
Towards an Interactive High Visual

Complexity Animation System

by

C. Csuri, R. Hackathorn, R. Parent, W. Carlson and M. Howard

Computer Graphics Research Group

The Ohio State University

ABSTRACT

A computer animation system is discussed which employs interactive techniques and presents a unified
approach to the graphical display of complex three dimensional data. The system facilitates the genera-
tion, manipulation and display of highly detailed data with the aid of interactive devices and a video
interface to a standard color TV monitor. The system enables the animator to create a variety of objects
(including texture) and to specify the necessary transformations for animation sequences. A run length
processing technique combined with a brute force Z-buffer algorithm has been newly designed and implemen-
ted that can handle the intersection of several million faces, lines and points. This makes possible a
full range of visual cues to simulate fire, smoke, water and complex 3-D texture such as grass, hair and
bark. Basic concepts and approaches are described. The display algorithm and the procedure model to
generate texture are presented and the implications of the system for computer animation are discussed.
Extensions to the system are outlined which include a unique graphics display processor currently under
construction that includes a partial implementation of the display algorithm in hardware.

INTERACTIVE SYSTEMS AND HIGH VISUAL COMPLEXITY

Computer animation has advanced to the
stage where systems have been implemented which
can routinely handle the 3-D display of objects
or scenes involving several thouSand faces (6,
7, i0)o We now need to develop interactive
systems that can facilitate the generation and
display of more complex data. This is espe-
cially true for representing detail such as
textures of hair, feathers, grass or the dis-
play of smoke, fire and liquids. Early work
in this area demonstrated that computers can
generate and display pictures requiring
several hundred thousand polygons or surface
patches. These pictures weredeveloped for
the most part in the context of a batch pro-
cessing environment. MAGI's unique algorithm
produced a color picture in 1974 (2) of a decid-
uous tree that had several thousand leaves.
Using a procedure model to generate or "grow" the
tree; it took three hours of calculation time on

*This work is supported in part by National
Science Foundation Grant Number MCS76-18659.

an IBM 360/65 computer to display this image at
500 x 500 resolution, Crow (5), with a visible
surface algorithm and a technique of object in-
stancing that he developed for Information
International Inc., displayed pictures consisting
of several hundred thousand polygons. His pic-
ture of multiple copies of the ABC logo took
over 30 minutes of calculation time on a PDP-10
witha KA-10 processor. The emphasis in his
system is on image quality and he uses a 3000
line display for producing pictures which repre-
sent the state of the art in computer graphics.
Catmull (3) produced complex pictures of bottles
and glasses (142 bottles and glasses where each
bottle required 32 hi-cubic patches). Newell
(9) also displayed high complexity pictures; the
most notable of which is entitled "Pawns" in
which he used instancing to generate the data and
a display processor that incorporated a hardware
implementation of the Watkins algorithm. Using
a PDP-10 computer and this graphics processor
the picture took approximately twenty minutes of
calculation time.

©1979 ACM 0-89791-004--4/79/0800--289 $00.75
See Copyright Pg. 289

All of these efforts were important steps
towards high visual complexity animation systems.
Even though we now have improved technology which
helps in some aspects of the display problem,
there is more work to be done with interactive
techniques and color raster scan displays, data
generation (especially for images such as texture
and smoke), the specification of complex creature
motion, display algorithms and image quality.
We must find methods that w111 enable us to
easily generate, manipulate and display the
intersection of several million faces, lines
and points in three dimensional space.

Although there are interactive two and two
and one half dimensional systems that employ a
TV color display ~2), there are not many exam-
ples of interactive 3-D systems. Jones (7)
implemented an interactive black and white system
with extensions to ALGOL-60 in Case Western
Reserve's high performance graphics display pro-
cessor built by the Evans and Sutherland Corpora-
tion. It is an animation system that handles
several thousand edges in real time. An inter-
active 3-D graphics system involving TV displ@y
was developed by Staudhammer C0) at North
Carolina State University which refreshes a
3-D image from an analog disk. Other systems
have been built for the military, such as flight
simulators developed by E and S and G. E.
Corporation. These are special purpose systems
built at great cost and designed exclusively for
flight training that have many of the interactive
features required for an animation system.
While they perform well for their intended pur-
pose, there is a limitation as to the amount of
data that can be displayed in real time; this
is usually around 3000-3600 edges. Although
better hardware implementations are possible,
the display algorithms do not seem well suited
for high complexity data. There has been some
interesting exploratory work by Clark ~) that
may overcome some limitations. His techniques
involve a hierarchical organization of large
data bases that has significant implications for
highly complex data and the visible surface
calculation. In his scheme the requirements
for the display of detail at any instance in
time is, in part, determined by one's viewing
position in 3-D space or one's position within
a tree structure. Unnecessary edges are not
processed by the algorithm, thus reducing the
calculation time.

ANIMA II (6), which was one of the first
attempts at an interactive 3-D color raster
scan animation system was designed and imple-
mented by the CGRG at the Ohio State University.
It enables the user to generate, manipulate
and display 3-D images and it has a real-time
playback capability for animation. The ani-
mation sequences can be recorded onto video-
tape. This system has been used to produce
over two hours of storyboard animation for
science, education and commerical TV. The
strengths of the system include its interactive
capabilities with the data generation subsystem
and the relatively easy to use director's lang-
uage. Another attractive feature is a fast
visible surface algorithm for the rapid display
of animation which provides users with the spon-

taneity necessary to make visual judgments. The
run-length encoding scheme used as final output
to a video interface designed for us by Staud-
hammer makes this particular combination of soft-
ware and hardware work for the real-time playback
of animation. There are limitations to the
ANIMA II system that are primarily related to
image quality. The data transfer rate from disk
of the playback scheme limits the number of run-
lengths available per frame which affects the
image quality attainable. While complex creature
motion has been created with the system, the
specification of transformations, especially the
positioning of sub-parts, tends to be time con-
suming. There is no smooth shading, transparency,
highlights or shadows and aliasing is a problem.
It should be noted that an earlier version of the
Myers' (8) Z-buffer algorithm implemented in
1974 at CGRG handled smooth shading and trans-
parency, but that these features were eliminated
because greater value was placed upon user inter-
action and a real-time playback capability.

The primary focus of this paper will be upon
our new animation system which seems to grow
naturally out of our previous work with ANIMA II.
A later unpublished version of the Myers' algo-
rithm (an efficient implementation of a brute-
force Z-buffer algorithm) was designed to process
data directly off a mass storage device. While
Myers' work has produced good preliminary results,
we have found it to have certain limitations.
The type of internal data structures used and the
requirements of separate copies of data limits
the speed of calculation and the variety of
visual results that can be displayed. Recently,
Hackathorn of CGRG has extended this previous
work by introducing features and techniques that
represent a modest improvement for the display of
high complexity data. The display algorithm
incorporates a unified approach to the display
problem where one can combine not only polygonal
surfaces but also points, lines and hi-cubic
patches.

A new animation system called ANTTS has been
implemented on our PDP-ii/45. It is an experi-
mental system with a language that involves
interactive techniques and a unified approach to
the display of high complexity data including
textured objects and smoke. This system is being
redesigned for implementation on our VAX/780 com-
puter with a unique graphics display processor
under construction by the CGRG. The final system
will exploit the display algorithm with a partial
implementation in hardware and it should signifi-
cantly improve response time for interactive
capabilities.

DESIGN CONSIDERATIONS

An interactive high visual complexity ani-
mation system should have several basic features:

i. Ideally it should be a real-time
system, but with available technology and
associated cost an interactive capability
seems like a reasonable goal.

2. A language is required to specify
the transformations to control the object's

290

position and movement through space. There
is a need for a facility where the moving
human figure can be digitized and a motion
file created.

3. Techniques such as procedure models
are necessary to generate and store complex
data. Data generation could be an algo-
rithm to "grow" a tree, instancing or solids
of revolution, including the triangulation
between slices. One should be able to
specify different resolutions for the ob-
Ject, for example, displaying an object
having up to one million faces as a simpli-
fied object having only ten faces. This is
important if one hopes to achieve an inter-
active design capability.

4. The system should have facilities for
the digital editing of animation sequences
from a mass storage device. It should allow
for the random access of sequences and the
dynamic changing of color in real-time play-
back mode without recalculating the sequences.

5. The display algorithm should be able
to handle the intersection of lines, points
and surfaces in three dimensional space.
Data should be processed in a stream (as
opposedto pre-sorting), either by reading
in data directly from a disk or by creating
data "on the fly."

6. The display algorithm should lend
itself to a simple hardware design. A hard-
ware implementation of the entire display
algorithm, or at least an implementation
in microcode, would overcome computational
constraints. The level of effort in hard-
ware seems to be more a function of what
one can afford rather than what one can
conceptualize. Anti-aliasing is part of the
display problem and it seems like the real
solution belongs in the realm of hardware.

VISIBLE SURFACE ALGORITHM

In general we can characterize two classes
of visible surface algorithms: those which
directly calculate all visible surfaces keeping
them intact entities, and those algorithms in
which the visible surfaces are indirectly found
as a result of calculating the image at the pixel
level. To the first class belong the subdivision
algorithms of Weiler and Warnock that calculate
the visible polygons (or polygonal areas) in a
surface and which must be separately converted
to a raster scan format. Also in this first
class are the scan line algorithms such as those
designed by Romney, Bouknightand Watkins. These
algorithms directly determine a visible surface
in terms of its visible segments (in image space)
and each of them uses raster scan conversion as an
integral process. All algorithms of the first
class have one characteristic in common: they
have at least one nonlinear sorting step which
makes them seem inappropriate for images with more
than about i0,000 polygons. Several of these
algorithms use some form of coherence to "hedge"
against the inevitable calculation explosion, but
few coherence schemes work well with the varied

and detailed data descriptions in a complex scene
(with the possible exception of pixel coherence
run lengths).

The algorithms in the second class are
typified by the use of a frame buffer to indirect-
ly determine which surfaces are visible. This
technique makes them more suitable for the pro-
cessing of high complexity image data. A frame
buffer, usually used for video display, is nothing
more than a two dimensional array of memory that
stores all the picture information necessary to
describe one complete frame. Frame buffers can
be distinguished by whether or not they allow a
full 2-dimensional bucket sort in both 'X' and
'Y', of if they only allow a 1-dimensional bucket
sort in just 'Y'. This last type of frame buffer
is called a run-lensth frame buffer and it uses a
fixed length block of memory at each scan line in
order to hold a list of run lengths which are
visible on that scan line. The other frame
buffer type is usually organized as 512 rows
(scan lines) with each row containing 512 fixed
blocks for pixel (picture element) storage. This
type of frame buffer is characterized by the size
of the pixel blocks, i.e., how much information
each pixel contains. The simplest of this type
is called a 2-D color frame buffer and has either
i, 4, or 8 bits per pixel which indicate the
pixel's color (often by pointing into a palette
look-up table). The type known as a Z frame
buffer or depth buffer is a more sophisticated
one. Here, enough bits to adequately store the
pixel's position along the 'Z' axis is kept along
with the color bits for each pixel. This enables
brute force comparison techniques to retain only
the pixels closest to the observer. A third type
of frame buffer in this categorization scheme
is what we call a pixel buffer. A pixel buffer
not only has the ability to be a 2-D color frame
buffer or a Z-buffer, but it can also hold addi-
tional information (all optional) about the pixel.
This could include: original object identifica-
tion number, object geometric type (curved,
planar, line, or point), object image type (solid,
transparent, shadowed, etc.), positional pixel
skewing in 'X' and 'Y', pixel transmittance,
pixel reflectance, and additional color information
which could be used for transparency or shadows.

Data is moved into the frame buffers in one
of two methods, either unconditional overwrite
or conditional overwrite. Newell is the best
known advocate of unconditional overwriting and
he has written two such algorithms. Both his
algorithms depth sort a list of polygons (divid-
ing where overlapping occurs) and then simply
write the polygon into a frame buffer starting
with the most distant face from the observer.
His first algorithm used a run-length frame
buffer, but this was abandoned for a simple 2-D
frame buffer in his second algorithm because of
the extra time spent ordering (merging) the run-
lengths in 'X', and because the number of run-
lengths associated with each scan line severely
limits the image complexity.

Conditional overwriting is found with the
frame buffers which store 'Z' information at each
pixel. Here a brute force comparison is made at
a new pixel's 'Z' position, and that pixel is

291

overwritten into the frame buffer only if it is
closer to the observer than whatever was in there
previously, or else it is ignored. Catmull,
Myers and Crow have used the conditional overwrite
approach as the heart of their visible surface
algorithm.

A variation of unconditional and conditional
overwrite is unconditional and conditional modi-
fy. Again, these techniques are used with
frame buffers but instead of a direct replace F
ment, a third pixel is formed as a result of two
pixels (the current one in the frame buffer and
the new pixel) combining and modifying each other.
This condition is common when the effect of trans-
parency is desired.

When one deals with very high complexity data,
a consideration that becomes almost as important
to a display algorithm as its visible surface al-
gorithm, is the manner in which the data is ar-
ranged and presented to the visible surface rou-
tines. There are two basic approaches. One
approach converts an incoming list of object
space data into one or several other lists of
image space data in an attempt to make the data
more "digestible" by the visible surface routines.
The other approach is to treat each patch, face,
llne or point of the incoming list as an isolated
element, where the surface routines work directly
on it in a "stream processing" manner.

THE DISPLAY ALGORITHM

R. Hackathorn of our group has approached
this problem by choosing to process data in a
stream, either by readin~ in data directly from

POLYGONS

DISK
RESIDENT
DATA

BRING IN
(PART)
DATA TO
SYSTEM

a disk or by creating data "on the fly" with pro-
cedural algorithms. In order to do this stream
style of processing, his display algorithm relies
heavily on two large memory arrays called a run-
lensth buffer and pixel buffer (frame buffer),
respectively. The run-length buffer always exists
in main memory while the pixel buffer is always
kept in disk memory with large blocks brought in
and out of main memory as needed.

L

Our choice to internally represent all data
as run lengths is not only a very efficient and
fast method to store data, it also allows for a
unified aproach to the display of data. In this
process, triangles and lines break down into run
lengths, and points and patch points are merely
run lengths of length i. T1~eans that all
these data types can exist together naturally
within a scene description without the need to
deal with special cases (see Figure i).

While the display algorithm is very simple
(i.e., run-lengths buffer to 'XY' pixel buffer
using brute force 'Z' comparisons), it has traded
off capabilities, primarily the ability to compare
a face against other faces before making a deter-
mination of their visible parts. This has tra-
ditionally been required for such features as
shadows, transparency, reflections and anti-
aliasing. However, solutions exist for these
cases, and though they may not yield the most
optimal results, their output is a close enough
approximation to be useful.

Since animation in a video environment re-
quires thirty frames per second, it is only
natural to want as little information in the test

G E N E R A L O V E R V I E W O F A L G O R I T H M
L I N E S PROCEDURAL

(e.0. SOLIDS OF
REVOLUTION)

POINTS PATCHES

DISK MEMORY

MAIN MEMORY

AND TRANSFORM~ ~

Y~UCKET SORT RON- I I I II
LENGTH INTO END OF
UNORDERED (IN X) UST OF IFA BUCKET IN THE RUN-LENGTH BUFFER BECOMES FULL,
RUNS AT EACH SCAN LINE THEN EMPTY IT AND THE NEXT SEVERAL ROWS OF BUCKETS

INTO DISK RESIDENT PIXEL BUFFER USING BRUTE FORCE "Z S
COMPARISON AT EACH PIXEL LOCATION AND RESET BUCKET
COUNTERS TO ZERO.

PIXEL BUFFER

SECTION OF PIXEL
BUFFER TO BE UPDATED

BUFFER

FIG.I

292

frames as is feasible. To achieve variable com-
plexity, an object consists of a number of differ-
ent representations. At the lowest level, an ob-
ject can exist as a skeleton made up of points
and lines. A final complexity level can consist
of smooth, curved or textured surfaces mapped
onto the skeletons' positions. Variable image
quality can range from very low resolution (64 x
64) up to high resolution (1024 x 1024 averaged
to 512 x 512) and include options for image en-
hancements.

FLOW OF PROCESSING FOR THE DISPLAY ALGORITHM

Assuming polygons as the data type, the flow
of processing is as follows:

l) Get a single triangle from disk or
generate one using a procedure model
algorithm.

2) Update the triangle's 3 points with
position, rotation and size trans-
formations.

~) Determine face color from angle of
incidence between the light source,
triangle and observer.

4) Convert the triangle's points from an
object space coordinate system to
one of image space using a per-
spective projection.

5) Orient the triangle definition
with respect to its highest 'Y'
value.

6) Raster-scan convert the triangle
into run-lengths with one for each
scan line the face crosses.

7) Pass each run length to the buffer
by adding it to the end of an un-
ordered list of previous run-lengths
found at the same Y scan line.

8) When all triangles have been pro-
cessed for one frame, the run
lengths are decomposed into 3-D
pixels and have their 'Z' values
compared against a pixel with the
same 'XY' values in the pixel
buffer, effecting brute force hid-
den surface removal. The pixel
buffer is then read into main
memory (one section at a time)
and encoded into video run lengths
for display on a TV.

ADVANTAGES OF THE DISPLAY ALGORITHM

The combination of a run length buffer and
'XY' pixel buffer eliminates three common "growth
pains" found in algorithms processing over i00,000
polygons (or the equivalent with patch algorithms):

i) There are no non-linear sorts by doing
a 'Y' bucket dump into the run length
and, when needed, doing a combination
'X' bucket dump and brute force 'Z'

comparison into the pixel buffer.

2) There are no internal image space
data lists which grow in length with
the number of polygons. Variable
image lists such as active faces/
edges per scan line or depth
ordered faces or the dual list out-
put of subdivision algorithms must
be stored in disk memory when the
image complexity gets too high.
The use of disk storage distracts
from the advantages of procedural
model data generation, and com-
petes with disk-resident object
data descriptions for space,
thereby limiting maximum complexity.

3) The use of a run-length buffer
virtually eliminates the timecosts
in randomly accessing a disk-
resident 'XY' pixel buffer by
spreading the cost of disk trans-
fers among many pixels. For
example, if each scan line in the
run length buffer holds i00 run
lengths and 20 scan lines are
moved to the pixel buffer when a
scan line is full, and if each
run-length describes an average
of 3 pixels, then there is a po-
tential of up to 6,000 pixels
involved with each disk access.
This translates into a cost per
pixel of only a few micro-seconds
for each memory access.

Another advantage of this combination is that
it provides a simple and flexible approach to high
complexity image synthesis. This allows the dis-
play algorithm to operate in a variety of modes
and interface to a variety of external programming
tasks. By using run lengths as the primitive data
type, an internal image space data structure can
be built which is common not only to simple
images such as lines and large planar polygons,
but also to complex imagery made of surface
patches or millions of small triangles or points.
Such a feature greatly facilitates interactive-
ness in an animation environment by allowing ob-
jects to be seen at various levels of detail.

While the use of a run length buffer provides
a common (fixed size) internal data structure,
using a disk resident 'XY' pixel buffer provides
a common sharable image. This makes possible a
more flexible approach to generating video images"
than we have used in the past. Using our run
length encoded video interface for output we have
written a 2-D color "painting" routine, a "star
generation" routine (for producing interacting
galaxies), and various random background genera-
tion routines. But none of these programs could
mix their image output with that produced by the
display algorithm of ANIMA II, nor could ANIMA II
mix in the output of any of these routines. By
using a disk resident sharable image such as that
found in the 'XY' pixel buffer, these incompar-
ability problems are overcome simply by storing
a common disk resident directory and status
block, and allowing various routines to access

293

any one of several 'XY' pixel buffers using tech-
niques of conditional or unconditional overwrite
or modify overwrite.

This approach makes possible a variety of
useful interactive animation techniques as well
as post processing techniques for special effects
and image enhancement. One interactive technique
is to store several pixel buffers on a disk, but
use Just one to process the video image. At the
start of each frame, the separate pixel buffer
can either be cleared (restarted to background
color), simply reused as it was left from pre-
vious calculations causing multiple images to be
successively built up, or reset by unconditionally
overwriting one of the other pixel buffers, or
conditionally overwritten by several of the pixel
buffers (using brute force 'Z' comparisons),
effectively merging the 3-D surfaces together.
The interactive advantages of resetting and merg-
ing pixel buffers together can be shown in an
animation example: A bird could be interactively
flown around in a forest by precalculating a view
of all the trees and storing the 2-D surfaces in
a pixel buffer for a background image a bird could
be interactively animated with a very quick re-
sponse time between frames, because only the bird
would need to be recalculated each frame. Yet the
bird would be subject to all the same 3-D cues as
if the trees were also being recalculated. The
bird could fly around the trees, disappearing as
it goes behind them, or it could fly through
grass or leaves, becoming only partially ob-
scurred. Further, just as in conventional anima-
tion, the background landscape of trees and
mountains could be precalculated much larger
than the actual 512 x 512 TV viewing resolution
so that the field of view could be moved around
the scene, only showing part of it at a time.
Using this technique, the animator can enjoy
the benefits of animating with complex imagery
without losing the benefits of interactiveness
as a result of slow response time.

A variation of merging pixel buffers is to
store only as much of the pixel buffers as need-
ed to contain a single object (or object group).
Using this technique an animator can not only
interactively manipulate an object around a com-
plex 3-D background, but can now manipulate parts
of the background also. This is done by cal-
culating an object at 512 x 512 but only using
a pixel buffer just big enough to hold it (such
as 136 x 120 or 250 x 74, etc.). Then for each
frame, these pixel buffer sections can be inter-
actively moved around with a very rapid response
time while benefiting from 3-D cues like overlap
and intersection. Precalculating several views
of an object and storing them in this manner
also has advantages for object instancing and
high complexity data generation techniques in
which the user can interactively work on part
of a detailed object while the rest of the ob-
Ject has been precalculated.

SOME PROBLEMS AND POSSIBLE SOLUTIONS

One problem in our approach is that all sur-
faces are treated as visible, so that a fair
amount of processing is done to each polygon
whether it is ultimately visible or not. In a low

complexity environment this problem has generally
been solved by not using a frame buffer, but in-
stead depth sorting all the polygons and finding
the visible surfaces using segment overlapping or
image subdivision techniques. The problem with
this approach is that with a very complex scene,
such as a view of a city, the time spent sorting
can easily be far longer than the time spent
using a brute force apprQach. A more acceptable
way of modeling the city example is to use a
hierarchical approach such as Clark (ii) used.
However this method also suffers from non-linear
sorting/searching steps. A simple linear solu-
tion does exist using a pixel buffer, but re-
quiring extra bits per pixel. Using this
approach the city example could exist as a very
simple block model and as a very detailed (win-
dows, doors, interiors, etc.) model. The simple
model would be scanned first, using a brute
force algorithm to find visible surfaces and
storing an object number with every pixel indi-
cating where it came from. Then the pixel buffer
could be searched, making up a list of objects
which had some visible pixels in the rouch scan.
Then the detailed model could be scanned but with
only those objects which showed up on the visible
list. Thus for a small preprocessing cost, a
huge number of polygons can be eliminated.

Another problem with using a pixel buffer is
that only two surfaces can be involved when
pixels are being modified. Many situations,
notably scanning a mixture of transparent and
solid surfaces and using the anti-aliasing
techniques of Catmull and Crow, require not only
three or more surfaces to interact but also need
an ordering of the surfaces from back to front.
In an environment where the production of real-
istically simulated still photographs are de-
sired, there is no easy solution to this problem.
However in an animation environment in which
simplicity and speed are more important than
accurately simulating a physical phenomenon, we
believe this problem can be minimized so as to
produce acceptable results. In the case of
transparency, a lot of the problems with mixing
solid and transparent surfaces can be avoided by
scanning all solid objects first, and then
transparent ones. This avoids the problem that
occurs when a solid pixel lies between two trans-
parent pixels that have already interacted and
modified each other. The problems of trying to
modify a set of randomly positioned colored
transparent surfaces can be minimized by keeping
a separate color value at each pixel for a trans-
parent pixel which lies in front of a solid pixel
or background. This, plus keeping transmittance
bits and extra bits indicating whether a pixel
is solid or transparent and whether it's been
modified or not (and by how much), will result
in an image that is merely a simulation of trans-
parency, but which will be consistent and produce
an adequate effect.

Solutions to the aliasing problem require a
great deal of computer time making a software
implementation impractical for highly complex
data. It can take two to five times longer than
the visible surface calculation. We plan to im-
plement, partially in hardware, a special case
solution to this problem. Our scheme involves

294

calculating pictures at 1024 x 1024 resolution and
averaging the intensities (not colors) of four
pixels into one pixel (using dominant chroma) into
a normal 512 x 512. We also plan to experiment
with various low pass filters implementing them in
microcode.

TEXTURE

In our attempt to handle visually complex
objects, we are concerned not only with objects
possessing hundreds of thousands of polygons to
define smooth surfaces but also with the pro-
cessing necessary to give the surface of an object
the appearance of a particular texture. By "tex-
ture" we mean the visual properties associated
with a surface when that surface is made of a
certain material, e.g., plastic, wool, plaster,
hair, etc.

To date, there have only been a few signifi-
cant attempts known to us at accomplishing this.
The most recent, and most successful, was pre-
sented at SIGGRAPH '78 by Blinn. Blinn's paper
describes a technique using a quadrilateral patch
defining a normal-vector perturbation function.
This patch is stretched to fit each surface patch
and new normal vectors are computed at each sur-
face point on the patch. Although very effective
in certain situations and as a demonstration, the
technique has three major drawbacks. First,
because the texture patch is repetitively mapped
onto every surface patch in a uniform manner, it
is subject to forming undesirable patterns on the
object when the actual texture possesses no such
pattern (due to the pattern formed by the surface
patches themselves, such as in a crater texture
mapped onto a sphere consisting of eight uni-
form surface patches). On the other hand, the
technique is also capable of destroying an over-
all pattern of the texture if the surface patches
are not appropriately aligned (as in the case
of mapping a brick texture onto an irregularly
shaped object).

Second, because the visible surface portion
of the display processing is performed without
regard to the texture, the image calculated
when using certain textures will not appear to be
"reasonable." Not only will a silhouette of an
object not reflect the texture on the surface
(e.g., bumps, bricks, hair), but relatively deep
textures will not hide adjacent features (e.g.,
deep holes, craters, mountains).

Third, because of the simplification used
in calculating the perturbed normal vector
(i.e., that the value of the bump function is
negligably small) in order to make the calcu-
lation tractable, patterns with relatively
large texture features (e.g., long hair, deep
depressions, large bumps) are not correctly cal-
culated.

We have taken a different approach to repre-
senting a textured object in that we define a
three-dlmensional perturbation of the object's
surface (i.e., surface detail) as well as varia-
tions in reflectance and color properties along

the surface. Because our high complexity data
consists of hundreds of thousands of small poly-

gons we can rearrange their position as well as
assign individual color and reflectivity in order
to more realistically model "physical" texture on
an object. Instead of simulating the reflectiv-
ity of craters on the surface of an object (a la
Blinn) we can actually "create" craters on the
surface. Our efforts up to this point in time
have been a relatively simple repetitive replace-
ment of a physical texture onto an arbitrary
solid of revolution.

To specify a texture, the user interactively
selects the rectangular size of the patch, and
the displacement, color and reflectivity for each
point on the rectangular patch. The size of the
patch is controlled by two dials. The user se-
lects a point on the patch using two additional
dials. The user specifies the displacement,
color and reflectivity by pressing the appropriate
function button and adjusting the input-value
dial. At all times the texture rectangle is dis-
played on the TV monitor with each point's value
of the attribute the user is currently concerned
with encoded in color. Thus the user can create,
modify or view the attribute values of a texture.
The user can also request a visible surface dis-
play, with a modeled light source, of a texture
patch on the monitor. Additionally he can re-
quest the display of the texture on a primitive
shape, for example, a sphere or cube.

In order to specify a textured object, the
user selects a contour llne and a texture patch
(or makes hi own). At the time the object is
to be displayed, a routine is called which gener-
ates the solid of revolution defined by the con-
tour line while simultaneously applying the per-
turbation function to the surface being generated.
This procedurally based object definition results
in a flexible and straightforward representation
as well as a great savings in space allocated to
such representations.

In our current implementation of processing
texture, the texture specification contains the
number of ohject slice points to be replaced as
a group (call it k) and an n x m array of x, y,
z displacements. As each object slice is gener-
ated (by rotation of the object contour line)
each k points of the slice are replaced by the n
points of the appropriate column of the texture
array. The number of the appropriate column is
the number of the object slice modulo m+l. The
replacement is performed by using the first and
kth points of the group to be replaced to d4ter-
mine the rotation, scale and translation opera-
tions necessary for the first and nth points of
the texture column to coincide with the positions
of the first and kth points of the object group.
The n transformed texture column points are then
substituted for the k points of the untextured
object. This process is repeated for each succes-
sive group of k points in the object slice. When
the next object slice is generated, the next
column of the texture array is used for the re-
placement.

Once we have a good understanding of the re-
suits obtainable by our method, we hope to devel-
op techniques by which we can impart a texture
onto an irregularly shaped object. This is a

295

difficult problem in the case where the texture
has some overall pattern and this pattern must be
kept intact over the surface of the object. In
order to avoid some of the problems cited with re-
gard to Blinn's technique it may be necessary to
adopt other methods of imparting a texture on an
object. For example, a texture may be propagated
along the surface of an object spreading out
from an arbitrary starting point. Or each vertex
may be considered a probabilistic finite state
automation which will stabilize into a state
dependent on the texture specification, chance,
and the state of the neighbors of the vertex.
Another, although simpler, extension to our tex-
ture specification is the introduction of random-
ness. This is very desirable for use in many
textures such as hair, craters and plaster. This
could be accomplished either by successively se-
lecting from a number of texture patches at ran-
dom or by random modifications to a standard tex-
ture patch.

SMOKE

As Blinn says in the summary of his disser-
tation, existing display techniques leave much to
be desired when it comes to the display of "soft"
objects such as clouds, fur, smoke, and fire.
The CGRG has been investigating an alternative
technique, which allows for the possibility of
representing solid or nonsolid objects, not as a
collection of boundary curves (patches, polygons,
etc.), but rather as a collection of points.
Each of the points comprising the object can be
treated as a separate data entity, and will have
associated with it properties of intensity and

Smoke Cloud
300,000 points

chromaticity, position, and orientation, as well
as any properties necessary for animation pur-
poses.

The main motivation for this investigation
is that non-solid objects can be more accurately
represented, with more realistic visual cues,
such as the billowing of clouds, the dancing of
fire, or the flowing of water. Another desirable
property of a point representation is that a
solid object could indeed be solid in its repre-
sentation, as all points inside the boundary sur-
faces could be defined as well as those on the
boundaries. Some data input techniques are point-
sampling techniques, such as medical cat-scans,
and raster scan output displays can be considered
as a collection of ordered points (pixels). Con-
sequently, determination of visible Surfaces re-
duces to a Z comparison of points in the data
structure.

There are certainly many disadvantages to
this approach, such as the large number of points
necessary to describe an object, and the need to
somehow relate a point to it's nearest neighbors.
But we believe that a technique of this type is
important in achieving the degree of realism de-
sired in an animation environment.

We have experimented with a point-based ob-
ject representation by creating an image of a
cloud of smoke rising from an elevated source.
This first attempt uses the theory of particular
clouds attributed to Green and Lane (ii) as the
basis for generating the data. The intensity of
each point (x,y,z) in the cloud is dependent on
the density of the particles there. This can be
determined using the equation for elevated sources
diffusion:

-(~-h)2 (~h) 2

where
X = is concentration in g/cm 3 at pt (x,y,z)
Q = is rate of emission
h = is height of source

and C and C z are temperature gradients
Y

determined from wind velocity, turbulence, dif-
fusing power, viscosity of air, and eddy velocity.

By varying one or more of the parameters in
the model, different images of the clouds can be
generated, and these can be combined to create an
image that more closely approximates the actual
form and intensity of experimental smoke clouds.

EXPERIMENTAL RESULTS

The animation subsystem implemented on the
PDP-ii/45 was intended as an experiment to better
understand the problems associated with highly
complex data. No attempt was made to optimize
code for greater speed and efficiency. In this
system it takes the display algorithm approxi-
mately four and one half minutes ("wall" time) to
process and display 150,000 triangles or 450,000
edges. We are now designing a new system for our
VAX/780 and new graphics display processor. While
it is difficult and dangerous to predict the ex-
pected improvement in performance, we hope that
the new system will be a significantly better one.

296

Tribbles - 500,000 triangles

Burley, Idaho - 25,000 triangles

297

Beldar's Hat - 12,000 triangles

Cocklebur - 46,000 triangles

298

GRAPHICS DISPLAY PROCESSOR

The VAX 11/780 Graphics System is a hardware/
software interface designed to aid in the creation,
calculation, and output phases of computer anima-
tion. The main objective behind the hardware/soft-
ware design is to reduce the time between object
description and final animation output while at the
same time increasing the artists' control over the
process.

The graphics system consists of three main
parts. They are the Z buffer, the 2-D color frame
buffer(s), and the run length animation port (see
Figure 2). The purpose of the Z buffer is to take
in 3-D run length formatted data and to produce,
on a frame by frame basis, 2-D run length data
which describes the visible surfaces of the orig-
inal 3-D information. The Z-buffer sorting algo-
rithm is implemented by a bit-slice microprocessor
because of the relative ease with which the algo-
rithm may be modified.

For example, adding anti-aliasing or trans-
parency processing requires making changes to the
microprocessor' s writeable control store (micro-
program). This approach also gives the capability
to process a higher resolution 1024 x 1024 image
space and to do intensity averaging in microcode.

Operation of the algorithm involves transla-
ting the 3-D run length data into a pixel format.
Each generated pixel is Z value sorted into the
core memory. After all the runs for a frame have
been processed, additional processing (such as
low pass filtering) may occur. Then the pixel
representation of the image is translated into
the 2-D format that the run-length port recog-
nizes and sent back to the VAX 11/780 for storage.

The purpose of the 2-D color frame buffer(s)
is to provide a static 512 x 512 pixel image.
These will be used for operator interaction dur-
ing the object definition phase.

vAx] VAX GRAPHICS SYSTEM I ,,,',80 |

I I ;~
ALL SUBSYSTEMS

_ _ r e e f : q , , !
a:: I ~'U"~-L~L~ L ~ Ja_v-~ ' - - - I ' I fIN FHlli B MEGABYTE
El ' CORE MEMORY

FRAME BUFFER ~ DATA + ADDRESS + CONTROL -- -- --~ TO OTHER

FIG.2

The run-length port is the animation port of
the system. It takes in 2-D run-length formatted
data and produces real-time NTSC video suitable
for tape recording. The run-length port accepts
2-D run-lengths data from the VAX DMA interface
and translates this data into the appropriate
real-time NTSC video.

The inclusion'of the core memory in the data
path also allows for the playback of multiple
frame (less than 6 metabytes in length) sequences
of high complexity. These sequences are of such
high data band widths that the DMA interface
might not be able to supply data fast enough.

CONCLUDING REMARKS

The details of the graphics language for
ANTTS is the subject of another paper but it is
important to note some of its basic capabilities.
It can handle various arithmetic and transforma-
tional commands which are either unscheduled or
scheduled (of a type similar to those of ANIMAII)
as well as incorporating commands used to modify
the flow of control. Variables can be set either
programmatically or interactively which allows
great flexibility in controlling the animation.

BIBLIOGRAPHY

Blinn, J. F., Simulation of Wrinkled Surfaces,
SIGGRAPH, 1978.

Brooks, J., et al., An Extension of the Combina-
torial Geometry Technique. NTIS Report AD-782-883,
August, 1974.

Catmull, E. A., A Subdivision Algorithm for Com-
puter Display of Curved Surfaces, Univ. of Utah,
UTEC-CSC-74-133, Dec., 1974.

Clark, J. H., Hierarchical Geometric Models for
Visible Surface Algorithm, CACM, October, 1976.

Crow, F. C., The Aliasing Problem in Computer
Synthesized Shaded Images, UTEC-CSC-76-015, Dept.
of Computer Science, Univ. of Utah, 1976.

Hackathorn, R., The ANIMA II System, SIGGRAPH '77.

Jones, B., An Extended ALGOL-6, for Shaded Compu-
ter Graphics, Proc. ACM Symp., 1976.

Myers, A. J., "An Efficient Visible Surface Pro-
gram," Grant No. DCR 74-007"68AO1, Tech. Rep.,
National Science Foundationp 1975.

Newell, M. E., The Utilization of Procedure Models
in Digital Image Synthesis, Computer Science,
Univ. of Utah, UTEC-CSC-76-218, 1975.

Staudhanmner, J., and Eastman, J. R., Computer Dis-
play on Colored Three-Dimensional Object Images.
Proc. Annu. Symp. Comput. Arch., 1975.

Sutherland, I. E., Sproull, R. F., and Schumacker,
R. A., A Characterization of Ten Hidden-Surface
Algorithms, Comput. Surv., 1974.

Wein, M., and Burtnyk, N., A Computer Animation
System for the Animator, UAIDE, 1971.

299

