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Abstract

This paper discusses a new, symbolic approach to geometric modeling called
generative modeling. The approach allows specification, rendering, and
analysis of a wide variety of shapes including 3D curves, surfaces, and
solids, as well as higher-dimensional shapes such as surfaces deforming in
time, and volumes with a spatially varying mass density. The system also
supports powerful operations on shapes such as “reparameterize this curve
by arclength”, “compute the volume, center of mass, and moments of inertia
of the solid bounded by these surfaces”, or “solve this constraint or ODE
system”. The system has been used for a wide variety of applications, in-
cluding creating surfaces for computer graphics animations, modeling the
fur and body shape of a teddy bear, constructing 3D solid models of elastic
bodies, and extracting surfaces from magnetic resonance (MR) data.

Shapes in the system are specified using a language which builds multidi-
mensional parametric functions. The language is based on a set of symbolic
operaltors on continuous, piecewise differentiable parametric functions. We
present several shape examples to show how conveniently shapes can be
specified in the system. We also discuss the kinds of operators useful in
a geometric modeling system, including arithmetic operators, vector and
matrix operators, integration, differentiation, constraint solution, and con-
strained minimization. Associated with each operator are several methods,
which compute properties about the parametric functions represented with
the operators. We show how many powerful rendering and analytical opera-
tions can be supported with only three methods: evaluation of the parametric
function at a point, symbolic differentiation of the parametric function, and
evaluation of an inclusion function for the parametric function.

Like CSG, and unlike most other geometric modeling approaches, this
modeling approach is closed, meaning that further modeling operations can
be applied to any results of modeling operations, yielding valid models. Be-
cause of this closure property, the symbolic operators can be composed very
flexibly, allowing the construction of higher-level operators without chang-
ing the underlying implementation of the system. Because the modeling
operations are described symbolically, specified models can capture the de-
signer’s intent without approximation error.

CR Categories: 1.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling — curve, surface, solid, and object representations; geo-
metric algorithms, languages, and systems

Additional Key Words: geometric modeling, parametric shape, sweep

1 Introduction

One way of representing a limited class of shapes uses sweeps. A sweeprep-
resents a shape by moving an object (called a generator) along a trajectory
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through space. The simplest sweeps are extrusions and surfaces of revo-
lution, which sweep 2D curves. Sweeps whose generater can change size,
orientation, or shape are called general sweeps. General sweeps that use 2D
curve generators are called generalized cylinders [BINF71].

Several researchers have studied sweeps [GOLD83,CARL82b,WANG86,
COQUS?7). Barr’s spherical product [BARR8S1], is an example of a sweep
that uses a constant 2D curve generator with translation and scaling. Carlson
[CARLS82b] introduced the idea of varying the sweep generator. Wang and
Wang [WANG86] explored sweeps of surfaces for use in manipulating nu-
merically controlled milling machine cutter paths. Sweeps have beenused in
solid modeling systems for many years (¢.g., GMSolid, ROMULUS). Loss-
ing and Eshleman [LOSS74] developed a system using sweeps of constant
2D curves. Alpha_1, a modeling system developed at the University of Utah,
has a much more sophisticated sweeping facility [COHE83}.

One of the advantages of sweeps is their naturalness, compactness, and
controllability in representing a large class of man-made objects. For exam-
ple, an airplanc wing is naturally viewed as an airfoil cross section which is
translated from the root to the tip of the wing. At the same time its thickness
is modified, it is twisted, swept back, and translated vertically according to
other schedules. Two crucial questions remain concerning how sweeps fit
into a general shape design and manipulation program:

o how can sweeps be specified by the human designer in a general and
powerful way?

o what tools are appropriate to allow swept shapes to be rendered and
simulated?

The generative modeling approach presented here extends the kinds of
sweeps that can be conveniently specified, and provides high-level tools for
their rendering and simulation. The approach specifies sweeps procedurally,
in a fashion similar to other procedural specification methods in computer
graphics: shade trees [COOKB84], Perlin’s texturing language [PERLSS],
and the POSTSCRIPT language [ADOBSS].

A prototype system called GENMOD has been developed implementing
these ideas, which includes a C interpreter, a curve editor, methods for sev-
eral dozen primitive symbolic operators, and a multidimensional visvaliza-
tion library. While each piece of the system is fairly simple, we have found
that combining all the pieces into a single system produces an extremely
powerful geometric modeling tool.

2 Generative Modeling Overview

A generative model is a shape generated by the continuous transformation

of a shape called the generator. As an example, consider a curve generator
~(u): R! — R3, and a parameterized transformation, §(p, v): R3 x R — R3,
that acts on points p € R given a parameter v. A gencrative surface, S(u, v),
may be formed consisting of all the points generated by the transformation

§ acting on the curve «, i.e.,

S(u,v) = §(v(u), v)

A cylinder is an example of a generative model. The generator, a circle
in the xy plane, is translated along the z axis. The set of points generated as
the circle is translated yield a cylinder. Mathematically, the generator and
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transformation for a cylinder are

cos(2mu) P1
Y= | sin(2ru) §p,v) = P2
0 p3ty
yielding the surface
cos(2mu)
S(u,v) = 6(y(u),v) = | sinQ2ru)
v

2.1 Parametric Functions and the Closure Property

If a generator is expressed as a parametric function, then a generative model
built by transforming this generator is also a parametric function. General-
izing from the cylinder example, let a generator be represented by the para-
metric function
Fx):R — R"
A continuous set of transformations can be represented as a parameterized
transformation
T(p;q):R™ x R* - R

where p € R™ is a point to be transformed, and ¢ € R* is an additional
parameter that defines a continuous set of transformations. The generative
model is the parametric function !

T(F(x); ): R — R”

The ability to use a generative model as a generator in another genera-
tive mode] will be called the closure property of the generative modeling
representation. The use of parametric generators and transformations yields
closure because transformation of a generator can be expressed as a simple
composition of parametric functions, resulting in another parametric func-
tion. In fact, the use of parametric generators and transformations blurs the
distinction between generator and transformation. Both are parametric func-
tions; the domain of a generator must be completely specified, while the
domain of a transformation is partly specified and partly determined as the
image of a generator.

2.2 Terminology

Let F:R* — R™ be a parametric function with scalar variables
X1,X2,...,Xn, called the parametric variables or parametric coordinates.
The number of parametric coordinates on which F depends, », is called the
input dimension of the parametric function. The number of components in
the result of F, m, is called the output dimension of the parametric function.
In this work, the domain of F is a rectilinear region of R”, called a hyper-
rectangle, of the form:

[a1,b1) X [@2,b2} X ... X [an, ba)

Hyper-rectangles are convenient for sampling and integration of the para-
metric functions in a computer implementation. The image of F over a spec-
ified hyper-rectangle defines the shape of interest.

2.3 Operators and Methods

One way of specifying parametric functions is by selecting a set of opera-
tors. An operator is a function that takes parametric functions as input and
produces a parametric function as output. For example, addition is an op-
crator that acts on two parametric functions f and g, and produces a new
parametric function, f + g. The addition operator is recursive, in that we can
continue to use it on its own results or on the results of other operators, in
order to build more complicated parametric functions (e.g., (f + g) + h).
Like the addition operator, all operators in the system are recursive; their

property of parametric generators, this recursive nature of operators yields
a modeling system with closure. That is, the designer is not prevented from
using any reasonable combination of operations to specify shapes. For ex-
ample, the addition operator can be applied to parametric functions of any
input dimension ( e.g., curves or surfaces). It can also be applied to paramet-
ric functions of any output dimension, to perform vector addition, as long as
the output dimension of its two arguments is identical.

Of course, it is not enough to represent parametric functions; we must also
be able to compute properties about the parametric functions for rendering
and analysis. Such computations can be implemented by defining a set of
methods for each operator. One method evaluates the parametric function at
a point in its parameter space. Other methods include symbolic differentia-
tion of the parametric function and evaluation of an inclusion function (see
[SNYD92a] for a discussion of inclusion functions). Section 3.2 discusses
methods in more detail.

3 Symbolic Operators
3.1 Specific Operators

In this section, we examine specific operators that form a basis for a flexible
variety of shapes. This set of operators will be used in Section 4 to show the
capability of the generative modeling approach for combining such operators
to build interesting shapes.

Elementary Operators Elementary operators include constants, paramet-
ric coordinates, arithmetic operators, square root, trigonometric functions,
exponentiation, and logarithm. 3 The constant operator represents a paramet-
ric function with a real, constant value, such as f(x) = 2.5. The parametric
coordinate operator represents a particular parametric coordinate, such as
f(x) = x2, where x3 is the second component of the parametric domain, in
a global coordinate system. Arithmetic operators are addition, subtraction,
multiplication, division, and negation of parametric functions. They are use-
ful for such geometric operations as scaling and interpolation, and in many
other more complicated operations. They can also be combined to represent
bicubic patches, NURBS, and other parametric polynomials.

Other clementary operators are useful in special circumstances. The
square root operator, for example, is useful to compute the distance between
points. The sine and cosine operators are useful in building parametric cir-
cles and arcs.

Vector and Matrix Operators Vector operators are projection, cartesian
product, vector length, dot product, and cross product. Projection and carte-
sian product allow extraction and rearrangement of coordinates of paramet-
ric functions. Vector length, dot product, and cross product find many appli-
cations in defining geometric constraints on parameterized shapes.

Vector operator analogs of the arithmetic operators are also useful for ge-
ometric modeling. These operators include addition and subtraction of vec-
tors, and multiplication and division of vectors by scalars. Matrix operators
include multiplication and addition of matrices, matrix determinant, and in-
verse. Matrix multiplication is especially useful to define affine transforma-
tions, which are used extensively in simple sweeps (see Section 4.2). While
these operators can be defined in terms of simple projection, cartesian prod-
uct, and arithmetic operators, they are included as primitive operators for the
sake of efficiency.

Differentiation and Integration Operators The differentiation operator
returns the partial derivative of a parametric function with respect to one of
its parametric coordinates. This is useful, for example, in finding tangent or
normal vectors on curves and surfaces.

The integration operator integrates a parametric function with respect to
one of its parametric coordinates, given two parametric functions represent-
ing the upper and lower limits of integration. For example, the function

results can be used as inputs to other operators. 2 Together with the closure / alu,v) o
s(v, T)dr
'Motepucilely.themaﬁvemodelisd!mofpoinuinduinqeo{T(F(x);q)oveudomin bw)
UC R,
21t shoukd be noted that the result of an operator can not always be used as input to another the inversion op expects it lobea ic scalar function. In this context, closure
i di ion of thei . t of the set of operators implics that an op not arbitrarily prohibit any * ble”
Opem:mn.uyeonmnﬂleoupm their argt (¢.8.. s op may accept only a siven the irgein .

asan and prohibit the use of fi

4 P

ions of higher output dimension). In special
it may be desirable to ies of For ph

peop P 8
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can be formed by the integration operator applied to three parametric func-
tions, where s(v, 7) is the integrand, a(u, v) the upper limit of integration,
and b(u) the lower limit of integration. In general, parametric functions hav-
ing any number of input parameters can be used as the integrand, or limits of
integration. Integration can be used to compute arclength of curves, surface
area of surfaces, and volumes and moments of inertia of solids.

Indexing and Branching Operators A useful operation in geometric
modeling is concatenation, the piecewise linking together of a collec-
tion of shapes. For example, the concatenation of the set of n curves

Y1(1),¥2(%), . . ., ¥n (%), each defined over the parametric variable ¥ €
[0, 1], may be defined as
¥ (nu) u € [0,1/n]
yalnu — 1) u € (1/n,2/n)
y(w) =

(= (1= 1) w€ (- 1)/m1]

The concatenation of surfaces or functions with many parameters can be
defined similarly, where the concatenation is done with respect to one of the
coordinates. This kind of concatenation is uniform concatenation, because
cach concatenated segment is defined in an interval of equal length (1/a) in
parameter space. It is commonly used in defining piecewise cubic curves
such as B-splines.

Uniform concatenation is implemented using an indexing operator, which
takes as input an array of parametric functions and an index function that
controls which function is to be evaluated. Given the same v ;(¥) curves
used in the previous example, and an index function g(x), the index operator
is defined as

index(g(x), v1(w), . . .

where g(x) = nu results in the uniform concatenation of the «; functions.
In addition to the indexing operator, it is also useful to have a substitution
operator to define uniform concatenation. The substitution operator sym-
bolically substitutes a given parametric function for one of the parametric
coordinates of another parametric function. For example, this can be used to
represent +y;(nu— (i — 1)) giveny;(u), by substituting the function nu—(i— 1)
for the parametric coordinate u.

The index operator is a special case of a branching operator, an operator
that takes as input a sequence of conditional functions and evaluation func-
tions. The result of the branching operator is the result of the first evaluation
function whose corresponding conditipnal is true. This multiway branch op-
erator can be used to define a nonuniform concatenation of parametric func-
tions where each concatenated segment need not be defined on an equally
sized interval. Branching operators are also useful for finding the minimum
and maximum of a pair of functions, for defining deformations that act only
on certain parts of space, and for detecting error conditions (e.g., taking the
square root of a negative number, or normalizing a zero length vector).

1 Yn(4)) = ¥ g} ()

Relational and Logical Operators In order to support the definition of
useful conditional expressions for the branching operators (and the con-
straint solution operator to be presented), we include the standard mathe-
matical relational operators such as equality, inequality, greater than, etc.,
and the logical operators (such as “and”, “or”, and “not”).

Curve and Table Operators Curve and table operators allow shapes to be
specified from data produced outside the system. The curve operator spec-
ifies continuous curves such as piecewise cubic splines, produced using an
interactive curve editor. The table operator is used to specify an interpolation
of a multidimensional data set (GENMOD implements both linear and bicu-
bic interpolation). For example, a simulation program may produce data
defined over a discrete collection of points on a solid. The table operator
interpolates this data to yield a continuous parametric function.

Inversion Operator Inversion of monotonic functions can be used, for
example, to reparameterize a curve by arclength, as shown in Figure 1. Let
~(r) be a continuous curve specifying the object’s trajectory, starting at t = 0
and ending at r = 1. The arclength along -, v arc(?) is given by

14
Yarc(f) = / i ()| |dr
0
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Figure 1: A parametric curve is reparameterized by arclengt:.. Each dot
represents a point on the curve along uniform increments of the curve’s input

parameter.

The integration and differentiation operators mentioned previously serve to
define yarc. The reparameterization of -y by arclength, -y new, is then given
by*

Yoew(s) =¥ (Yt (5 Yarc(1)))
This reparameterization involves the inversion of the monotonic arclength
function, “yarc.

Many other useful operations can also be formulated in terms of the inver-
sion of monotonic functions, including the reparameterizing of curves and
surfaces so that their parameters are matched by arclength, polar angle, or
output coordinate to some other curve or surface. Inversion of monotonic
functions in a single variable may be computed using fast algorithms, such
as Brent’s method [PRESS6).

Constraint Solution Operator The constraint solution operator takes a
parametric function representing a system of constraints, and produces a so-
lution to the constrained system or an indication that no solution exists. 5 Two
forms of solution are useful: finding any point that solves the system, or find-
ing all points that solve it, assuming there is a finite set of solutions.® The
operator also requires a parametric function specifying the hyper-rectangle
in which to solve the constraints.

For example, the constraint solution operator can be used to find an inter-
section between two planar curves. Let -y ! (s) and y2(#) be two curves in R2.
These curves could be represented using the curve operator of Section 3.1,
or any of the other operators. The appropriate constraint is

Fs,0 = (' () =42(0)

which can be represented using the equality relational operator. The con-
straint solution operator applied to F produces a constant function repre-
senting a point, (s, 1), where the two curves intersect. Such an operation can
be used to define boolean operations on planar areas bounded by parametric
curves, which we will use in the screwdriver tip example of Section 4.4.

The constraint system can also be solved over a subset of its parameters,
to yield a non-constant parametric function. For example, the constraint
systemv!(r, 5) = 42(1) can be solved over s and 4, resulting in a function that
depends on r. The user therefore specifies not only a parametric function
representing the constraint system, but also which parametric coordinates
the system should be solved over, and which coordinates parameterize the
system.

Constraint solution has application to problems involving intersection,
collision detection, and finding appropriate parameters for parameterized
shapes. A robust algorithm for evaluating this operator uses interval analy-
sis, and is described in [SNYD92a].

“The s p of e Iy lized” gth. im that s varies between O
lndllolnmtheongmdcwvew lndqul in s rep equal di in arclength
on the curve.

SNote that inversion op of the p section is a special case of the constraint sokution
opersdor.

60ne form of the i X duces a single sodution, with an output dimension

qwmmmdmmmuwummmfa-mu
aumber of solutions as one output coorda followed by the jon points. The concatensted
array of solution points is padded 10 some maximum length, », specified by the user. Paddiag is done
because parametric functions in GENMOD always have a fixed output dimension. The second form
thus has output dimension » + 1.
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Constrained Minimization Operator The constrained minimization op-
erator takes two parametric functions representing a system of constraints
and an objective function, and produces a point that globally minimizes the
objective function, subject to the constraints. The operator also requires a
parametric function specifying a hyper-rectangle in which to perform the
minimization. The minimization operator has many applications to geomet-
ric modeling, including

o finding intersections of rays with surfaces
o finding the point on a shape closest to given point
o finding the minimum distance between shapes

o finding whether a point is inside or outside a region defined with para-
metric boundaries

A robust algorithm for evaluating parametric functions defined with the min-
imization operator uses interval analysis, and is described in [SNYD92a].

ODE Solution Operator The ODE operator solves a first order, initial
value ordinary differential equation. It is useful for defining limited kinds
of physical simulations within the modeling environment. For example, we
can simulate rigid body mechanics, or find flow lines through vector fields.
Figure 12 illustrates the results of the ODE operator for a simple simulation
specified entirely in GENMOD.

Let f be a specified parametric function of the form

f(r-)'l,yz....,yn):km —~R"

The ODE operator returns the solution y(s) to the system of » first order
equations

dy

— =f(,

4 fay
with the initial condition

Y1) = yo

Parameterized ODEs, in which f and yq (and thus the result y) depend on an
additional m parameters x|, . . . , X, are also allowed. The user supplies the
ODE operator with an indication of which parametric coordinates of f are
the t and y; variables, and which are the additional parameters x ;.

GENMOD implements the ODE operators using a Numerical Algorithms
Group(NAG) ODE solver. Similar operators, for solution of boundary value
problems and PDEs, are also useful in a geometric modeling environment,
but have not been implemented in the present GENMOD system.

3.2 Operator Methods

Let P be an operator that takes n parametric functions as inputs and produces
the parametric function p = P(f}, .. .,f»). A method for P is a function that
can be evaluated by evaluating similar methods for the functions f ), . . . , f5.
A method on parametric functions is called locally recursive for P if its re-
sult on p is completely determined by the set of its results on each of the
n parametric functions fy, . .. ,fy. Thus, a method to evaluate a parametric
function at a point in parameter space is locally recursive for the addition
operator because f + g can be evaluated by evaluating f, evaluating g, and
adding the result. A method to symbolically integrate a parametric function
is not locally recursive for the division operator, because f f /g can not be

computed given only f f and f 8. Generally, a locally recursive method
can be simply implemented and efficiently computed.
We now examine specific methods useful in a geometric modeling system.

Evaluation at a Point Computation of points on a shape is necessary to
approximate the shape for visualization and simulation. A method to evalu-
ate a parametric function at a point in parameter space is locally recursive for
most of the operators discussed previously, Several operators are exceptions:
the integration, inversion, and ODE solution operators.? All three of these
operators require their input parametric functions to be evaluated repeatedly
over many domain points. For example, evaluation of the integration op-
erator can be computed numerically using Romberg integration [PRES86,

T The desivative op and the int solution and ined minimization op are
also exceptions. As we will discuss later, the evaluation method for the differentiation operator de-
pends on the differentiation method, while the evaluation method for the constraint solution and con-

uses the inclusion function method.

L
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pages 123-125), which adds evaluations of the integrand over many points
in its domain.

Two forms of the evaluation method have proved useful: evaluation at
a single, specified point in parameter space and evaluation over a multidi-
mensional, rectilinear lattice of points in parameter space. Evaluation of
a parametric function over a rectilinear lattice gives information about how
the function behaves over a whole domain, and is useful in “quick and dirty”
rendering schemes. Although evaluation over a rectilinear lattice can be im-
plemented by repeated evaluation at specified points, much greater compu-
tational speed can be achieved with a special method, as we will see in the
Appendix.

The evaluation methods return an error condition as well as a numerical
result. The error condition signifies whether the parametric function has
been evaluated at an invalid point in its domain (e.g., f/g where g evaluates
to 0, or /i where h < 0). A failure error condition is also returned when
the constraint solution or constrained minimization operators are evaluated
in a domain in which there are no solutions.

Differentiation The differentiation method is used to implement the dif-
ferentiation operator introduced in Section 3.1. The differentiation method
computes a parametric function that is the partial derivative of a given para-
metric function with respect to one of the parametric coordinates. The partial
derivative is computed symbolically; that is, the partial derivative result is
represented using the set of symbolic operators. For example, the partial
derivative with respect to x) of the parametric function x| + \/xx; yiclds
the parametric function 1 + x2/(2,/x1x2), which is represented with the ad-
dition, multiplication, division, square root, constant, and parametric coor-
dinate operators.

Although the differentiation method is not locally recursive for most oper-
ators discussed previously, it is still relatively easy to compute. For example,
the partial derivative of the parametric function h = cos () depends not only
on the partial derivative of f, but also on f itself, since

oh _ . of

am - "y,
The differentiation method is therefore not locally recursive for the cosine
operator, but may be computed simply if a sine operator exists. Similar situ-
ations arise for many of the other operators. Fortunately, it is a simple matter
to extend a set of operators such that the set is closed with respect to the dif-
ferentiation method, meaning that any partial derivative may be represented
in terms of available operators. 8

Evaluation of an Inclusion Function An inclusion function computes
a hyper-rectangular bound for the range of a parametric function, given a
hyper-rectangular domain. It is used in interval analysis algorithms to eval-
uate parametric functions defined with the constrained minimization and
constraint solution operators. It is also useful to approximate shapes to
user-defined tolerances, and compute CSG and offset operations. The uses
and implementation of inclusion functions are fully discussed in [SNYD92a,
SNYD92b).

Although an inclusion function computes a global property of a paramet-
ric function, it can often be computed using locally recursive methods. For
example, an inclusion function method for the multiplication operator can be
computed using interval arithmetic on the results of the inclusion functions
for its parametric function multiplicands.

Other Methods Another useful method determines whether a paramet-
ric function is continuous or differentiable to a specified order over a given
hyper-rectangle. Many times, algorithms for rendering and analysis require
differentiability of input functions (¢.g., multidimensional root finding meth-
ods). The differentiability operator can therefore be used to select whether
an algorithm that assumes differentiability is appropriate, or if a more robust
and slower algorithm must be used instead.

The differentiability/continuity method is locally recursive for most of
the operators discussed previously, but there are exceptions. For example,
the differentiability method for the division operator can not simply check
that the two parametric functions being divided are differentiable. It must

!Forenmple.milimpﬁathni!mecuiuopeumhincludodinﬂemofpdmiﬁvem,
then the sine operator must be included as well. Some operators, such as the constrained minimiza-
tion operator, do not have analytically expressible partial derivati For these op the partial
derivative must be o o

P 7"
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also check whether the denominator is O in the given domain. This can be
accomplished using an inclusion function method.

Other operator methods, whose implementation is still a research issue,
include determining whether a function f: R” — R” is one-to-one-over a
hyper-rectangle. A similar method is degree, defined as

d(f, D, p) = cardinality {x € D | f(x) = p}
where D C R".

3.3 Operator Libraries

While the primitive operators described in Section 3.1 form a powerful basis
for a shape representation, they do not always match the operations the de-
signer wishes to perform. In these cases, the designer can employ operators
formed by composition of the primitive operators. The GENMOD system
includes operator libraries which predefine hundreds of such higher level op-
crators. The definitions of these operators are loaded from interpreted files
when the program is first run, and can be dynamically modified and added
to by the user.

For example, a simple but useful non-primitive operator is the linear in-
terpolation operator, m_intaerp, whose GENMOD definition is?

MAE m_interp(MAN h,MAK £ MAN g)
{

}

The MAN type (for manifold) is the basic data structure in GENMOD, rep-
resenting a parametric function. The +, -, and * operators have been over-
loaded to perform addition, subtraction, and multiplication of manifolds.

The m_interp operator takes three parametric functions as input: f and
g are functions to be interpolated, and A is the interpolation variable. The
parametric functions f and g can be of any input or output dimension, as
long as they have equal output dimension. This allows linear interpolation
between two curves, surfaces, or even higher dimensional shapes. 1©

The closure property of the generative modeling approach means that
such non-primitive operators can be very powerful. For example, the
m_arc_2pt_height non-primitive operator used in the next section forms
a circular arc connecting two 2D points and having a specified height above
their line of connection. The 2D points supplied as arguments to this opera-
tor need not be constants but can depend on parameters, allowing convenient
definition of the spoon of Section 4.3.

return £ + hs(g-1);

4 Examples

This section presents examples of generative shapes and their specification
in GENMOD. It is meant to show how the generative modeling approach
leads a designer to think about shape, and the size of the domain of shapes
that can be represented. Many other examples can be found in [SNYD92b].

4.1 Lamp Bases and Profile Products

A profile product [BARR81] is perhaps the simplest nontrivial generative
surface. It is formed by scaling and translating a 2D cross section according
to a 2D profile. More precisely, a profile product surface, S(u, v), is defined
using a cross section curve, ¥(4) = (v;,"2), and a profile curve, §(v) =

(81, 87), where
(‘Yl (“)5|(V)>
S@u,v) = | m2(0)6,(v)
5209
A profile product may be defined in the GENMOD language as follows:

9GENMOD's language is based on ANSI C, with several extensions. The extensions allow over-

loading of the C operators, in order to more lly express p ic functi Several additi
operators were also added.
loﬂlebmlryuuhmncopemoanENMoDcmbeuledmmmodu l!lhetwoplnmetm
function arguments luveth“uneo\nput jon, the ion is p d for each
on the oflhenvou‘nmenu lfﬂ\ewv.p\nd.lmmmofm
nrlumenlnl Mhmlnuthml then the operation is p d on each comp of the
multicomponent acgument with the same value of the scalar arg Thus, f + g denotes vector

addition of f and g when f and g have the same output dimension, but f ¢ 2 scales each component
of f by a factor of 2.

MAN cross = m_crv("cross.crv',m_x(0));
MAT profile = m_crv(“profile.crv",m_x(1));
MAN lampbase = m_profile(cross,profile);

cross.crv profile.crv

Figure 2: Lamp base example — A lamp base shape is represented by a
profile surface. The GENMOD definition of a lamp base is shown, followed
by graphs of the two curves (plotted between -1 and 1 in x and y) used in the
definition, and a wire frame image of the shape.

MAN m_profile(MAN cross ,MAN profile)

{
return @(cross(0)*protile(0],
cross[1])sprofile(0],
profile[1]);
}

The @() operator, a C extension in GENMOD’s language, is the cartesian
product operator, which, in this case, combines three scalar functions into a
3D point. The [] operator returns a single output coordinate of a parametric
function. In keeping with C language convention (and unlike the mathemat-
ical notation used in the definition of S(u, v)), coordinate indexing is done
starting with index O for the first coordinate, rather than index 1.

Figure 2 presents an example of a profile product surface for a lamp base
shape. It uses the m_profile operator defined above, and the primitive
curve operator m_crv. The curve operator takes the name of a file, produced
using a curve editor program, and creates a parametric curve that is evaluated
over the parametric function specified as its second argument. In this case,
the shape of the cross section curve is specifiedin the file cross . crv,and is
evaluated over m_x (0), representing parametric coordinate x o. The profile
curve is evaluated over parametric coordinate x | (m_x(1)).

4.2 Impeller Blades and Affine Transformations

An affine transformation shape uses a 2D or 3D curve generator and a trans-
formation represented by a linear transformation and a translation. Let v(x)
be a 3D curve, M(v) be a linear transformation on 3D space, and T(v) be
another 3D curve. An affine transformation surface, S(u, v), is given by

S(u' v) = M(v)-y(u) + T(V)

One method of representing affine transformations is to use 4 X 4 matrices
(homogencous transformations), allowing the composition of affine trans-
formations using simple matrix multiplies.

Figure 3 presents an example of an affine transformation representing
the impeller blade of a centrifugal compressor. The m_transform3d non-
primitive GENMOD operator takes a vector and applies an affine transfor-
mation to it. Note that because the matrix transforms the cross section by
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NAN u = m_x(0);

MAN v = m_x(1);

NAN cross = m_crv("bladecros.cxv",u);

MAN blade = m_transform3d(€(cross,0),
m_transz(m_interp(v,-1,1)) *
m_transx(-0.5) «
m_rotz(pism_crv("bladerot.crv*,v)[1]) ¢
m_transx(0.5)
m_scalex(m_crv('bladexscl.crv",v)[1]) ¢
w_scaley(m_crv('bladeyscl.crv",v)[1])

)i

THT
1 nn
1
T

bladecros.crv bladerot.crv bladexscl.crv bladeyscl.crv

Figure 3: Impeller blade example — An impeller blade surface is repre-
sented using an affine transformation. A square cross section in the xy plane,
which forms the bottom of the blade, is scaled separately in x and y, trans-
lated in x, rotated around z, translated back in x, and translated up the z axis.

premultiplying it, transformations that affect the cross section first must ap-
pear last in the list of multiplied transformations. The m_transz,m_rotz,
m_scalex, and m_scaley are non-primitive operators that produce 4 x 4
matrices representing translation along z, rotation around z, and scaling of
the x and y axes, respectively. They are multiplied together to define the
complete affine transformation applied to a square cross section.

4.3 Spoons and Closed Offsets

Curve offsetting can also be used to define a cross section with a given thick-
ness that surrounds a given non-closed curve (see Figure 4). An offset curve
of radius r around a 2D curve «(¢) is given by

Y1)+ m(o)

where n(f) is the unit normal to the curve. The closed offset of a 2D curve
~(f) of radius r can therefore be defined as the uniform concatenation of 4
curve segments: the offset curve of v of radius 7, the reversed offset curve
of + of radius —r, and two semicircles of radius » with centers at v(0) and
4(1). The non-primitive GENMOD operator m_closed offset creates
the closed offset to a 2D curve (first argument), of a given radius (second
argument).

Figure 5 shows a spoon whose cross section is formed using this tech-
nique. In this case, the curve that is offset is a circular arc whose end points
and radius are varied.

4.4 Screwdriver Tips and CPG

Constructive planar geometry (CPG) is the analog of constructive solid ge-
ometry for 2D areas. It is a modeling operation that uses Boolean set oper-
ations on closed planar areas to produce new planar areas. Figure 6 shows
some examples of CPG operations.

Many objects can be represented as surfaces where each cross section is
a Boolean set subtraction of one closed area from another. The fact that
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Figure 4: Defining a cross section using offsets and circular end caps —
A closed cross section may be defined in terms of a non-closed curve by
concatenating two offset curves and two circular end caps.

MAT u = m_x(0), v = m_x(1);

NAY shape = m_crv("shape.crv",v);

MAY bowl = m_crv("bowl.crv",v);

MAN bend = m_crv("bend.crv",v);

MAY p1 = @(-shape[1],0);

MAN p2 = @(shape[1],0);

MAY arc = m_arc_2pt_height(p1,p2,bowl[1],u);

MAY closed = m_closed_offset(arc,0.01);

MAN spoon = @(shape[0],closed[0],closed[1])+bend[1]));

7

shape.crv bowl.crv bend.cxrv

Figure 5: Spoon example — A spoon surface is formed using a cross section
formed by the closed offset of an arc. The curve that is offset is deformed
as it is extruded - its radius is increased to give the spoon its bowl, and its
length is changed to shape the width of the spoon.

the two planar arcas may be swept according to different schedules before
being subtracted makes the operation more powerful. Figure 7 shows two
screwdriver blade tips specified using CPG. The Phillips blade, for exam-
ple, is specified by sweeping a circle with a varying radius, from which is
subtracted a notch of varying size.

CPG operations require computation of the intersections between planar
curves bounding the 2D regions. Often, the intersections between boundary
curves can be computed analytically, such as for regions whose boundary is
represented as a piecewise series of line segments. When intersections can
not be analytically computed, the constraint solution operator can be used.
The resulting segments can then be combined by concatenation as described
in Section 3.1.

5 Rendering

Most methods of rendering shapes require approximation of the shape into
units such as cubes, polygons, or line segments. Such approximation, in
turn, require sampling — computation of points over the shape. Two sampling
techniques are available in the GENMOD system: uniform sampling, used
to quickly preview the shape, and adaptive sampling, used to obtain a more
accurate approximation.
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Figure 6: Constructive planar geometry - Two planar regions, A and B, are
used in four binary CPG operations. We can compute the boundary of the
result of a CPG operation by computing the intersections of the boundaries
of the regions, dividing the boundaries into segments at these intersections,
and concatenating appropriate segments.

Figure 7: Screwdriver example — The tips of two screwdriver blades are con-
structed using CPG. The regular screwdriver on the left is generated using
a cross section formed by subtracting two half-plane regions from a circle.
The two half-planes are gradually moved toward each other as the cross sec-
tion is translated to the tip of the screwdriver. The Phillips screwdriver on the
right has a cross section formed by subtracting four wedge shaped regions
from a circle. In this case, the wedge shaped regions are moved toward the
circle’s center as the cross section is translated to the tip of the screwdriver.
while the circle is scaled down near the tip to yield a pointed blade.

5.1 Sampling

Uniform sampling of a parametric function involves evaluating the function
over a rectilinear lattice of domain points. For each parametric coordinate
x;, we pick a number of samples, N;. The parametric function § is then
evaluated over the HLI N; samples given by

(al + by — a'),...,a,.+ in(bn -an))
N -1 Ny — 1

where a; and b; define the hyper-rectangular domain of the parametric func-

tion. Each of the indices i; independently ranges from 0 to N; — 1. This
evaluation is done by calling the uniform evaluation method of § (from Sec-

tion 3.2). Uniform evaluation can be optimized so that it computes much

faster than simple evaluation at each point in the rectilinear lattice of do-
main points, as discussed in the Appendix.

Adaptive sampling can be used to generate approximations that satisfy
criteria [VONH87], where the sampling density varies over the parameter
space. Robust approximation techniques that use inclusion functions are dis-
cussed in [SNYD92b]. The simple “cvaluation at a specified point™ method
is used to compute the samples. Such evaluation can be optimized using
caching, as discussed in the Appendix.

5.2 Interactive Visualization

A visualization method takes a shape and produces a renderable object,
or produces a transformation that can be applied to a renderable object.
There are four kinds of interactively renderable objects in GENMOD: points,
curves, planar areas, and surfaces. A point is rendered as a dot in 2D or 3D
space. A curve is rendered as a sequence of line segments. A planar region
is rendered as a single polygon formed by the interior of an approximated
curve.!! A surface is rendered as a collection of triangles. A transformation
can be applied to any of the other renderable objects, transforming it via the
4x3 affine transformation
p—Mp+T

where M is a3 X 3 matrix and T is a 3D vector.

Each of the visualization methods expects a shape of a given output di-
mension (¢.g., a function S(x, v) must have output dimension three to be used
as input to the surface visualization method). Each visualization method also
expects an input dimension at least as large as the intrinsic input dimension
of the shape. For example, a function C(f): R — R? can be used in the curve
visualization method, as can D(t, s): R? — R3, since C and D have input di-
mension at least 1. On the other hand, a constant function is not appropriate
for the curve method, nor is a function of a single coordinate appropriate for
the surface method. The following table shows the number of intrinsic input
parameters and output parameters of GENMOD's visualization methods:

[ name ][ intrinsic dim. | output dim. |

_point 0 2013
curve 1 2003
planar area 1 2013
surface 2 3
transformation 0 12

Functions that have an input dimension greater than the visualization
method’s intrinsic dimension (e.g., a surface that deforms in time) are still
valid input to the visualization method. The extra input coordinates, called
variable input parameters, can be visualized with two techniques: anima-
tion or superimposition. The shapes are first sampled at various points in
the variable input parameter space. Superimposition combines these shape
instances in a single image, while animation renders the instances one at a
time, according to the values of graphics input devices.

As an example, consider a parameterized family of 3D lines, L{1, u,v)
defined as

L(t, u,v) = S(u, v) + tV(u,v)

where S(u, v) represents the line origin, and V(«, v), the line direction. The
¢ parameter is the intrinsic parameter of the line; x and v are variable input
parameters. This family of lines can be visualized by superimposition as
in Figure 8, resulting in an image containing a 2D family of line segments.
Alternatively, the u and v parameters can be animated, resulting in an image
of a single line segment which interactively changes as the user controls, say,
two dials. The user could also superimpose the « parameter and animate v,
resulting in a 1D family of line segments that changesin response to a single
dial. Visualization methods therefore require an argument specifying which
of the variable input coordinates are to be superimposed, and which are to
be animated.

1 The curve must not self iniersect, and must lic in a plane. Planar regions are coavenient for
forming end caps of generalized twbes, where the tube cross-section is bounded by an acbitrary planar
curve. Surfaces can also be used for this purp but are less jent, since they require a 2D
parameterization of the region’s interior, rather than a simple boundary curve.
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Figure 8: Visualization of a vector field defined over a surface — A paramet-
ric function of input dimension 2 and output dimension 6 can be visualized
by rendering a surface, representing the vector field origin, and a set of line
segments, representing the vector field direction. The line segments were
drawn with the curve visualization method with the two variable input pa-
rameters, representing the vector’s origin, superimposed.

GENMOD's interactive visualization methods approximate shapes using
uniform sampling. The number of samples to be evaluated in each para-
metric coordinate is specified as an argument to the visualization method.
Sampling is precomputed for all the shape’s input coordinates, including the
variable input coordinates. For example, the surface visualization method
takes samples which form a set of 2D grids, one for each value of the vari-
able input parameters. Let S(u, v, 1) be a time-varying surface, uniformly
sampled with n, samples in u, n, samples in v, and n; samples in 1. The
uniform samples of S thus form a collection of n; 2D grids, each n, X n,,
representing S at a single 7 value. For each 2D grid, we form a collection of
triangles, simply by forming two triangles for each adjacent group of four
uv samples.

This scheme has the advantage that real-time animation is possible, even
when the shape is represented using complicated functions. The disadvan-
tage is that large amounts of memory is used in storing the precomputed sam-
ples, and the modeler must choose the sampling densities before the shape
is visualized.

5.3 High Quality Visualization

Visualization methods using adaptive sampling are also available, but are
more useful to communicate to outside programs (such as simulation or high-

quality rendering programs) than as interactive tools. Parametric surfaces
can also be visualized by direct ray tracing, rather than by approximating
the shape, using constrained minimization [SNYD92a).

6 The GENMOD System

A block diagram of the GENMOD system is shown in Figure 9. Versions
of GENMOD have been developed on a Silicon Graphics IRIS 4D-80GTB
and an HP 9000/800 graphics workstation.

Like the Alpha_ 1 system, GENMOD is based on an interpreted, general
purpose language (ANSI C), to allow flexible and interactive shape design.
The language allows calls to a substrate of compiled code, which does the
bulk of the computation. Typically, only the interface routines, which cre-
ate GENMOD manifolds and initiate rendering and simulation, need be in-
terpreted. Nevertheless, the full power of an interpreted language is often
useful, especially in a research environment.

A curveeditor is used to produce curve files for use in the m_crv operator.
Currently, it supports several types of piecewise cubic curves. The curve
editor can be run as a separate task, or run under the direction of GENMOD,
allowing the user to see shapes change as the curves they depend on are
edited. This mode of operation has proved to be an extremely convenient
means of creating models for our computer graphics animations.

The sampling and approximation library provides modules to adaptively
approximate parametric shapes according to user-specified criteria. The li-
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Figure 9: The GENMOD system.

brary also includes algorithms to approximate implicitly defined curves and
surfaces, and compute trimming operations on parametric surfaces. These
algorithms are described in [SNYD92b].

6.1 GENMOD Manifolds

A manifold (type MA¥ in the examples) is the basic type in the GENMOD
system, representing a parametric function. A manifold is recursively de-
fined as the application of a symbolic operator to a set of manifolds which
are used as its inputs. A manifold stores the following data:

o alist of parametric coordinate indices on which the function depends
o the input and output dimension of the parametric function

o areference to the top-most operator of the manifold tree (including the
operator’s methods)

o operator-specific data which includes references to other manifolds
used as inputs to the operator. For example, the binary arithmetic oper-
ators store a pointer to their two input manifolds. The constraint solu-
tion operator stores pointers to the manifolds that define the constraint
system, the manifolds which define the region in which to solve the
constraint system, and a list of the parametric coordinates over which
to solve the constraint system.

6.2 Shape Analysis in GENMOD

The GENMOD system allows many forms of analysis to be computed on
parametric shapes. These include finding volume, moments of inertia, and
other physical properties of shapes, which can be computed using the inte-
gration operator. Collisions between moving shapes can be computed using
the constraint solution operator. Such operations are useful in computing
rigid body simulations of shapes both for physically-based computer graph-
ics animation and for mechanical CAD. Moreover, the results of such oper-
ations are not merely “outputs” of the modeling program, but can be used in
further modeling operations allowing us to find, for example, the parameter
of a parameterized surface such that its surface area equals a given constant.

The constraint and minimization operators allow a powerful level of anal-
ysis not possible with other modeling techniques. For example, parame-
terized families of shapes can be designed and a particular instance can be
selected whose parameter solves a system of constraints. In practice, the
complexity of the constraint systems is sometimes limited by the computer’s
speed. On the other hand, we have successfully used constraint solution and
constrained minimization operators in a wide variety of applications includ-
ing approximating implicit curves and surfaces, direct ray tracing of para-
metric shapes, and feasible/optimal parameter selection for small (5 or fewer
constraint variables) constraint systems.
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7 Conclusions

The generative modeling approach represents a shape as the image of a para-

metric function over a hyper-rectanglein R”. Parametric functions are built
using a set of symbolic operators. Associated with each operator is a set of
methods, which perform all the primitive shape computations needed by the

rendering and analysis tools.

Whatis the advantageof such a representation? First, the representationis
sufficient for shapes of different dimensionality. It can represent both curves
and surfaces, shapes parameterized by time or other variables, and shapes
embedded in space of any number of dimensions. The ability of GENMOD
to represent and visualize such multidimensional shapes has been indispens-
able in many projects, such as the modeling of combed teddy bear fur used
in [KAJI89)] (Figure 11), the modeling of elastic volumes using networks
of masses and springs, and the modeling of time-dependent surfaces used
in the 1988 SIGGRAPH Film and Video Show animation “Going Bananas”
(Figure 10).

Second, the representation is high-level. Shapes can be defined using so-
phisticated operators such as integration, differentiation, and constraint so-
lution. Unlike simple representations such as polyhedra and NURBS, the
representation can be matched to a high-level interface without conversions
or approximation error. Third, the representation is extensible. Extension
is accomplished by adding new primitive operators, with a few attendant
methods. We have added operators many times in the development of GEN-
MOD, most recently an operator which allows bicubic interpolation through
3D data [LAID92] (see Figure 13). Once an operator is defined, it can be
combined with any of the other operators already in the system to make new
shapes, because of the closure property of the generative modeling approach.

The interface advocated here is an interpreted language, essentially a tex-
tual specification of the operators used in the representation. With a language
interface, the human designer can construct non-primitive operators such as
the profile product or linear interpolation operators. The designer can use
and build libraries of such operators, using combinations of the primitive
and non-primitive operators. Augmented with such libraries, the modeling
interface can be quite complex and powerful, while the basic implementation
of the system (i.c., the primitive operators and methods) remains simple.
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Appendix — Sampling Speedups

Uniform Sampling Speedup using Table Lookup A substantial speedup of
uniform parametric evaluation can be accomplished by constructing evaluation tables
for subfuncti where a subfunction is a sub in the tree of symbolic operstors

presenting a p ic function [FRAN81].  For cxample, let /: R 3 — Rbe the
function:

JGx1, 22, x3) = (xyxp + xpx3)e™
which we wish to uniformly sample using n ; samples for each x;. This can be done
by evaluating f at each of the # {17 lattice points in parameter space. Altcrnatively,
we can construct evaluation tables for the subfunctions f | (x, x3) = x1x3, f(x2, x3) =
x3x3, and f3(x3) = €2, so that these subfunctions arc not recvaluated at each lattice

point. Here is a table of the ber of operati equired for the two methods of
evaluating f:
qunclion “ - Ops T +opl—[ Jq»j
evaluation point by point
[ =3 + xpx3)e T 3mympmy [ mingny [ myngmy |
cvaluation using tables
fi = x1xy nyny 0 0
£ =xx nany 0 0
f3 =2 0 0 n
f=th+R)*fr nyngny nynany 0
total nynyny+ nynany ny
nyny+ nyny

The table shows lhaz b ial | savings result when the lower-
di ] subfi arc evaluated and stored in tables. In general, evaluation
tables should be constructed for each subfunction that has an input dimension
smaller than its parent. For cxample, the subfunction €2, of input dimension 1,
hould be tabulated b its parcat function / has input dimension 3. Such a sub-
function should be tabulated at the lattice points of its particular input variables (¢.g.,

lustions from the subfu ¢*2 are stored in a 1D table of size n 7, while evalua-
tions from the subfunction x | x; are stored in a 2D table of size n| x n3).

Adaptlve Slmpling Speedup Ullng Caching Adaptive sampling can be cn-
d by d value of a subfunction. Both the input point and
dwsubﬁxmuonmukmﬂmed 1f, mnfnmtecv-lumon the input point matches the
cached point (or the subfunction is input d ion 0), then the cached function result
may be used without recvaluation. Candid bfunctions are those that have lower
mpmdmnon!hmdwparem.oﬂhﬂmmpated(lc shared subexpressions).
Caching can be used for incl ion as well as point evaluation.
Caching is especially useful in cases luchn when an integrand contains a sub-
function that is not dependent on the ofmlc;rmon.whennwaunc
tion of input di jon 0 is defi ‘usin; nputationally expensive op s (e.g.
X + f 8(x2)dx3), or when the same subfunction is used many times.
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Figure 11: Animation Example.
The figure shows a frame from
the 1988 Siggraph film “Going
Bananas” in which every object
was specified using an early
version of the GENMOD
program. The movement and
deformation of several characters
in the animation were also
defined using time-varying
funciions. Rendering was
accomplished with a separate ray
tracing program using polygons
produced by GENMOD.

Figure 12: Teddy Bear Example.
The GENMOD program was
used to model both the surfaces
forming the skin of the bear, and
the way in which the fur was
“combed" over the skin. The bear
was rendered using the technique
described in [KAJI$9].

Figure 13: ODE Solution. The figure shows the results of the ODE solution Figure 14: Modeling a Jade Plant from MR Data. The jade plant surface
operator to compute the trajectory of a point mass in the gravitational field was modeled by extracting an isosurface through interpolated magnetic res-
of three fixed masses. onance (MR) data, using GENMOD’s implicit surface approximation.
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