc root of a negative number, or nortrtdzing a mu length vector).

Relational and Logfcal Operatora In order to support the dctinition of
useful conditional expressions for the branching operators (and the con-
straint solution operator to be presented), wc include fhc standard matbc-
matical relational nprators such as equatit y, irrequafity, greater than, etc.,
and the logical operators (such as “and, %“, and “not”).

Curveand Table Operators Curve and table operators aflow sbapcs to bc
specified from data produced outside ttrc system. ‘tltc curve operator spec-
ifies continuous curvca such as pieccwisc cubic splinca, produced using an
intemlive curve editor. Tfrctable operator is used to specify an interpolation
of a multidinensiomd data set (GENMOD implements both linear and btcu-
bic inteqxdation). For example, a simulatioir program may produce data
dctincd over a discrete collection of points on a solid. The table opsrator
interplatcs this data to yield a continuous parametric function.

Inversion Operator Inversion of monotonic functions can bc uacd, for
example, to repararncterise a curve by arclength, as shown in Figure 1. Let
-f(f) be a continuc4ts curve specifying the cbject’s trajectory, starting at f = O
and ending at r = 1. The ardength rdong -I, TWC(t) is given by

/

r

WC(f) = I t r’(r)lld?
o

. ...* . . . . . . . . ... ) .. .... .. ..“. ..“ ..“ . . . .

J .. . .... .... . . . .“ “.. . “. .. . .. . . . . .
: ., .. . .... #. . . . . . . .

.
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. . . .
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Ftgurc1: A pararnetriccttrve is qammtmir.cd by arckrrgtk. Each dot
rcpreacnts a point on the curve along uniform increments of the curve’s input
_er.

‘flte integration and differentiation opcrafors mentioned previously acrve to
dctinc -ym . Tllc rcparamda “rationof-y by ardength, -I-, is then gh’crr
by4

%aw(d = -7 (72 (~ %14)))
This mparameterization involves the inversion of the monotonic arckngth
fimction, ~arc.
Many other useful operations can ako be formuktcd in terms of fbc inver-

sion of monotonic ftmctkm, incltilng the mpametm “zing Of curves and
surfaces so that fbcii pmmetcm are matched by arckngth, pokr angle, or
output coordinate to aomc otbcr curve m surface Invasion of monotonic
functions in a single variable maybe computed using fast atgo@mrs, smch
as Brent’s mctbod [PRESS6].

Conatdnt Solutkn Operator The constraint solution operator takes a
~c function mprcsenting a system of conamints, andproducesao
lution to the comtrained system or an indhtion that no sofution exists. s Two
forma of solution are useful: finding any point that solves the systcnu or find-
ing all points that solve it, assuming tbcre is a finite W of sohttions. 6 The
operator afso requires a pmmetric function apccifying the hypcr-mctangie
in which to solve the comtrainta.

For example, the constraint solution operator can bc used to find an intcr-
acction bctwccn two pknarcurves. 1A T t(s) andv2(/) be two curva in R2.
These cuwcs could be represented using tbc curve operator of Section 3.1,
or any of the otbcr operators. ‘fhc appropriate constraint is

F(s, f) s (-/ (.)= +(r))
which can he represented using the equality relational operator. ‘llw con-
straint solution operator appficd to F prtducxa a cunsbutt tirnction tqne-
aenting a point, (s, I), wbcrc tbc two curvca intersect. Such an opcmtkm can
be used to define bookan operations on planar m boundrdby ~
curves, which we will use in the screwdriver tip example of Section 4.4.
‘k constraint systcm can ako be sofvcd over a subsel of its pammetm,

to yield a non-constant pammtrk function. For exampfe, tbc mrmaint
system -yt (r,s) = -y2(t) can bc aolvcd overs and 1,resulting in a functkn that
depends on r. Tlte user tbcrcforc spccifiea not only a parammkfuncrkn
rcprcacnting the constraint systerm but ako which pmmctric ~
the system should bs solvad over, and wh~b canrdnatca pVaNMAefbe
ayatem.
Conatram“ t solution has appkation to pmbkrna involving intemdom

collision &tection, and finding appropriate parameters for pmm@abd
shapes. A robust algorithm for evaluating this operator trseninterval artaly-
sia, and is described in [SNYD92a].
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ConstrainedMirdmlaationOperetorTheconstrainedminimizationop-
eratortakestwoparametricfunctionsrepnting a system of constraints
and m objective function, and produces a point that globally rnisrimiz.csthe
objective function, subject to the constraints. The operator also requires a
parametric function specifying a hyper-rectsmgte in which to perform the
minimization. The minimization operator has many applications to gamet-
ric modeling, inchrdlng

● finding intersections of rays with surfaces

● finding the point on a shape closest to given point

● finding the minimum dkt~ between shapes

● finding whether a point is inside or orstsi& a region defined with para-
metric boundaries

A robust atgonthm for evaluating parametric functions definul with the min-
imization operator uses interval anatysia, and is described in [SN1’D92@.

ODE Solution Operator The ODE operator solves a first order, initial
vahse ordhmry deferential equation. It is useful for defining limited kinds
of physical simulations within the modeling envirorrrncnt. For example, we
can simulate rigid body mechanics, or find flow lines through vector fields.
F@re 12 illustrates the results of the ODE operator for a simple simulation
specified entirely in GENMoD.
Let ~ be a specified parametric function of the form

1(1, Y1, .Yz,. . . ,.Y.): R”+’ + R“

The ODE operator returns the solution ,y(r)to the system of n first order
equations

with the initial condition
YOo)= Yo

Parametrized ODEa, in which f andV. (and thus the result y) depend on an
additional m parameters x 1, . . . . Xm,are also allowed. The user supplies the
ODE operator with an indication of which parametric cocdnates of f are
the t and~i variables,andWhicharetheaddidmratparametersxi.
GENMOD implements the ODE operators using a Numerical Algorithms

Group(NAG) ODE solver. Similar operators, for solution of boundary vatue
problems and PDEs, are also useful in a geometric modeling environment,
but have not been implemented in the present GENMOD system.

3.2 Operator Methods
Ut P be an operator that takes n parametric functions as inputs and produces
the parametric function p = P(fl, . . . ,f”). A methodfor P is a fimction that
can be evaluated by evaluating similar methcnla for the functions f,, . . . ,f”.
A method on parametric functions is called locally recursivefor P if its re-
sult onp is completely determined by the set of its results on each of the
n parametric functions f i ,... ,f.. Thus, amelhodto evaluate a parametric
function at a point in parameter space is locally recursive for the addkion
operator because f +g canbe evaluated by evaluating f, evahsating g, and
addhtg the result. A method to symbolically integrate a parametric function
is not local] y recursive for the division operator, because ff /g cannotbe
computed given only ~j and ~ g. Generally, a locally recursive method
cm be simply implemented and efficiently computed.
We now examine specific methods useful in a geometric modeling system.

Evahratlosr st a Point Computation of points on a ahape is neceaaary to
approximatetheshape for visualhation and simulation. A method to CVdU-

ate a parametric function at a pint in parameter space is locally recursive for
most of the operatofsdktsaed previously. Several operators are exceptions:
the integration, inversion, and ODE solution operatora. 7 AU three of these
o~rators require their input parametric functions to be cvafuated repeatedly
over marrydomain points. For example, evaluation of the integration op-
erator can be computed numerically using Romberg integration PRE.S86,

71Rcduivaliwqxruor,mdIbscowmn“ldutiOn MdcoOwskd mi0imiAa10paUca8ae
stsoexceptions. As w will discw her, rk cvslustian mslhod fos the diflemntiatim qerstos ck-
podsonlhedi ffcrenriaimm ettwd,w tsikrhsevahrion mestdforrhc mmursint mluiiandcm-
ssraincdminimiz.slim openlon w the inclusim Ihc!km mdmd.
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pages 12>125], which adds evaluations of the irstegrandover merrypoints
in its domain.
Two forms of the evaluation method have proved useful: evaluation at

a single, specified pint in parameter space and evacuation over a muttidl-
mensional, reztitinear lattice of points in parameter spiwe. Evaluation of
a ~c function over a rectilinear lattice gives information hut how

the fimction hehavaovera whole domain, and is useful in ‘“quickand dirty”
rendering schemes. Afthorsgh evaluation over a rectihear lattice can be im-
plemented by repeated evahration at specified points, much greater compu-
tational sprA can be achieved with a special method, 55 we will see in the
AppedIx.
The evaluation methods return an error condition as well as a numerical

result. The emor condition signifies whether the pmmetric function has
heen evsduated at an invdld point in its domain (e.g., f /g whereg evsduates
to O, or W where h < O). A failure error condition is atan returned when
the constraint solution or constrained rnirsimiration operators are evaluated
in a domain in which there are no solutions.

D{fferersthtion The differentiation method is used to implement the dif-
ferentiation operator introduced in Section 3.1. The differentiation method
computes a parametric function that is the partial derivative of a given para-
metric function with respect to one of the parametric eoodnates. ‘fbe partial
derivative is computed symbolically; that is, the partird derivative result is
represented using the set of symbolic operators. Forexample, the partial
derivative with respt to x I of the parametric function x I + ~ yields
the parametric function 1 + x2/(2@Zj), which is represented with the al-
dition, multiplication, division, square rcmt, constant, md parametric coor-
dinate operatora.
Alttsoughthe differentiation method is not locally recursive for most oper-

ators discussed previously, it is still relatively easy to compute. For example,
the partisdderivative of the parametric function h = coa (f) depends not only
on the partial derivative of f, butalsoon f itself, since

The differentiation method is therefore not locatly recursive for the cosine
operator, but may be computed simply if a sine operator exista. Similar situ-
ations arise for marryof the other operators. Fortunately, it is a simple matter
to extend a set of operators such that the set is closed with respect to the dlf-
fererrtiationmethod, meaning that any partisd&rivarive may he represented
in terms of available operatcm. s

Evaluatiorr of an Inclusion Function An inclusion function computes
a hyper-rectangular bound for the range of a parametric function, given a
hyper-rectangular domain. It is used in interval analysis algorithms to eval-
uate pmmetric functions defined with the constrained minimization and
emstraint solution operators. It is also useful to approximate shapes to
user-defined tolerances, and compute CSG and offset operations. The uses
and implementation of inclusion functions are fully discussed in [SNYD9~
SNYD92b].
Although an inclusion function cmnputes a global property of a paramet-

ric function, it can often be computed using locally recursive methods. For
example, an inclusion function method for the multiplication operator cartbe
computed using interval arithmetic on the results of the inclusion functions
for ifs parametric function multiplicands.

Other Metbnde Another useful method determines whether a paramet-
ric function is continuous or differentiable to a specified order over a given
hyper-mctangle. Mmy times, algorithms for rendering and analysis require
differentiability of input functions (e.g., multidimensional root frndkig rneth-
oda). The differentiatdity operator can therefore be used to select whether
an algorithm that assumes differentiability is appropriate, or if a mom mbuat
and slower algorithm must be used instead.
The differentiaMlity/mntimrity method is locally recursive for most of

the operators discussed previously, but there are exceptions. For example,
the differentiability method for the division operator cao not simply ctwzk
that the two parametric functions behg divided are differentiable. It must
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also check whether the &nominator is O in the given domain. ‘Ilk can be
accomplished using an inclusion function method.
Other operator methods, whose implementation is still a research issue,

include determining whether a function ~: RM+ Rrnis one-to-ormover a
hyper-rectaogle. A similar method is degree, &fined as

d(f, D, p) = cerdinality {x E D If(x) = p}

where D C R“,

3.3 Operator Llbrariea
While the primitive operstors described in Section 3.1 forma powerful bask
for a shape representation, they do nor always match the operations the&-
signer wishes to perform. In these cases, the designer can employ operators
formed by composition of the primitive operatora. The GENMOD syslem
includes operator libraries which predefine hundreds of such higher level op
eratots. The definitions of these operators are loaded from interpreted files
when the program is first run, and can be dynamically modified and added
to by the user,
For example, a simple but useful non-primitive operator is the linear in-

terpolation operator, m. int erp, whose GENMOD definition is 9

MAE■-inttsrp(MA1 h ,IIAE f ,f4AI g)
{

return f + h*(g-f) ;
}

The HAMty~ (for nrarri@f) is the basic data structure in GENMOD, rep
resenting a parametric function. ‘he +, -, and ● operators have been over-
loaded to perform addition, subfraction, and multiplication of manifolds.
The m- int erp operator takes three parametric functions es input: f and

g are functions to be interpolated, end h is the interpolation variable. The
parametric functions j and g can he of any input or output dimension, as
long as they have equal output dimension. This allows linear interpolat ion

between two curves , surfaces , or even higher dimens ional shapes . 1 0

The c losure property of the generat ive modeling approach means that
such non-primitive operators can be very powerful. For example, the
❑-arc-2pt -height non-primitive operator used in the next section forms
a circular arc connecting two 2D points and having a spezified height above
their line of connection. The 2D points supplied as arguments to this opera-
tor need not & constants but can depend on parameters, allowing convenient
definition of the spoon of Section 4.3.

4 Examples

‘fIrissection presents examples of generative shapes and their specification
in GENMOD. Itis meant to show how the generative modeling approach
leads a designer to think about shape, and the size nf the domain of shapes
that can be represented. Mrmy other examples can be found in [SNYD92b].

4.1 Lamp Bases and Profile Produc t s
A profile product [BARR81] is perhaps the simplest nontrivial generative
surface, It is formed by scaling and translating a 2D cross section according
to a 2D profile. More precisely, a profile prdrct surface, S(u, v), is defined
using a cross section curve, ~(u) = (T,, w), and a profile curve, 6(v) =
(61, 62), where

()

-rI(u)ft(v)
S(U, v) = W(U)61(V)

62(v)

A profile product maybe defined in the GENMOD language es follows:

9rjw~s -we isw on ANSIC,withseveralexlauims.T&exlemiamSttow OVer-
toadiq of b C qemlors. inmdtr tomum nmrumtlyexpressparametric huctims. Ssvsral 81dibanal
opemmlxumrstmsdlkd.
‘%b~~ti**tiGWMOO~h*hm*. lftiwo~
flUICdOnsr@mcnMbe k ,snx OUt~tdimension,I& cfemtian u pmhlred UflUstdy foreuh
componentm thecmmqondinn compmmts of h two qunwnts. If Ik oulpul dimensim ofme
~.alist. A~&~~ti l,tinhpti k@d. -b.~tof~
mullicrvnpomu USunrmu wilb ttx 5arrMvalue of rbcscataru~ununt.Tbur,f + .Sdmmr.mvaaor
ddition off m-d g wbenf and g trovertx sameculput dhwrmim, but/ ● 2*A mmpment

of J by a fw[m of 2.

mA1 cross = ●-crv(’’cross. crv” ,D-x(0)) ;
IIA1 profilo = m_crv(’’prof ilo .crv” ,m-x(l)) ;
HAI lampbasa = ■-prof ila(cross ,profilo) ;

cross.crv prof ilc. crv

Figure 2: f-amp base example — A lamp base shape is represented by a
profile surface. The GENMOD &finition of a lamp base is shown, followed
by graphs of the two curves (plotted between -1 and 1 in x and v) used in fbe
definition, and a wire frsme image of the shape,

MAEm-prof ila(MAl cross ,WM prof ila)
{

return @(cross [Ol*prOfile[Ol ,
cross Cl]eprofile CO],
profile[l]) ;

}
The@() operator, a C extension in GENMOD’S language, is the cartesian

product operator, which, in this case, combines three acafar functions into a
3D point. The [] operator returns a single output coordinate of a parametric
function. In keeping with C language convent ion (and unfike the m atbemat -

ic s l no tat ion used in the de fin it ion of S(U, v)), coordinate indexing ia done
starting with index Ofor the first ccxmdinafe, rather than index 1.
Figure 2 presents so example of a profile produc t surfac e for a lamp base

shape . It us e s the ~-prof il ● operator defined above, and the primitive
curve operator m-crv. ‘fIrecurve operator takes the name of a file, produced
using a curve editor program, and creates a parametric curve that is evaluated
over the Parametric function specified as its second argument. In this case,
the shape of the cross section curve is specified in the file cross. crv, and is
evafoafed over a-x(O), mpreserrting parametric coordinate x 0. The profile
curve is evafueted over parametric cmrdinate x 1 (m-x(1)).

4.2 Impeller Blades and Affine Transformation
An affine transformation shape uses a 2D or 3D curve generator and a trana-
formafion represented by a linear transformation and a translation. Let -I(u)
be a 3D curve, M(v) be a linear transformation on 3D space, and T(v) bt
antiher 3D curve. An affine transformation surface, S(u, v), is given by

S(u, v) = A4(vh(u) + T(v)

One method of representing affine fransformations is to use 4 x 4 matrices
(homogeneous transformations), allowing the composition of fine tfans-
fnrmafions using simple matrix multiplies.
F@re 3 presents an example of an sffine tratraformetion representing

the impeller blade of a centrifugal compressor. The m-t rastsf orm3d non-
primitive GENMOD oprator takes a vector and appliea an affine trarrafor-
mation to it. Note that because the matrix transforms the cross section by
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u = m-x(o) ;
v = LX(1);
cross = m-crv(”bladacros. crv’’, rr);
blado = ●-trarrsfom3d(@( cross ,0),
●-transz(m_intorp( v,-l ,1)) ●

■-t ransx(-O.6) ●

m-rotz(pi--crv( ”bladerot. crv” ,v) [1] ) ●

●-transx(O. 6) ●

n-scalcx(m_crv( ”bladexscl. crv” ,v) [11 ) ●

●-scalay(wcrv(”’bladeyscl. crv” ,v) [1] )

bladecros. crv bladarot. crv bladaxscl. crv bladayscl. crv

Figure 3: Irnpcllcr blade example — An impeller black surface is rcprc-
serrtedusing an aftirretrrrnsformziion. A squarecross section in the xy plane,
wbicb forms tbe bottom of the blade, is scaled separately in x and y, trarra-
latcd in x, rotated aroundz, trsrrslatcdbackin x, andtranslatedup the z axis.

premultiplyingi~ transformations that affect the cross section tirst must ap
pear last in the list of multiplied transformations. The m-transz, urotz,
rn-scalex, and m-scaloy are non-primitive operators that produce 4 x 4
matrices rcprcaenting trmslztion along z, rotation Sround G ~ se-ding of
the x and y axes, respectively. They are multiplii together to &tine the
complete affine transformation applied to a square cross seztion.

4.3 Spoons and Closed Offsets
Curveoffsetting can also be used to &fine across section with a given thick-
ness that surrounds a given rron-closed curve (see F@rre 4). An offset curve
of radius r around a 2D curve ~(f) is given by

7(1) + m(t)

where n(~) is the unit normal to the curve. The closed offset of a 2D curve
~(t) of rarWs r cart therefore be defined as the uniform concatemtion of 4
curve segments: the offsetcurve of ~ of radiusr, the reversedoffsetctrrvc
nf T of radius -r, and two semicircles of dius r with centers at T(O) and
~(l). ‘he non-primitive GENMOD operator ■ closadmf f sat creates
the closed offset to a 2D curve (first argument), of a given radius (second
argument).
Pigure 5 shows a spoon whose cross section is formed using this tech-

nique. In this case, the curve that is offset is a circular arc whose endpoints
md radkrs arc varied.

4.4 Screwdriver Tips and CPG
Corrstructivepfarrur geometry (cPG) is the analog of constructive solid ge-
OmSIIYfor 2D areas. It is a modelingoperationthatuses Bcolean w oper-
ationson closed planar areas to produce new planar areas. I@rre 6 shows
some examples of CPO operations.
Many objects ran he represented as surfaces where each cross sccrion is

a Boolean set subtraction of one closed srca from another. The fact that

Pigure 4: Defining a cross scctiorr using offsets andcircular end caps —
A closed cross section maybe defined in terms of a non-closed curve by
concatenating two offset curves and two circular end caps.

HAI U = m.x(o) , V = ■-x(l);
HA1 shap- = kcrv(”shape. crv” ,v);
ttA1 boul = m-crv(”boul. crv” ,v);
HA1 band = m-crv(”borrd. crv” ,v);
HA1 pi = ~(-StiSpO[l] ,0 ) ;
NM p2 = ~(shapa[l] ,0);
HA1 arc = m-arc-2pt-height (pl ,P2 ,boul [1] ,u) ;
tlA1 closed = ●-closed-offset (arc,0 .01);
RAI spoon = Q(shapo [0] ,clos@d[O] ,clossd[l]+band [1] ) ;

shape. crv bowl .CZV bond. crv

F@rre 5: Spoon example-A spoon surface is formed using a cross scctiorr
formed by the closed offset of an arc. The curve that is offset is deformed
as it is extruded - its radius is increased to give the spoon its bowl, and its
length is changed to shape the width of the spoon.

the two planar arczs maybe swept accordiig to different scheduks before
Wtng srrbtracledmakes the operation more powerful. figure 7 shows two
screwdriver blade tips specified using CPG. The Phillips blade , for exam-
ple, is specified by sweeping a circle with a varying radius, from which is
su&racted a notch of varying sire.
CPG operations requite computation of the intersections between piarrar

curves bounding the 2D regions. Often, the intersections between boundary
curves can be computed analytically, such as for regions whose bmmdary is
represented as a piecctise series of line segments. When intersections can
not be anzlyticatly computed, the constraint solution operator can bc used.
The resulting segments can then be combined by concatenation as described
in Section 3.1.

5 Rendering

Most methods of rendering shapes require approximatkm of the shape into
units such as cubes, polygom, or line segments, Such approximation in
turn, require sampling - computation of points over the sbapc. Two sampling
techniques are available in the GENMOD system: uniform sampliig, rrssd
to qrdckty preview ttrcshape, sod adaptive ssmptirrg, used to obtain a more
accurate approximation.
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AuB AnB

W!ilP
A-.9 B-A@o

FIgttm 6 Constructive planar geometry - Two planar regions, A and B, art
usedin four binary CPO operations. We can compute the boundary of the
result of a CPG opation by computing the intersections of the boundaries
of the regions, dividing the boundaries into segments at these intersections,
md concatenating appropriate segments.

.0-

F@re 7: Scrcwdriverexampk - ‘Thetipa of two screwdriver blades are con-
stmcted using CPG. Tite regular screwdriver on the letl is generafed using
a cross section formed by subtracting two baff-plane regions from a circle.
Tiw tWOitdf-ph ltU3 are gl$ tdt tdy St lOVd tOWSS’d each Ot iUX ss t i3 c CfOSS WC-

t ion is t rans lat ed to the t ip of the screwdriver. The Piillipa acrewdriveron the
tight has a cross section formed by subtrwdrrg four wedge shaped regions
from a circle. Itsthis case, the wedge shaped regions are moved toward the
circle’s center as the cross section is translated to the tip of the screwdriver.
while the circle is scaled down near the tip to yield a pointed blade.

5.1 Sampllng
Uniform sampling of a parametric function involves evaluating the function
over a rectilinear lattice of domain points. For each parametric inordinate
xi. we pick a number of samples, Ni. The parametric function S is then
evaiuateri over rite ~~=1 Ni samples given by

(
~i + il(bl -al) i.(b” – a.)

iv[-1
,.. .,am+

Af”-1 )

where ai ~d bi dditE the h~-~gttk doti of the ~C func -
tion. Escbof theindkcsij indqrerrdcntfyrangesfrom O to N} – 1. Thi6
evaluation is done by calling the uniform evaluation method of S (from Sec-
tion 3.2). Uniform evaiuatioa carsbe optisttizxxtso that it computes much
faster than simple evaluation at each point in the rectilinear lattice of do-
ti points, as discussed in the Appendix.
Adaptive sampling carsbe used to generate approxisstationsthat satisfy

criteria [VONH87], where the samplingdensity variesover the pramder
SPIX. Robustappraximatiorttecfsniqueatbsfuse inchtsion functions ~ dis-
cussed in [SNYD92b]. ‘fhe simple “evaluation at a specifiedpoint” mefbod
is used to compute the aamplea Such evaluation cart be ~imimd using
caching, as discussedin the Appendix.

5.2 Interactive Viaualizatlon
A visualization mefhod takesa shape and prmtuces a renderable object,
of @uces a tranaforfnafion that cars be applied to a renderable object.
There are fourkittds of interactively rcorferableobjects in GENh40D poinfa,
curves, planar areas, and surfaces. A point is rendered as a dot in 2D or 3D
SPW. A curveis renderedas a sequenceof line segments. A planarregion
is rendered as a single polygon formed by the interior of an appoxirrsatcd
~me. II A s~w is rcndemd ss a collection of triangles. A frattaf~
can ix applied to so y of the other ren&rsble objects, transforming it via the
4x3 affine transfomsafion

p4.Up+T
where M is a 3 x 3 matrix and T is a 3D vector.
Each of the visualization metbmis expcts a shape of a given output di-

mension (e.g., a function S(u, v) must have output dimension three to be used
as input to the surface visualization method). Each visuslixatioss method also
expects an input dhswnsion at least as large as the intrinsic input dimension
of the shape. For example, a function C(r): R ~ R’ ~ beusedinthecurve
visualization method, as can D(t, s): R2 + R3,since Canal D have inpt di-
mension at least 1. On the other hand,a constantfunctionis notappro@ate
for the curve method, nor is a function of a single coordinate appropriate for
the surface method. The following table shows the number of intrinsic input
parameters and output parameters of GENMODS visrsafixation metbodx

name intrinsic dim. output dim.

point o 2or3
curve 1 2or31 J

piansf area 1 2a3
surface 2 3
transformation o 12

Functions tbaf have an input dimension greater tbsn the visualization
method’s intrinsic dimension (e.g., a surface that deforms in time) are afiil
valid input to the visualization method. ‘fire extra input coorhatea, caiied
variable inpur pammefers, can be visualized with two techniques:arrinsa-
rionor supen”nsposilion. The shaped are firstsampled at various poinfx in
the variabie input parameter space. Superimposition combines fbeae sbapc
instances in a singie image, while animation ren&rs the inatartca one at a
time, according to the values of graphics input devices.
Aa an example, consider a parameterised fsmiiy of 3D iines, L.(I,u, v)

defined as
~1, u, v) = S(S4,v) + rv(tt, v)

where S(u, v) represents tbe iine origin, and V(u, v), theline direction. The
r _ter is ~ in~mic P@er of t~ iine; ~-sod v sfe v~~fe input
parameters. This family of lines cars be visualized by superimpositionas
in F@rre 8, resuiting in an image containing a 2D famiiy of line segments.
Alternatively, the u and v parameters can be animated, resulting in an image
of a single line segment which interactively changes as the user controls, say,
two diais. The user couid also superimpose the u parameter and animate v,
resulting in a lD famiiy of line segments that cbangesin response to a single
dial. Vkualization methods therefore require artargument specifying which
of the variable input coordinates are to be superimposed,andwhlcb am to
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Figure  8: Visualixation of a vector field  defined over a surface - A paramet-
ric function of input dimension  2 and output dimension  6 can be visualized
by rendering a surface, representing  the vector field  origin, and a set of line
segments, representing  the vector field direction. The line segments  were
drawn with the curve visualization method with the two variable input pa-
rameters, representing  the vector’s  origin, superimposed.

CXNMOD’s  interactive visualization methods approximate shapes using
uniform sampling. The number of samples to be evaluated in each para-
metric coordinate is specified as an argument to the visualization method.
Sampling is precomputed for all the shape’s input  coordinates, including the
variable input  coordinates.  For example, the surface visualization method
takes samples which form a set of 2D grids, one for each value of the vari-
able input parameters.  Let S(rc, v, 1) be a time-varying  surface, uniformly
sampled with n. samples in U, nv samples in v, and n, samples in f. The
uniform samples of S thus form a collection  of n I 2D grids, each ny x  nu,
representing  S at a single I value.  For each 2D grid, we form a collection  of
triangles, simply by forming two triangles for each adjacent group of four
uv samples.

This scheme has theadvantage  that  real-time animation is possible,  even
when the shape is represented  using complicated  functions. The disadvan-
tage  is that large  amounts  of memory  is used in storing the precomputed sam-
ples, and the modeler must choose the sampling densities  before the shape
is visualized.

5.3 High  Quality  Visualization
Visualization methods using adaptive sampling  are also available, but are
more useful  lo communicate  ~ooutside  programs  (such  as simulation  or high-
quality rendering  programs) than as interactive  tools. Parametric surfaces
can also be visualized by direct ray  tracing, rather than by approximating
the shape.  using constrained  minimization  [SNYD92a].

6 The GENMOD System
A block diagram of the GENMOD system is shown in Figure 9. Versions
of GENMOD  have been developed on a Silicon Graphics IRIS 4D-8OGTB
and an HP 9OW800 graphics workstation.

Lie the Alpha- 1 system, GENh4OD  is based on an interpreted,  general
purpose language (ANSI  C), to allow flexible and interactive  shape design.
The language allows calls to a substrate of compiled  code, which does the
bulk of the computation. spically,  only the interface routines. which cre-
ate GENMOD  manifolds and initiate rendering and simulation, need be in-
terpreted. Nevertheless,  the full power  of an interpreted  language is often
useful,  especially  in a research environment.

A curveeditor  is used  to producecurve  files  for use in the m-crv  operator.
Currently,  it supports several types of piecewise  cubic curves. The curve
editor can be run as a separate  task,  or run under  the direction of GENMOD,
allowing the user to see shapes change as the curves they depend on are
edited. This mode of operation  has pmved to be an extremely  convenient
means of creating models for our computer graphics animations.

The sampling and approximation library provides modules to adaptively
approximate parametric shapes according to user-specified  criteria. The li-
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Figure 9: The GENhIOD system.

brary also includes algorithms to approximate implicitly defined curves and
surfaces. and compute trimming operations  on parametric surfaces. These
algorithms are described  in [SNYD92b].

6.1 GENMOD  Manifolds
A m~ifold (type MI in the examples)  is the basic type in the GENMOD
system, representing  a parametric function. A manifold is recursively de-
fined as the application of a symbolic  operator to a set of manifolds  which
are used as its inputs. A manifold stores the following data:

.

6.2

a list of parametric coordinate  indices  on which the function depends

the input and output dimension  of the parametric function

a reference to the topmost  operator of the manifold tree (including  the
operator’s methods)

operator-specific  data which includes references  to other manifolds
used as inputs to the operator.  For example, the binary arithmetic oper-
ators store a pointer  to their two input manifolds. The constraint solu-
tion operator stores pointers  to the manifolds  that define the constraint
system, the manifolds  which define the region in which lo solve the
constraint system,  and a list of the- parametric coordinates  over which
to solve the constraint  system.

Shape Analysis  in GENMOD
The GENMOD system  allows many forms of analysis to be computed on
parametric shapes. ‘f&se include finding volume, moments  of inertia, and
other physical properties  of shapes, which can be computed using the inte-
gration operator.  Collisions  between moving shapes can be computed using
the constraint  solution operator. Such operations  ate useful in computing
rigid body simulations of shapes both for physically-based computer graph-
ics animation and for mechanical CAD. Moreover, the results of such oper-
ations are not merely “‘0utputs”of  the modeling prom but can be used  in
fmther  modeling operations  allowing us to find, for example, the parameter
of a parameterized surface such  that  its surface area  equals a given constant.

The constraint and minimization operators allow a powerful level  of anal-
ysis not possible  with other  modeling techniques.  For example, parame-
terized families of shapes can be designed and a particular instance can be
selected  whose parameter solves a system of constraints.  In practice, the
complexity of the constraint systems is sometimes limited by the compltcr’s
speed. On the nther hand,  we have successfully  used constraint solution and
constrained minimization operators in a wide variety of applications includ-
ing approximating  implicit curves and surfaces, direct ray  tracing of para-
metric  shapes, and feasible/optimal parameter selection for small  (5 or fewer
constraint  variables) constraint systems.
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7 Conclusions

The generative modelingappmachrepresents a shapeas the image of a para-
metric functionover a hyper-m c tangle in R”. Parametric fttnetions are btdlt
using a seI of symbolic operatora. Associated with each operator is a set of
methods, which perform afl the primitive shape computation needed by the
ren&ring andanalysistook.
what is the advastfageof mscha representation? Fret, the reprexmtation is

sufficient for shapes of different dimcmionaUty. It can represent both curves
snd SUfi~, tip ~fi?l!d by tit22c of OfhCf Vtidd-, d ~
embedded in space of any number of dimensions. Ttte abiiity of GBNMOD

able in many projects, such as the modefiig of combed teddy bear fur used
in [KJM189](P@sre 11), the modefing of elastic volumes using networks
of masses and springs , and the mode ling of t im e -dependent tm rfrt cu used

in the1988S1OORAPHFtlm andVideo ShowanimationY30ing Bananas”
(Figure lo).
Second, the representation is high-level. Shapes can be defined using m

phisticatcd operators such as integrstiw dlffercntiation, and constraint *
lution. Unlike simple representations such as polyhedra and NURBS, the
qreaertationCanlx matchedtoahigh-levelinterfacewithout conversions
or approximationerror.Tbii, thercpseaentadonisextensible.Extemion
is accomplishedby adding new primitive operators, with a few attendant
methods. We have added operators many times in the development of GEN-
MOD, most recently m operator which aflowsbicubicinterpolationthrough
3D data [LAID92] (see Figure 13). Once an opsratoris dehed, it catsbe
combkted with any of fhs other opators afready in the system to make new
shapes, tsecauseofthe closure property of the generative modeling approach.
The interface advccated here is artinterprewd languag%easentiaffy a tex-

tuat spexificafion of the operators used in the refsreseotation. Wklr a language
interface, be human designer can rmssstructnon-primitive openttors such as
the profile product or fincar interpolation operators. The tilgstes can w
and build libraries of such operators, using combinations of the primitive
and non-primitive operators. Augmented with such libraries, the rnakfing
interface can be quite complex andpowerful, while the bxtic implementation
of the system (i.e., the primitive operators and methods) remains simple.
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Appendix - Sampling Speedups
UnffornssamplingSpaedup suing Tabk bokup Awbstsntid.- d
Unifnslsspammeme“ avsluxtinn carsbe Sccosnfstished by cmstmcdng evstuuina tsbks
fnrsubfuncrions,wbeseasubtimcrionisa Subtmeinthctmeofqmlbntknfmtnss
m--mta~ “ functicm[FltAN81]. Fmexssnpk, ktfi R 3 _ It barbs
fulwtksm

f(~l. X2,Xd =(X1X2+x2x3)eX2
Wtdchwcwishtounifdy~k USiISCn i SUDPISSf~-h~i. ‘fWSCM k dMS
by .vshssdngf st ads oftbe. ,.2 .3 tatdce points in psmmderspsce. Attccnsdvefy,
we Canccmstmct evahmtiontabtel fnrthe Subfuncticasf,(X1,X2)=X,X2,fz(xl, x3)=
X2X3,XIMffj(xl) = dz, SOM * SllbfUnCb= ItOt~VStti Bt* ktdCC
point.H-katiofk nu&of~tim ~tifwtiwo~tof
Svslustingf

[ function II ● ofss T +W ~-
evatuation point by point

[ f - (X,X2 + x2x3w~ I 3n,nys3 mn2n3 [ nln2n3 1

evshlstion using tables
fl = X1X2 n1n2 o 0
f :3:3 n2n3 o 0

0 0 n?
i- (f, +f2) ● f~ II nln2n3 nln2n3 I i
total n,qsq+ I atn2n3 n2 I

n1n2+-np3 J
The tsble show thatdsstmtiat Cc4nputstimslsavings ramlt whenthekswes-

d~ suhtiIncdonsus SvatuarcdSsxfSrnsedin *ks. hl geamt, -~
tdltasbnutdba ma#mdcd raraasb sxsMlmrtlOaMk aa~~
smalkrtbaa ttsfsarcat. Fmrn~b&mb*tie~.ofti~t-bl,
Shosddtserabsdsd becsuscits psrentfuncdonf hssinpsudinsesuion3. Suchasssb
fussedon skndd be tsbulated st the kttice points nf ita pardculx input vuisbks (e.g.,
evstustions frotntbe subrimctione~ arestomd inalDtabk ofsizen2, whikevshss-
ti-fmti sutitix lx2=-ba2D* &stin1xn2).

AdaptiveSampling Speedup UrissgCaching Ads@ivcsmptingcanbe crs-
W~=hgtibI_dvdWda suhtim. Wti*t*d
thesubfunctionrasuttSICsrosed.If. in a Sinureevshmim. the insut onintmatchesttrs

may bs used WkhOUtreevstusdon.CadkfsteWbfunctiomm= thos etbt timeIowt
inputdimmsionthan theirpsrent, 0s tbstare repeated (i.e., shued ~).
Caching carsbe used fas inclusion function evshmtinn m wetf as pint evslustim.
Caching is especially useful in cucs mch as when m iotegrsndcnntains● sub

funcdon thatisnnt depcdmtmltlrs pmmetec ofintegradon, whenmsuMuK-
tion of input d-ion O ix de fined using consps ts t ions t ty expens ive qesarms (e .g.,
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Figure 13:  ODE  Solution. The figure shows the results of the ODE  solution
operator to compute the trajectory of a point mass in the gravitational field
of three fixed  masses.

Figure 11: Animation Example.
The figure  shows a frame from
the 1988  Siggrapb film  “Going
Bananas” in which every object
was specified using an early
version of the GENMOD
program. The movement  and
deformation  of several characters
in the animation were also
defined using time-varying
functions.  Rendering  was
accomplished  with a separate ray
tracing program using polygons
produced  by GENMOD.

Figure  12:  Teddy Bear Example.
The GENMOD program was
used to model both the surfaces
forming the skin  of the bear, and
the way in which the fur was
“combed”over  the skin. ‘Ihe  bear
was rendered using the technique
described  in [KAJI89].

Figure 14:  Modeling a Jade Plant fran MR Data.  The jade  plant surface
was modeled by extracting an isosurface  through interpolated magnetic rcs-
onance (MR)  data,  using GENMOD’s  implicit surface approximation.
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