
The Geometry Engine:
A VLSI Geometry System for Graphics

by

James 11. Clark

Computer Systems Laboratory
Stanford University

and
Silicon Graphics, Inc.
Palo Alto, California

Abstract

The Geometry Engine [1] is a special-purpose VLSI processor
for computer graphics. It is a four-component vector, floating-
point processor for accomplishing three basic operations in
computer graphics: matrix transformations, clipping and mapping
to output device coordinates.]'his paper desribes the Geometry
Engine and the Geometric Graphics System it composes. It
presents the instruction set of the system, its design motivations
and the Geometry System architecture.

Keywords: VLSI, Geometric processing, real-time graphics,
arithmetic processing

CR Categories: 3.3, 3.4, 3.7

Geometry System Overview

The Geometry System is a floating-point, geometric
computing system for computer graphics constructed from a basic
building block, the Geometo' Engine. Twelve copies of the
Geometry Engine arranged in a pipeline compose the complete
system in its most general form. In its present form, the
Geometry Engine occupies a single. 40-pin IC package.

The notable characteristics of the system are:

• General Inslruction Sel - It executes a very general 2D and
31) instruction set of utility in all engineering graphics
applications. This instruction set includes operations for
matrix transformations, windowing (clipping), perspective
and orthographic projections, stereo pair production and
arbitrary output device coordinate sealing.

• Cun'e Generation - The system will generate quadratic and
cubic curves and all of the conic sections, i.e. circles,
parabolas, hyperbolas, etc.

• Defice Independent - The system is independent of the
output device used and works equally well in either vector-
based or raster-based systems. It allows color or black and
white polygons, lines and characters.

• Flexible Input Format The system accepts input
coordinates in either integer or floating point format.

Permission to copy without fee all or part
of this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyr igh t
not ice and the t i t l e of the p u b l i c a t i o n and
i t s date appear, and not ice is given tha t
copying is by permission of the Assoc ia t ion
fo r Computing Machinery. To copy otherwise,
or to repub l ish , requi res a fee and/or
s p e c i f i c permission.

© 1982 ACM 0-89791-076-1/82/007/0127 $00.75
127

• iligh Performance Floating Poini Its effective
computation rate is equivalent to 5 million floating-point
operations, per second, corresponding to a fully
transformed, clipped, scaled coordinate each 15
microseconds.

• Reconfigurable - Each Geometry Engine is "softly"
configured; that is, one device with a single configuration
register serves in twelve different capacities.

• Selection/ltit-Testing Mechanism - The Geometry Engine
has a "hit-testi,g" mechanism to assist in "pointing"
functions, such as are required for a fast, interactive
graphics system with a tablet, mouse or other input devices.

• Scales to a Single Chip - The system can be put in a smaller
number of 1C packages as soon as the technology for
fabrication reduces the size of the Geometry Engine design.
Ultimately, the entire 12 Engine system will fit on in one IC
package, be a factor of 4 faster and be correspondingly
reduced in cost.

The Geometry Engine is a four-component vector function
unit whose architecture is best illustrated by the chip photograph
shown in Figures 1 and 2. Fach of the four function units along
the bottom two-thirds of the photo consists of two copies of a
computing unit, a mantissa and characteristic. The chip also has
an internal clock generator, at the top lzft corner, and a
microprogram counter with push.down subroutine ~aek, shown
at the top right. The upper third of the chip is the control store,
which holds the equivalent of 40k bits of control ~ore. This
control ~ore contains all of the mtcrocode that implements the
instructions and floating-point computations described below.

Clock P A D S PC/Stack

Control Store

(40 K bits equivalent)

X X
Exponent Mantissa

Y
Exponent

Z
Exponent

¥

Mantissa

I /0 Registers

Z
Mantissa

w W

Exponent Mantissa

P A D S

Figure 1: A Block Diagram of the Geometr). Engine
corresponding to the photo in Figure 2.

Figure 2: Photograph of the Geometry Engine.

C o m p u t e r Graphics Volume 16, Number 3 July 1982

Geometry System Functions

The Geometry System [2] is designed for high-performance,
low-cost, floating-point geometric computation in computer
graphics applications. It is composed of three subsystems, each of
which is composed of Geomeu3' l-ngines. These subsystems are
illustrated in Figure 3. The particular position of a Geometry
Engine in the pipeline determines its particuar function in the
whole system. Each Engine has a configuration register that is
loaded when the system is powered on, after a Reset command is
issued. Until the system is reset again, the Engine behaves
according to the configuration code.

>

Matrl), Engines

I I

I J
!

Scaler Engines Chpper Engines

I I
I]

<

Figure 3: Geometry System; each block is a Geometry Engine.

The subsystems are:
• Matrix Subsystem - A stack of 4x4 floating-point matrices

for completely general, 2D or 3D floating-point coordinate
transformation of graphical data.

• Clipping Subsystem - A windowing, or clipping, capability
for clipping 2D or 3D graphical data to a window into the
user's virtual drawing space. In 3D, this window is a volume
of the user's virtual, floating-point space, corresponding to a
truncated viewing pyramid with "near" and "far" clipping.

• Scaling Subsystem Scaling of 21) and 31) coordinates to
the coordinate system of the particular output device of the
user. In 31), this ,waling phase also includes either
orthographic or perspective projection onto the viewer's
virtual window. Stereo coordinates are computed and
optionally supplied as the output of the system.

The characteristics of each of these subsystems follows.

Matr ix Subsys tem

The matrix subsystem provides arbitrary 2D and 3D
transformation ability, including object rotations, translations.
scaling, perspective and orthographic projection. Using this
matrix, it is possible to define a completely arbitrary 2D or 3D
viewing window and accomplish all affine transformations.

The matrix transformation subsystem is the first four
Geometry Engines in the pipeline. Distributed over these Engines
is a 4x4 matrix and an eight-deep, 4x4 matrix stack to
accommodate picture subroutine structure. The top element of
the stack is the current matrix that is used to multiply all incoming
coordinates. Full floating-point transformation of all incoming
coordinates is done by this subsystem in 15 microseconds.
Transformed points are supplied by this subsystem to the clipping
subsystem.

The matrix stack allows the use of picture subroutines. All

incoming matrix multiplication commands cause the current
matrix {top-of-stack) to be multiplied by the incoming matrix.
"lhis allows a graphic object to be attached to a "parent" graphic
object, thereby providing for a hierarchical drawing. This is done
in the same way that a push-down szack ks used in a general-
purpose computer for storing arguments to subroutines. The
I,oadMM command causes a new matrix to be loaded onto the
top of the s~ack, while a MulIMM command causes the current
top of the stack to be multiplied by the supplied matrix.

The matrix stack can be manipulated by user instructions. In
addition to the normal Push and Pop commands, there is also a
StoreMM command to provide for overflow handling of the stack
if picture structure depth exceeds the eight levels allowed by the
depth of the stack.

This subsystem also generates cubic and rational cubic curves
[3]. An incremental difference matrix for forward difference
curves can be loaded onto the top of the stack, and a special
Iterate command causes the forward differences of this matrix to
be computed, with the result that a new coordinate on the curve is
output to the clipping subsystem. Conic curves are generated
using rational cubics. New points on the curve are generated in
10 microseconds.

Clipping S u b s y s t e m

The four to six Geometry Engines following the Matrix
Subsystem comprise the Clipping Subsystem. Each Geometry
Engine in the clipping subsystem clips the objects to a single
boundary (plane) of the viewing window. Thus, if there is no need
or desire to clip objects to the near or far clipping boundaries,
either or both of the corresponding Engines may be eliminated,
with no undesired side effects. This might be clone to decrease the
cost of the system.

The clipping subsystem gets all input data after it has passed
through the matrix subsystem, so that only transformed
coordinates are supplied to it. It has no explicit registers that the
user may manipulate. It always clips transformed coordinates to
specific boundaries. The boundaries are made to correspond to
particular boundaries of the user's drawing space by altering the
transformation matrix so that the desired portion of the
environment to be within the window is scaled to be within the
standard clipping boundaries.

As an assistance in testing objects for intersection with the
viewers window, a special hit. testing mode is included in the
clipping subsystem. This mode disables output of certain data
from the Geometry System. For example, to select an object on
the screen that is being pointed to by the input device cursor, hit.
testing is enabled and a special hit-testing matrix is loaded into
the current matrix. This matrix is computed from the screen
coordinates of the cursor: it might correspond to a tiny window
centered at the pointing device's screen coordinates. If anything
comes out of the geometry system in this mode. it signifies that an
object has passed within the tiny window near the cursor position.
Of course, the hit-testing window may be of any size, so that this
feature can be useful m area-select functions, as well.

To provide further information useful in identifying how
objects pass through the hit-window, each drawing instruction gets
from one to six bits set in it to signify which of the one to six
clipping boundaries were intersected by the line-segment drawn.
To assist in identifying the object, a special object naming
convention is used, thereby providing a completely general
selection and hit-testing mechanism.

129

Scaling Subsystem

The last two Geometry Engines in the pipeline are the Scaling
Subsystem. This subystem converts output from the Clipping
Subsystem to the coordinate system of the output device. This
process causes the window on the user's drawing space, which is
specified by loading the appropriate matrix into the Matrix
Subs)stem, to be mapped onto a viewport of the output device,
which is specified by loading the .scaling subsystem's viewport
registers. The viewpon registers allow up to 24-bit integer values,
depending upon the coordinate system of the output device: they
arc the only device-dependent pan of the system. In 3D, the
mapping process includes an orthographic or perspective
projection and stereo pair production.

Because the Geometry System is a homogeneous system that
treats all three coordinates (x,y,z) the same, the Scaling Subsystem
also maps the z coordinate. Thus, by loading the z viewport
registers with appropriate values, either perspective depth values
or intensity depth-cue values will be supplied by the Geometry
System, according to the manner in which the output device
interprets the z values. Of course, if no depth values are needed
in the particular application, they may be discarded.

Either two or four integer values are output by the Scaling
Subsystem for each coordinate point that comes out of the
system. When two values come out, they are X and Y, in screen
coordinates. If the Scaler Engines are configured properly, these
four values are:

• X right - the x screen coordinate for the right eye.

• X left - the x screen coordinate for the left eye.

• Y - the y screen coordinate for both eyes.

• Z - the perspective depth value for both eyes.

Geometry System Computations

The matrix system does the computation:

Ix" y" z' w'l = Ix y zw]M,

where M is the top of the matrix stack and [x y z w] is the input
vector to be transformed. The coordinates [x' y' z' w'] are supplied
to the clipping subsystem, which clips them ~ that they satisfy

-w'< x'< w',
-w'< y'< w',
and -w' < z" < w'.

Note that these clipping boundaries are somewhat different
from those used in most homogeneous clipping systems [4], in
that the z coordinate is treated identically to the x and y
coordinates. This simplifies the system, and is equivalent to all
other homogeneous clipping systems if the correct matrix is used
and the proper viewpon sxrale factors are used.

After clipping, since all points coming out of the clipper
satis~ these inequalities, the scaler does the final mapping to
output device coordinates with the following computations:

D = (z'/w')*Ss + Cs,
Z = (z'/w')*Sz + Cz,
X = (x'/w')*Sx + Cx,
and Y = 0"/w')*Sy + Cy.

The coefficients Sx and Cx are the X half-size and X center of the
vie~q~ort in the coordinate system of the output device. Similarly
for the Y and Z values. The Ss and Cs ~alues are explained in the
next section.

Ste reo Computation

The Geometry Engine can be used to obtain stereo pair
pictures at no extra computational cost Consider first the
ordinary monographic case.

Monographic Case

In a system where the origin is the perspective projection
point, the ordinary projection for 3 dimensional .scenes [4] is to
divide both x and y by z. That is, the screen coordinates of the
point are given by

X = (x/z)*Sx + Cx
and Y = (y/z)*Sy + Cy,

where (Cx,Cy) is the center of the "viewport" and (Sx,Sy) is its
half-size.

If homogeneous coordinates are used, these equations are
modified to compute perspective depth. The transformation on
[x,y,z] is modified to compute homogeneous coordinates as
follows:

[x'y' z' w'] = [x y z l] M .

M is chosen to yield

Ix', y', z',w'] = [x, y, az+b, z],
where a = (1+ N/F)/(1-N/F)

and b = -.2N/(1-N/F).

N and F are the respective distances of the Near and Far clipping
planes from the projection point. With these definitions, the
projected coordinates are computed from

X = (x'/w')*Sx + Cx,(l)
Y = (x'/w')*Sy + Cy,
and Z = (z'/w')*Sz + Cz = (a + b/z)*Sz + Cz,

where we have substituted the values o fz ' = az+b and w' = z,
from above.

This yields the same values for X and Y as before. In addition,
however, it computes perspective depth, which can be useful in
hidden-surface computations. With this computation, points at
the Near clipping plane will be mapped into Cz-Sz and points at
the Far clipping plane will be mapped into Cz + Sz.

Stereographic Case

For proper stereo, we wish to compute two different views,
one for the left eye and one for the right eye. In other words,
there are two different projection points that differ in a
displacement in the x direction only:

Xright = ((x' + dx)/w')*Sx + Cx.right,
and Xleft = ((y'-dx)/w")*Sx + Cx.left

where dx is half the distance between the two projection points
(distance from the center of the head to each of the eyes), Cx.left
is the center of the left projection viewport and Cx.right is the
center of the right projection viewport. The Y and Z coordinates
are unaffected.

Defining Cx.offset to he the offset of the right and left
vie~q~orts from a "center" viewport, Cx, we have

Cx.left = Cx -Cx.offset

130

and Cx.right = Cx + Cx.offset.

The foregoing equations then become

Xright = (x'/w')*Sx + Cx + { (dx/w')*Sx + Cx.offset }

and Xleft = (x'/w')*Sx t- Cx - { (dx/w')*Sx + Cx.offset },

o r

X l e f t = X + D,
and Xright = X- D,

where X is the "normal" X computation in Equation 1 and D is
the quantity in brackets.

Note that D is a computation like that of X,Y and Z in
Equation 1. In other words, it involves a division, a multiplication
and an add. Inspection of the third of Equation 1 suggests that
we define "stereo viewport" parameters as follows:

Ss = dx*Sx/b,
and Cs = Cx.offset - a*(dx*Sx/b).

Then the quantity D is computed to be

D = (z'/w')*Ss + Cs,

giving the required result for D when these substitutions are
made.

The Geometry Engine has four floating-point function units;
two are required to accomplish one computation of the sort

A = (B / C) * E + F.

Therefore, one Engine will perform two of these computations,
for example for the X and Y coordinates. Since another Engine is
required to compute Z, it has two free units that can be
computing D as well, using the Ss and Cs values defined above. If
the l'ngine computing I) and Z is put in the pipeline before the X
and Y Engine, the X-Y Engine's microcode can compute X + D
and X-D, outputing the four values IX + D,X-D,Y,Z]. Of course,
if no ~ereo is desired, but Z is still needed, the coefficients Ss and
Cs can be zero. The Geometry F.ngine implements this stereo
computation, and when properly configured, will output these
four quantities.

Programming the Geometry System

The Geometry System is a slave processor. It has no
instruction fetch unit: it must be given every instruction and data
value by a controlling processor. Likewise, the display controller
must take each value that comes out of the Geometry System.

The instruction/data stream supplied to the system is a high-
level graphics instruction set mixed with coordinate data.
Instructions and data are supplied to the system via its input port,
which is the set of input pins of the first Matrix Subsystem
Engine, and output data and instructions are taken from its
output port, which is the set of output pins of the last Scaling
Engine. A convenient view of the system is as a hardware
subroutine: in fact, this is precisely the first way it will be used. as
a hardware subroutine to the IRIS processor/memory system,
which is based on the Motorola 68000 and IEEE Multi-bus.

Input data must always be in user's virtual-drawing (integer or
floating-point) coordinate system, and except in special non-
display circumstances such as hit-testing, output data is always in
the coordinate system of the user's output device.

Instruction Set Summary

The instruction set for the geometry engine partitions into
three types:

• Register Manipulation - These instructions alter the matrix,
matrix s~ack, or viewport registers. They are used to set the
window for a particular view of the virtual drawing, load the
viewport registers, change the matrix or matrix .stack to draw
a different object, orient a particular object (rotate,
translate, etc.) or ~ve the state of the matrix stack for later
restoration. Instructions in this category are:

o LoadMM - Load the following 16 floating-point data
values onto the top of the stack, destroying the
current matrix. The 16 floating-point numbers are the
4x4 matrix.

o Mul tMM - Multiply the current matrix on the top o f
the stack with the following 4x4 matrix.

o PushMM - Push all matrices on the stack down one
position, leaving the current top of stack unaltered.
(After this operation the second stack position is a
copy ofthe top of the stack.)

o PopMM - Pop all matrices in the stack up one
position.

o StoreMM - Store the top of the matrix stack. This
instruction input to the geometry system causes the
StoreMM instruction, followed by the 4x4 matrix (16
floating-point numbers) to come out of the Geometry
System at its output port. It can be used to save the
complete state of the matrix stack.

o LoadVP - Load the viewport registers. Following this
instruction, eight 32-bit numbers describing the
viewport parameters must be supplied.

• Drawing Instructions - These instructions actually cause
graphic objects to be drawn. All drawing instructions are
followed by four 32-bit floating-point numbers,
representing the (x,y,z,w) coordinates of the point being
supplied to the Matrix Subsystem for transformation. Each
drawing command assumes that there is a current point in
the drawing, for example the current pen position in a
virtual-space plotter. Certain instruc.tions update that
position, while others cause things to be drawn from that
point. We refer to this position as the Current Point.
Assuming clipping does not eliminate them, each of the
following instructions except Curve comes out o f the
Geometry System at its output port, followed by the device
coordinates.

o Move - Move the Current Point to the position
specified by the floating-point vector that follows.

o Morel - Same as Move, but integer data is supplied.

o Draw - Draw from the Current Point to the position
specified by the following data. Update the Current
Point with this value after drawing the line segment.

o DrawI- Same as Draw, except that integer data is
supplied.

o Point and PointI - Cause a dot to appear at the point
specified in the following data. Update the Current
Point with this value after drawing the point.

o Curve - Iterate the forward differences of the matrix
on the top of the matrix stack: issue from the Matrix
Subsystem to the Clipping Subsystem a Draw
command followed by the computed coordinates of
the point on the curve. The Current Point is updated
just as with the Draw command. This command
should not be followed by data as with the other
drawing commands.

o MovePoly and MovePolyl - In Polygon mode, move

131

the Current Point to the position supplied by the
following data. This command must be used rather
than Move i fa closed polygon is to be drawn.

o DrawPoly and DrawPolyl - In polygon mode, same as
Draw command.

o CIosePoly - Close the currently open polygon,
flushing the polygon from the clipping subsystem.

• Miscellaneous Commands-
o SetHil - Set Hit Mode. This causes the state of the

Clipping Subsystem to change so that only
commands, and not data, are output. Refer to the
"Selection and Hit-testing" section for a complete
description.

o ClearHit - Clear Hit Mode. This restores the state of
the Clipping Subsystem to normal. Refer to the
"Selection and ttit-testing" section for a complete
description.

o PassThru - This instruction allows the passing of a
variable number of 16-bit words through the
geometry system unaltered and uninterpreted. It is
useful for passing instructions and data that are
unique to the display controller and that have no
meaninng to the Geometry System.The number of
words to be passed through is specified by a 7-bit field
in the instruction.

Selecting and Hit-testing

In an interactive computer graphics environment it is
frequently necessary to select certain objects that appear in the
display for special attention. This is usually done with the aid of
some type of input device, such as a light-pen, mouse, tablet or
joy-stick.

If the input device being used is a light-pen, the common
selection mechanism varies, but involves detecting in hardware
when the "beam" of the CRT is under the field of view of the
light-pen. This approach is good for pointing at objects on the
screen but poor for entering new objects into the drawing.
because a tracking mechanism must be drawing some type of
tracking object that the light-pen must be sensing. Because of the
extra expense of the light-pen tracking mechanism and because
many people no longer believe it necessary to actually point to
objects directly on the screen, the light-pen is not feasible in low-
cost systems.

The alternatives to the light-pen, the tablet and mouse (we
chose to ignore the joy-stick), are useful for entering new data
into drawings, but without an extra mechanism, they are poor for
pointing at existing objects in a drawing. The hit-testing
mechanism in the Geometry System solves this problem.

The common software mechanism for doing this selection
task is to check each object to see if it is in the selection area. This
selection area might be an area specified by identifying some
portion of the drawing ,space to check objects against or it might
be a small neighborhood around the cursor, which is tracking the
position of the mouse or tablet. Intelligent operations can be done
to reduce the amount of time spent in checking. For example, the
bounding box around an object can be tested to see if any portion
of the object is in the selection area: if it is not. then none of the
object is in the selection area and therefore need not be further
tested. This selection task is basically a clipping task, and the
Geometry System has a special mode for handling it.

The Hit-testing mode disables all data from coming out of the
Geometry System. However, specific drawing instructions still
come out of the system, missing their corresponding data. Thus.
in hit-testing mode, if anything comes out of the output port of
the system, this means that there was a "hit." In other words,
something was in the selection area established by loading the

selection matrix into the Matrix Subsystem.

For a completely general selection mechanism, one might not
only like to know whether an object passes through the selection
window, but also which boundaries it intersects, or whether it is
completely contained within the selection area, or perhaps
completely surrounds the area. To accommodate these needs, the
Geometry System provides information in the form of "hit-bits"
that tell which of the six clipping boundaries are intersected by
each drawing command, in this way, the device that is receiving
Geometry System output may assemble the necessary
information by "integrating" the various "hit-bits" from
successive drawing commands used in drawing the object.

Hit-testing is useful only when combined with a naming
mechanism for identifying the objects being drawn. This can be
done by loading a name register in the display controller before
drawing each object that ks to be identified with a hit. This can be
done using the PassThru instruction.

Character Handling

Characters provide a special problem for any geometric
transformation subsystem. Of course, characters may be defined
as strokes, or vectors, and supplied just as all other data to the
Geometry System, but since the number of strokes to make up a
character might be quite large, we ordinarily do not wish to draw
characters in this way. On the other hand, any other approach will
not provide for complete, general rotations, etc. of 3D characters.
As a result, most systems must make a compromise and provide
characters as a special ease.

The usual problem with characters is that if they are a special
case, then clipping them is a special case. The Geometry System
clips characters only if they are defined as strokes, just like all
other data. However, since it must make possible the clipping of
special-case characters and character generation in the display
controller, the LoadVl' instruction and corresponding data is
always passed on to the output port of the system. The reason for
this is that this data defines the boundaries of the character
clipping window in the display controller.

Mixing special-case characters and graphics presents another
problem. There are two cases:

• Putting characters in a drawing - this is handled by
combining special sentinels to the display controller via the
PassThru command with the Point command. The Poinl
command is used to position the beginning of the character
string. The Raster Subsystem, which is designed as a
companion to the Geometry Subsystem, does the actual
character clipping. Completely general character clipping is
accomplished by proper use of these subsystems together.

• Putting a drawing with characters This case is
straightforwardly handled by properly modifying the
tranformation matrix to reflect the character clipping
window position. Then drawing can proceed as usual. The
particular modifications for each case are handled by the
software package mentioned above.

The IRIS Graphics System

The Geomeu3' System is being implemented on the a system
called the Integrated Raster Imaging System, IRIS, which consists
of the following components:

• A processor/memor).' board with the Motorola 68000 and
256k bytes of RAM: the memory can be expanded to 2M
bytes.] 'he 68000 microprocessor executes instructions in
the on-board memory at 8 MHz. This memory' is fully
mapped and segmented for 16 processes. Additional
memory is accessed over the Multibus at normal Multibus
rates.

132

• A Geometry Subsystem, with a multibus interface, lqFO's
at the input and output of the Geometry System and from
ten to twelve copies of the Geometry Engine.

• A custom 1024x1024 Color Raster Subsystem, with high-
performance hardware for polygon fill, vector drawing and
arbitrary, variable-pitch characters. The hardware and
firmware provide for color and textured lines and polygons,
character clipping, color mapping of up to 256 colors and
selectable double or single-buffered image planes.

• A 10 Megabit EtherNet interface board.

Summary

The Geometry System is a powerful computing system for
graphics applications. It combines a number of useful geometric
computing primitives in a custom VLSI system that has a future
because of its .scalable nature. It is quite likely that within 5 years
the system will be implemented on one, 1/2.million transistor,
integrated-circuit chip, with a correspondingly reduced cost and
increased speed.

Acknowledgements

Many people provided advice and suggestions during the two
years over which this project has been done. Marc Hannah's
masterful ability with VLSI Design Tools and UNIX and his
graphics understanding were indispensible. Professor John
Hennessy provided an indispensible microcode development tool
in SLIM. and his willingness to help us when in need is
appreciated. I,ynn Conway of Xerox PARC made resources
available during the fomaative stages of the project, and without
them, it probably would not have been carried out: we are
indebted to her for this. Forest Baskett of Stanford made it
possible by supporting us in the early stages. Dick Lyon was an
important first advisor on 1C design. Martin Haeberli was very
helpful in the testing phase. Valuable conversations were had
with Chuck Thacker, Bob Sproull, Alan Bell, Martin Newell, Ed
Chang, Danny Cohen, Doug Fairbairn, John Warnock, Chuck
Seitz, Carver Mead, and Lance Williams. Hewlett-Packard
Corporation fabricated the first copy of the first part of the data-
path, and Bob Spencer and Bill Meuli of Xerox PARC's
Integrated Circuits I,aboratory fabricated the first fully functional
copy of the entire chip.

We are especially grateful for the enthusiasm and support of
Xerox Corporation's Palo Alto Research Center: this project
could not have been done without the support of the insightful
people there.

The research was supported by the Advanced Research
Projects Agency of the Department of Defense, DARPA, under
contract number MDA 903-79-C-0680.

4. Newman, W. and SprouU, R. F.. Principles oflntemctive
Computer Graphic~ Addison-Weseley, Reading, Mass., 1980.

References

1. Clark, J.H. "A VLSI Geometry Processor for Graphics."
Computer 13, 7 (July 1980), 59-68.

2. Clark, J. H. Graphic Display Processing System and
Processor. Patent Pending.

3. Clark, J. H. Parametric Curves, Surfaces and Volumes in
Computer Graphics and Computer-Aided Geometric Design.
Tech. Rept. 221, Computer Systems Laborator3.', Stanford
University, November, 1981.

133

