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Abstract 

The Geometry Engine [1] is a special-purpose VLSI processor 
for computer graphics. It is a four-component vector, floating- 
point processor for accomplishing three basic operations in 
computer graphics: matrix transformations, clipping and mapping 
to output device coordinates. ]'his paper desribes the Geometry 
Engine and the Geometric Graphics System it composes. It 
presents the instruction set of the system, its design motivations 
and the Geometry System architecture. 
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Geometry System Overview 

The Geometry System is a floating-point, geometric 
computing system for computer graphics constructed from a basic 
building block, the Geometo' Engine. Twelve copies of the 
Geometry Engine arranged in a pipeline compose the complete 
system in its most general form. In its present form, the 
Geometry Engine occupies a single. 40-pin IC package. 

The notable characteristics of the system are: 

• General Inslruction Sel - It executes a very general 2D and 
31) instruction set of utility in all engineering graphics 
applications. This instruction set includes operations for 
matrix transformations, windowing (clipping), perspective 
and orthographic projections, stereo pair production and 
arbitrary output device coordinate sealing. 

• Cun'e Generation - The system will generate quadratic and 
cubic curves and all of the conic sections, i.e. circles, 
parabolas, hyperbolas, etc. 

• Defice Independent - The system is independent of the 
output device used and works equally well in either vector- 
based or raster-based systems. It allows color or black and 
white polygons, lines and characters. 

• Flexible Input Format The system accepts input 
coordinates in either integer or floating point format. 
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• iligh Performance Floating Poini Its effective 
computation rate is equivalent to 5 million floating-point 
operations, per second, corresponding to a fully 
transformed, clipped, scaled coordinate each 15 
microseconds. 

• Reconfigurable - Each Geometry Engine is "softly" 
configured; that is, one device with a single configuration 
register serves in twelve different capacities. 

• Selection/ltit-Testing Mechanism - The Geometry Engine 
has a "hit-testi,g" mechanism to assist in "pointing" 
functions, such as are required for a fast, interactive 
graphics system with a tablet, mouse or other input devices. 

• Scales to a Single Chip - The system can be put in a smaller 
number of 1C packages as soon as the technology for 
fabrication reduces the size of the Geometry Engine design. 
Ultimately, the entire 12 Engine system will fit on in one IC 
package, be a factor of 4 faster and be correspondingly 
reduced in cost. 

The Geometry Engine is a four-component vector function 
unit whose architecture is best illustrated by the chip photograph 
shown in Figures 1 and 2. Fach of the four function units along 
the bottom two-thirds of the photo consists of two copies of  a 
computing unit, a mantissa and characteristic. The chip also has 
an internal clock generator, at the top lzft corner, and a 
microprogram counter with push.down subroutine ~aek, shown 
at the top right. The upper third of the chip is the control store, 
which holds the equivalent of 40k bits of control ~ore. This 
control ~ore contains all of the mtcrocode that implements the 
instructions and floating-point computations described below. 
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Figure 1: A Block Diagram of the Geometr). Engine 
corresponding to the photo in Figure 2. 



Figure 2: Photograph of the Geometry Engine. 
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Geometry System Functions 

The Geometry System [2] is designed for high-performance, 
low-cost, floating-point geometric computation in computer 
graphics applications. It is composed of three subsystems, each of 
which is composed of Geomeu3' l-ngines. These subsystems are 
illustrated in Figure 3. The particular position of a Geometry 
Engine in the pipeline determines its particuar function in the 
whole system. Each Engine has a configuration register that is 
loaded when the system is powered on, after a Reset command is 
issued. Until the system is reset again, the Engine behaves 
according to the configuration code. 
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Figure 3: Geometry System; each block is a Geometry Engine. 

The subsystems are: 
• Matrix Subsystem - A stack of 4x4 floating-point matrices 

for completely general, 2D or 3D floating-point coordinate 
transformation of graphical data. 

• Clipping Subsystem - A windowing, or clipping, capability 
for clipping 2D or 3D graphical data to a window into the 
user's virtual drawing space. In 3D, this window is a volume 
of the user's virtual, floating-point space, corresponding to a 
truncated viewing pyramid with "near" and "far" clipping. 

• Scaling Subsystem Scaling of 21) and 31) coordinates to 
the coordinate system of the particular output device of the 
user. In 31), this ,waling phase also includes either 
orthographic or perspective projection onto the viewer's 
virtual window. Stereo coordinates are computed and 
optionally supplied as the output of the system. 

The characteristics of each of these subsystems follows. 

Matr ix Subsys tem 

The matrix subsystem provides arbitrary 2D and 3D 
transformation ability, including object rotations, translations. 
scaling, perspective and orthographic projection. Using this 
matrix, it is possible to define a completely arbitrary 2D or 3D 
viewing window and accomplish all affine transformations. 

The matrix transformation subsystem is the first four 
Geometry Engines in the pipeline. Distributed over these Engines 
is a 4x4 matrix and an eight-deep, 4x4 matrix stack to 
accommodate picture subroutine structure. The top element of 
the stack is the current matrix that is used to multiply all incoming 
coordinates. Full floating-point transformation of all incoming 
coordinates is done by this subsystem in 15 microseconds. 
Transformed points are supplied by this subsystem to the clipping 
subsystem. 

The matrix stack allows the use of picture subroutines. All 

incoming matrix multiplication commands cause the current 
matrix {top-of-stack) to be multiplied by the incoming matrix. 
"lhis allows a graphic object to be attached to a "parent" graphic 
object, thereby providing for a hierarchical drawing. This is done 
in the same way that a push-down szack ks used in a general- 
purpose computer for storing arguments to subroutines. The 
I,oadMM command causes a new matrix to be loaded onto the 
top of the s~ack, while a MulIMM command causes the current 
top of the stack to be multiplied by the supplied matrix. 

The matrix stack can be manipulated by user instructions. In 
addition to the normal Push and Pop commands, there is also a 
StoreMM command to provide for overflow handling of the stack 
if picture structure depth exceeds the eight levels allowed by the 
depth of the stack. 

This subsystem also generates cubic and rational cubic curves 
[3]. An incremental difference matrix for forward difference 
curves can be loaded onto the top of the stack, and a special 
Iterate command causes the forward differences of this matrix to 
be computed, with the result that a new coordinate on the curve is 
output to the clipping subsystem. Conic curves are generated 
using rational cubics. New points on the curve are generated in 
10 microseconds. 

Clipping S u b s y s t e m  

The four to six Geometry Engines following the Matrix 
Subsystem comprise the Clipping Subsystem. Each Geometry 
Engine in the clipping subsystem clips the objects to a single 
boundary (plane) of the viewing window. Thus, if there is no need 
or desire to clip objects to the near or far  clipping boundaries, 
either or both of the corresponding Engines may be eliminated, 
with no undesired side effects. This might be clone to decrease the 
cost of the system. 

The clipping subsystem gets all input data after it has passed 
through the matrix subsystem, so that only transformed 
coordinates are supplied to it. It has no explicit registers that the 
user may manipulate. It always clips transformed coordinates to 
specific boundaries. The boundaries are made to correspond to 
particular boundaries of the user's drawing space by altering the 
transformation matrix so that the desired portion of the 
environment to be within the window is scaled to be within the 
standard clipping boundaries. 

As an assistance in testing objects for intersection with the 
viewers window, a special hit. testing mode is included in the 
clipping subsystem. This mode disables output of certain data 
from the Geometry System. For example, to select an object on 
the screen that is being pointed to by the input device cursor, hit. 
testing is enabled and a special hit-testing matrix is loaded into 
the current matrix. This matrix is computed from the screen 
coordinates of the cursor: it might correspond to a tiny window 
centered at the pointing device's screen coordinates. If anything 
comes out of the geometry system in this mode. it signifies that an 
object has passed within the tiny window near the cursor position. 
Of course, the hit-testing window may be of any size, so that this 
feature can be useful m area-select functions, as well. 

To provide further information useful in identifying how 
objects pass through the hit-window, each drawing instruction gets 
from one to six bits set in it to signify which of the one to six 
clipping boundaries were intersected by the line-segment drawn. 
To assist in identifying the object, a special object naming 
convention is used, thereby providing a completely general 
selection and hit-testing mechanism. 
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Scaling Subsystem 

The last two Geometry Engines in the pipeline are the Scaling 
Subsystem. This subystem converts output from the Clipping 
Subsystem to the coordinate system of the output device. This 
process causes the window on the user's drawing space, which is 
specified by loading the appropriate matrix into the Matrix 
Subs)stem, to be mapped onto a viewport of the output device, 
which is specified by loading the .scaling subsystem's viewport 
registers. The viewpon registers allow up to 24-bit integer values, 
depending upon the coordinate system of the output device: they 
arc the only device-dependent pan of the system. In 3D, the 
mapping process includes an orthographic or perspective 
projection and stereo pair production. 

Because the Geometry System is a homogeneous system that 
treats all three coordinates (x,y,z) the same, the Scaling Subsystem 
also maps the z coordinate. Thus, by loading the z viewport 
registers with appropriate values, either perspective depth values 
or intensity depth-cue values will be supplied by the Geometry 
System, according to the manner in which the output device 
interprets the z values. Of course, if no depth values are needed 
in the particular application, they may be discarded. 

Either two or four integer values are output by the Scaling 
Subsystem for each coordinate point that comes out of the 
system. When two values come out, they are X and Y, in screen 
coordinates. If the Scaler Engines are configured properly, these 
four values are: 

• X right - the x screen coordinate for the right eye. 

• X left - the x screen coordinate for the left eye. 

• Y - the y screen coordinate for both eyes. 

• Z - the perspective depth value for both eyes. 

Geometry System Computations 

The matrix system does the computation: 

Ix" y" z' w'l = Ix y zw]M, 

where M is the top of the matrix stack and [x y z w] is the input 
vector to be transformed. The coordinates [x' y' z' w'] are supplied 
to the clipping subsystem, which clips them ~ that they satisfy 

-w'< x'< w', 
-w'< y'< w', 
and -w' < z" < w'. 

Note that these clipping boundaries are somewhat different 
from those used in most homogeneous clipping systems [4], in 
that the z coordinate is treated identically to the x and y 
coordinates. This simplifies the system, and is equivalent to all 
other homogeneous clipping systems if the correct matrix is used 
and the proper viewpon sxrale factors are used. 

After clipping, since all points coming out of the clipper 
satis~ these inequalities, the scaler does the final mapping to 
output device coordinates with the following computations: 

D = (z'/w')*Ss + Cs, 
Z = (z'/w')*Sz + Cz, 
X = (x'/w')*Sx + Cx, 
and Y = 0"/w')*Sy + Cy. 

The coefficients Sx and Cx are the X half-size and X center of the 
vie~q~ort in the coordinate system of the output device. Similarly 
for the Y and Z values. The Ss and Cs ~alues are explained in the 
next section. 

Ste reo Computation 

The Geometry Engine can be used to obtain stereo pair 
pictures at no extra computational cost Consider first the 
ordinary monographic case. 

Monographic Case 

In a system where the origin is the perspective projection 
point, the ordinary projection for 3 dimensional .scenes [4] is to 
divide both x and y by z. That is, the screen coordinates of the 
point are given by 

X = (x/z)*Sx + Cx 
and Y = (y/z)*Sy + Cy, 

where (Cx,Cy) is the center of the "viewport" and (Sx,Sy) is its 
half-size. 

If homogeneous coordinates are used, these equations are 
modified to compute perspective depth. The transformation on 
[x,y,z] is modified to compute homogeneous coordinates as 
follows: 

[x'y' z' w'] = [x y z l ] M .  

M is chosen to yield 

Ix', y', z',w'] = [x, y, az+b, z], 
where a = (1+ N/F)/(1-N/F) 

and b = -.2N/(1-N/F). 

N and F are the respective distances of the Near and Far clipping 
planes from the projection point. With these definitions, the 
projected coordinates are computed from 

X = (x'/w')*Sx + Cx,(l) 
Y = (x'/w')*Sy + Cy, 
and Z = (z'/w')*Sz + Cz = (a + b/z)*Sz + Cz, 

where we have substituted the values o fz '  = az+b  and w' = z, 
from above. 

This yields the same values for X and Y as before. In addition, 
however, it computes perspective depth, which can be useful in 
hidden-surface computations. With this computation, points at 
the Near clipping plane will be mapped into Cz-Sz and points at 
the Far clipping plane will be mapped into Cz + Sz. 

Stereographic Case 

For proper stereo, we wish to compute two different views, 
one for the left eye and one for the right eye. In other words, 
there are two different projection points that differ in a 
displacement in the x direction only: 

Xright = ( (x' + dx)/w' )*Sx + Cx.right, 
and Xleft = ( (y'-dx)/w")*Sx + Cx.left 

where dx is half the distance between the two projection points 
(distance from the center of the head to each of the eyes), Cx.left 
is the center of the left projection viewport and Cx.right is the 
center of the right projection viewport. The Y and Z coordinates 
are unaffected. 

Defining Cx.offset to he the offset of the right and left 
vie~q~orts from a "center" viewport, Cx, we have 

Cx.left = Cx -Cx.offset 
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and Cx.right = Cx + Cx.offset. 

The foregoing equations then become 

Xright = (x'/w')*Sx + Cx + { (dx/w')*Sx + Cx.offset } 

and Xleft = (x'/w')*Sx t- Cx - { (dx/w')*Sx + Cx.offset }, 

o r  

X l e f t = X +  D, 
and Xright = X- D, 

where X is the "normal" X computation in Equation 1 and D is 
the quantity in brackets. 

Note that D is a computation like that of X,Y and Z in 
Equation 1. In other words, it involves a division, a multiplication 
and an add. Inspection of the third of Equation 1 suggests that 
we define "stereo viewport" parameters as follows: 

Ss = dx*Sx/b, 
and Cs = Cx.offset - a*(dx*Sx/b). 

Then the quantity D is computed to be 

D = (z'/w')*Ss + Cs, 

giving the required result for D when these substitutions are 
made. 

The Geometry Engine has four floating-point function units; 
two are required to accomplish one computation of the sort 

A = ( B / C ) * E +  F. 

Therefore, one Engine will perform two of these computations, 
for example for the X and Y coordinates. Since another Engine is 
required to compute Z, it has two free units that can be 
computing D as well, using the Ss and Cs values defined above. If 
the l'ngine computing I) and Z is put in the pipeline before the X 
and Y Engine, the X-Y Engine's microcode can compute X + D  
and X-D, outputing the four values IX + D,X-D,Y,Z]. Of course, 
if no ~ereo is desired, but Z is still needed, the coefficients Ss and 
Cs can be zero. The Geometry F.ngine implements this stereo 
computation, and when properly configured, will output these 
four quantities. 

Programming the Geometry System 

The Geometry System is a slave processor. It has no 
instruction fetch unit: it must be given every instruction and data 
value by a controlling processor. Likewise, the display controller 
must take each value that comes out of the Geometry System. 

The instruction/data stream supplied to the system is a high- 
level graphics instruction set mixed with coordinate data. 
Instructions and data are supplied to the system via its input port, 
which is the set of input pins of the first Matrix Subsystem 
Engine, and output data and instructions are taken from its 
output port, which is the set of output pins of the last Scaling 
Engine. A convenient view of the system is as a hardware 
subroutine: in fact, this is precisely the first way it will be used. as 
a hardware subroutine to the IRIS processor/memory system, 
which is based on the Motorola 68000 and IEEE Multi-bus. 

Input data must always be in user's virtual-drawing (integer or 
floating-point) coordinate system, and except in special non- 
display circumstances such as hit-testing, output data is always in 
the coordinate system of the user's output device. 

Instruction Set Summary 

The instruction set for the geometry engine partitions into 
three types: 

• Register Manipulation - These instructions alter the matrix, 
matrix s~ack, or viewport registers. They are used to set the 
window for a particular view of the virtual drawing, load the 
viewport registers, change the matrix or matrix .stack to draw 
a different object, orient a particular object (rotate, 
translate, etc.) or ~ve  the state of the matrix stack for later 
restoration. Instructions in this category are: 

o LoadMM - Load the following 16 floating-point data 
values onto the top of the stack, destroying the 
current matrix. The 16 floating-point numbers are the 
4x4 matrix. 

o Mul tMM - Multiply the current matrix on the top o f  
the stack with the following 4x4 matrix. 

o PushMM - Push all matrices on the stack down one 
position, leaving the current top of stack unaltered. 
(After this operation the second stack position is a 
copy ofthe top of the stack.) 

o PopMM - Pop all matrices in the stack up one 
position. 

o StoreMM - Store the top of the matrix stack. This 
instruction input to the geometry system causes the 
StoreMM instruction, followed by the 4x4 matrix (16 
floating-point numbers) to come out of the Geometry 
System at its output port. It can be used to save the 
complete state of the matrix stack. 

o LoadVP - Load the viewport registers. Following this 
instruction, eight 32-bit numbers describing the 
viewport parameters must be supplied. 

• Drawing Instructions - These instructions actually cause 
graphic objects to be drawn. All drawing instructions are 
followed by four 32-bit floating-point numbers, 
representing the (x,y,z,w) coordinates of the point being 
supplied to the Matrix Subsystem for transformation. Each 
drawing command assumes that there is a current point in 
the drawing, for example the current pen position in a 
virtual-space plotter. Certain instruc.tions update that 
position, while others cause things to be drawn from that 
point. We refer to this position as the Current Point. 
Assuming clipping does not eliminate them, each of the 
following instructions except Curve comes out o f  the 
Geometry System at its output port, followed by the device 
coordinates. 

o Move - Move the Current Point to the position 
specified by the floating-point vector that follows. 

o Morel  - Same as Move, but integer data is supplied. 

o Draw - Draw from the Current Point to the position 
specified by the following data. Update the Current 
Point with this value after drawing the line segment. 

o DrawI-  Same as Draw, except that integer data is 
supplied. 

o Point and PointI - Cause a dot to appear at the point 
specified in the following data. Update the Current 
Point with this value after drawing the point. 

o Curve - Iterate the forward differences of the matrix 
on the top of the matrix stack: issue from the Matrix 
Subsystem to the Clipping Subsystem a Draw 
command followed by the computed coordinates of 
the point on the curve. The Current Point is updated 
just as with the Draw command. This command 
should not be followed by data as with the other 
drawing commands. 

o MovePoly and MovePolyl - In Polygon mode, move  
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the Current Point to the position supplied by the 
following data. This command must be used rather 
than Move i fa  closed polygon is to be drawn. 

o DrawPoly and DrawPolyl - In polygon mode, same as 
Draw command. 

o CIosePoly - Close the currently open polygon, 
flushing the polygon from the clipping subsystem. 

• Miscellaneous Commands- 
o SetHil - Set Hit Mode. This causes the state of the 

Clipping Subsystem to change so that only 
commands, and not data, are output. Refer to the 
"Selection and Hit-testing" section for a complete 
description. 

o ClearHit - Clear Hit Mode. This restores the state of 
the Clipping Subsystem to normal. Refer to the 
"Selection and ttit-testing" section for a complete 
description. 

o PassThru - This instruction allows the passing of a 
variable number of 16-bit words through the 
geometry system unaltered and uninterpreted. It is 
useful for passing instructions and data that are 
unique to the display controller and that have no 
meaninng to the Geometry System.The number of 
words to be passed through is specified by a 7-bit field 
in the instruction. 

Selecting and Hit-testing 

In an interactive computer graphics environment it is 
frequently necessary to select certain objects that appear in the 
display for special attention. This is usually done with the aid of 
some type of input device, such as a light-pen, mouse, tablet or 
joy-stick. 

If the input device being used is a light-pen, the common 
selection mechanism varies, but involves detecting in hardware 
when the "beam" of the CRT is under the field of view of the 
light-pen. This approach is good for pointing at objects on the 
screen but poor for entering new objects into the drawing. 
because a tracking mechanism must be drawing some type of 
tracking object that the light-pen must be sensing. Because of the 
extra expense of the light-pen tracking mechanism and because 
many people no longer believe it necessary to actually point to 
objects directly on the screen, the light-pen is not feasible in low- 
cost systems. 

The alternatives to the light-pen, the tablet and mouse (we 
chose to ignore the joy-stick), are useful for entering new data 
into drawings, but without an extra mechanism, they are poor for 
pointing at existing objects in a drawing. The hit-testing 
mechanism in the Geometry System solves this problem. 

The common software mechanism for doing this selection 
task is to check each object to see if it is in the selection area. This 
selection area might be an area specified by identifying some 
portion of the drawing ,space to check objects against or it might 
be a small neighborhood around the cursor, which is tracking the 
position of the mouse or tablet. Intelligent operations can be done 
to reduce the amount of time spent in checking. For example, the 
bounding box around an object can be tested to see if any portion 
of the object is in the selection area: if it is not. then none of the 
object is in the selection area and therefore need not be further 
tested. This selection task is basically a clipping task, and the 
Geometry System has a special mode for handling it. 

The Hit-testing mode disables all data from coming out of the 
Geometry System. However, specific drawing instructions still 
come out of the system, missing their corresponding data. Thus. 
in hit-testing mode, if anything comes out of the output port of 
the system, this means that there was a "hit." In other words, 
something was in the selection area established by loading the 

selection matrix into the Matrix Subsystem. 

For a completely general selection mechanism, one might not 
only like to know whether an object passes through the selection 
window, but also which boundaries it intersects, or whether it is 
completely contained within the selection area, or perhaps 
completely surrounds the area. To accommodate these needs, the 
Geometry System provides information in the form of "hit-bits" 
that tell which of the six clipping boundaries are intersected by 
each drawing command, in this way, the device that is receiving 
Geometry System output may assemble the necessary 
information by "integrating" the various "hit-bits" from 
successive drawing commands used in drawing the object. 

Hit-testing is useful only when combined with a naming 
mechanism for identifying the objects being drawn. This can be 
done by loading a name register in the display controller before 
drawing each object that ks to be identified with a hit. This can be 
done using the PassThru instruction. 

Character Handling 

Characters provide a special problem for any geometric 
transformation subsystem. Of course, characters may be defined 
as strokes, or vectors, and supplied just as all other data to the 
Geometry System, but since the number of strokes to make up a 
character might be quite large, we ordinarily do not wish to draw 
characters in this way. On the other hand, any other approach will 
not provide for complete, general rotations, etc. of 3D characters. 
As a result, most systems must make a compromise and provide 
characters as a special ease. 

The usual problem with characters is that if they are a special 
case, then clipping them is a special case. The Geometry System 
clips characters only if they are defined as strokes, just like all 
other data. However, since it must make possible the clipping of 
special-case characters and character generation in the display 
controller, the LoadVl' instruction and corresponding data is 
always passed on to the output port of the system. The reason for 
this is that this data defines the boundaries of the character 
clipping window in the display controller. 

Mixing special-case characters and graphics presents another 
problem. There are two cases: 

• Putting characters in a drawing - this is handled by 
combining special sentinels to the display controller via the 
PassThru command with the Point command. The Poinl 
command is used to position the beginning of the character 
string. The Raster Subsystem, which is designed as a 
companion to the Geometry Subsystem, does the actual 
character clipping. Completely general character clipping is 
accomplished by proper use of these subsystems together. 

• Putting a drawing with characters This case is 
straightforwardly handled by properly modifying the 
tranformation matrix to reflect the character clipping 
window position. Then drawing can proceed as usual. The 
particular modifications for each case are handled by the 
software package mentioned above. 

The IRIS Graphics System 

The Geomeu3' System is being implemented on the a system 
called the Integrated Raster Imaging System, IRIS, which consists 
of the following components: 

• A processor/memor).' board with the Motorola 68000 and 
256k bytes of RAM: the memory can be expanded to 2M 
bytes. ] 'he 68000 microprocessor executes instructions in 
the on-board memory at 8 MHz. This memory' is fully 
mapped and segmented for 16 processes. Additional 
memory is accessed over the Multibus at normal Multibus 
rates. 
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• A Geometry Subsystem, with a multibus interface, lqFO's 
at the input and output of the Geometry System and from 
ten to twelve copies of the Geometry Engine. 

• A custom 1024x1024 Color Raster Subsystem, with high- 
performance hardware for polygon fill, vector drawing and 
arbitrary, variable-pitch characters. The hardware and 
firmware provide for color and textured lines and polygons, 
character clipping, color mapping of up to 256 colors and 
selectable double or single-buffered image planes. 

• A 10 Megabit EtherNet interface board. 

Summary 

The Geometry System is a powerful computing system for 
graphics applications. It combines a number of useful geometric 
computing primitives in a custom VLSI system that has a future 
because of its .scalable nature. It is quite likely that within 5 years 
the system will be implemented on one, 1/2.million transistor, 
integrated-circuit chip, with a correspondingly reduced cost and 
increased speed. 
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