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ABSTRACT 

A computer animation system is discussed which employs interactive techniques and presents a unified 
approach to the graphical display of complex three dimensional data. The system facilitates the genera- 
tion, manipulation and display of highly detailed data with the aid of interactive devices and a video 
interface to a standard color TV monitor. The system enables the animator to create a variety of objects 
(including texture) and to specify the necessary transformations for animation sequences. A run length 
processing technique combined with a brute force Z-buffer algorithm has been newly designed and implemen- 
ted that can handle the intersection of several million faces, lines and points. This makes possible a 
full range of visual cues to simulate fire, smoke, water and complex 3-D texture such as grass, hair and 
bark. Basic concepts and approaches are described. The display algorithm and the procedure model to 
generate texture are presented and the implications of the system for computer animation are discussed. 
Extensions to the system are outlined which include a unique graphics display processor currently under 
construction that includes a partial implementation of the display algorithm in hardware. 

INTERACTIVE SYSTEMS AND HIGH VISUAL COMPLEXITY 

Computer animation has advanced to the 
stage where systems have been implemented which 
can routinely handle the 3-D display of objects 
or scenes involving several thouSand faces ( 6, 
7, i0)o We now need to develop interactive 
systems that can facilitate the generation and 
display of more complex data. This is espe- 
cially true for representing detail such as 
textures of hair, feathers, grass or the dis- 
play of smoke, fire and liquids. Early work 
in this area demonstrated that computers can 
generate and display pictures requiring 
several hundred thousand polygons or surface 
patches. These pictures weredeveloped for 
the most part in the context of a batch pro- 
cessing environment. MAGI's unique algorithm 
produced a color picture in 1974 (2) of a decid- 
uous tree that had several thousand leaves. 
Using a procedure model to generate or "grow" the 
tree; it took three hours of calculation time on 
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an IBM 360/65 computer to display this image at 
500 x 500 resolution, Crow (5), with a visible 
surface algorithm and a technique of object in- 
stancing that he developed for Information 
International Inc., displayed pictures consisting 
of several hundred thousand polygons. His pic- 
ture of multiple copies of the ABC logo took 
over 30 minutes of calculation time on a PDP-10 
witha KA-10 processor. The emphasis in his 
system is on image quality and he uses a 3000 
line display for producing pictures which repre- 
sent the state of the art in computer graphics. 
Catmull (3) produced complex pictures of bottles 
and glasses (142 bottles and glasses where each 
bottle required 32 hi-cubic patches). Newell 
(9) also displayed high complexity pictures; the 
most notable of which is entitled "Pawns" in 
which he used instancing to generate the data and 
a display processor that incorporated a hardware 
implementation of the Watkins algorithm. Using 
a PDP-10 computer and this graphics processor 
the picture took approximately twenty minutes of 
calculation time. 
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All of these efforts were important steps 
towards high visual complexity animation systems. 
Even though we now have improved technology which 
helps in some aspects of the display problem, 
there is more work to be done with interactive 
techniques and color raster scan displays, data 
generation (especially for images such as texture 
and smoke), the specification of complex creature 
motion, display algorithms and image quality. 
We must find methods that w111 enable us to 
easily generate, manipulate and display the 
intersection of several million faces, lines 
and points in three dimensional space. 

Although there are interactive two and two 
and one half dimensional systems that employ a 
TV color display ~2), there are not many exam- 
ples of interactive 3-D systems. Jones (7) 
implemented an interactive black and white system 
with extensions to ALGOL-60 in Case Western 
Reserve's high performance graphics display pro- 
cessor built by the Evans and Sutherland Corpora- 
tion. It is an animation system that handles 
several thousand edges in real time. An inter- 
active 3-D graphics system involving TV displ@y 
was developed by Staudhammer C0) at North 
Carolina State University which refreshes a 
3-D image from an analog disk. Other systems 
have been built for the military, such as flight 
simulators developed by E and S and G. E. 
Corporation. These are special purpose systems 
built at great cost and designed exclusively for 
flight training that have many of the interactive 
features required for an animation system. 
While they perform well for their intended pur- 
pose, there is a limitation as to the amount of 
data that can be displayed in real time; this 
is usually around 3000-3600 edges. Although 
better hardware implementations are possible, 
the display algorithms do not seem well suited 
for high complexity data. There has been some 
interesting exploratory work by Clark ~) that 
may overcome some limitations. His techniques 
involve a hierarchical organization of large 
data bases that has significant implications for 
highly complex data and the visible surface 
calculation. In his scheme the requirements 
for the display of detail at any instance in 
time is, in part, determined by one's viewing 
position in 3-D space or one's position within 
a tree structure. Unnecessary edges are not 
processed by the algorithm, thus reducing the 
calculation time. 

ANIMA II ( 6 ), which was one of the first 
attempts at an interactive 3-D color raster 
scan animation system was designed and imple- 
mented by the CGRG at the Ohio State University. 
It enables the user to generate, manipulate 
and display 3-D images and it has a real-time 
playback capability for animation. The ani- 
mation sequences can be recorded onto video- 
tape. This system has been used to produce 
over two hours of storyboard animation for 
science, education and commerical TV. The 
strengths of the system include its interactive 
capabilities with the data generation subsystem 
and the relatively easy to use director's lang- 
uage. Another attractive feature is a fast 
visible surface algorithm for the rapid display 
of animation which provides users with the spon- 

taneity necessary to make visual judgments. The 
run-length encoding scheme used as final output 
to a video interface designed for us by Staud- 
hammer makes this particular combination of soft- 
ware and hardware work for the real-time playback 
of animation. There are limitations to the 
ANIMA II system that are primarily related to 
image quality. The data transfer rate from disk 
of the playback scheme limits the number of run- 
lengths available per frame which affects the 
image quality attainable. While complex creature 
motion has been created with the system, the 
specification of transformations, especially the 
positioning of sub-parts, tends to be time con- 
suming. There is no smooth shading, transparency, 
highlights or shadows and aliasing is a problem. 
It should be noted that an earlier version of the 
Myers' ( 8 ) Z-buffer algorithm implemented in 
1974 at CGRG handled smooth shading and trans- 
parency, but that these features were eliminated 
because greater value was placed upon user inter- 
action and a real-time playback capability. 

The primary focus of this paper will be upon 
our new animation system which seems to grow 
naturally out of our previous work with ANIMA II. 
A later unpublished version of the Myers' algo- 
rithm (an efficient implementation of a brute- 
force Z-buffer algorithm) was designed to process 
data directly off a mass storage device. While 
Myers' work has produced good preliminary results, 
we have found it to have certain limitations. 
The type of internal data structures used and the 
requirements of separate copies of data limits 
the speed of calculation and the variety of 
visual results that can be displayed. Recently, 
Hackathorn of CGRG has extended this previous 
work by introducing features and techniques that 
represent a modest improvement for the display of 
high complexity data. The display algorithm 
incorporates a unified approach to the display 
problem where one can combine not only polygonal 
surfaces but also points, lines and hi-cubic 
patches. 

A new animation system called ANTTS has been 
implemented on our PDP-ii/45. It is an experi- 
mental system with a language that involves 
interactive techniques and a unified approach to 
the display of high complexity data including 
textured objects and smoke. This system is being 
redesigned for implementation on our VAX/780 com- 
puter with a unique graphics display processor 
under construction by the CGRG. The final system 
will exploit the display algorithm with a partial 
implementation in hardware and it should signifi- 
cantly improve response time for interactive 
capabilities. 

DESIGN CONSIDERATIONS 

An interactive high visual complexity ani- 
mation system should have several basic features: 

i. Ideally it should be a real-time 
system, but with available technology and 
associated cost an interactive capability 
seems like a reasonable goal. 

2. A language is required to specify 
the transformations to control the object's 
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position and movement through space. There 
is a need for a facility where the moving 
human figure can be digitized and a motion 
file created. 

3. Techniques such as procedure models 
are necessary to generate and store complex 
data. Data generation could be an algo- 
rithm to "grow" a tree, instancing or solids 
of revolution, including the triangulation 
between slices. One should be able to 
specify different resolutions for the ob- 
Ject, for example, displaying an object 
having up to one million faces as a simpli- 
fied object having only ten faces. This is 
important if one hopes to achieve an inter- 
active design capability. 

4. The system should have facilities for 
the digital editing of animation sequences 
from a mass storage device. It should allow 
for the random access of sequences and the 
dynamic changing of color in real-time play- 
back mode without recalculating the sequences. 

5. The display algorithm should be able 
to handle the intersection of lines, points 
and surfaces in three dimensional space. 
Data should be processed in a stream (as 
opposedto pre-sorting), either by reading 
in data directly from a disk or by creating 
data "on the fly." 

6. The display algorithm should lend 
itself to a simple hardware design. A hard- 
ware implementation of the entire display 
algorithm, or at least an implementation 
in microcode, would overcome computational 
constraints. The level of effort in hard- 
ware seems to be more a function of what 
one can afford rather than what one can 
conceptualize. Anti-aliasing is part of the 
display problem and it seems like the real 
solution belongs in the realm of hardware. 

VISIBLE SURFACE ALGORITHM 

In general we can characterize two classes 
of visible surface algorithms: those which 
directly calculate all visible surfaces keeping 
them intact entities, and those algorithms in 
which the visible surfaces are indirectly found 
as a result of calculating the image at the pixel 
level. To the first class belong the subdivision 
algorithms of Weiler and Warnock that calculate 
the visible polygons (or polygonal areas) in a 
surface and which must be separately converted 
to a raster scan format. Also in this first 
class are the scan line algorithms such as those 
designed by Romney, Bouknightand Watkins. These 
algorithms directly determine a visible surface 
in terms of its visible segments (in image space) 
and each of them uses raster scan conversion as an 
integral process. All algorithms of the first 
class have one characteristic in common: they 
have at least one nonlinear sorting step which 
makes them seem inappropriate for images with more 
than about i0,000 polygons. Several of these 
algorithms use some form of coherence to "hedge" 
against the inevitable calculation explosion, but 
few coherence schemes work well with the varied 

and detailed data descriptions in a complex scene 
(with the possible exception of pixel coherence 
run lengths). 

The algorithms in the second class are 
typified by the use of a frame buffer to indirect- 
ly determine which surfaces are visible. This 
technique makes them more suitable for the pro- 
cessing of high complexity image data. A frame 
buffer, usually used for video display, is nothing 
more than a two dimensional array of memory that 
stores all the picture information necessary to 
describe one complete frame. Frame buffers can 
be distinguished by whether or not they allow a 
full 2-dimensional bucket sort in both 'X' and 
'Y', of if they only allow a 1-dimensional bucket 
sort in just 'Y'. This last type of frame buffer 
is called a run-lensth frame buffer and it uses a 
fixed length block of memory at each scan line in 
order to hold a list of run lengths which are 
visible on that scan line. The other frame 
buffer type is usually organized as 512 rows 
(scan lines) with each row containing 512 fixed 
blocks for pixel (picture element) storage. This 
type of frame buffer is characterized by the size 
of the pixel blocks, i.e., how much information 
each pixel contains. The simplest of this type 
is called a 2-D color frame buffer and has either 
i, 4, or 8 bits per pixel which indicate the 
pixel's color (often by pointing into a palette 
look-up table). The type known as a Z frame 
buffer or depth buffer is a more sophisticated 
one. Here, enough bits to adequately store the 
pixel's position along the 'Z' axis is kept along 
with the color bits for each pixel. This enables 
brute force comparison techniques to retain only 
the pixels closest to the observer. A third type 
of frame buffer in this categorization scheme 
is what we call a pixel buffer. A pixel buffer 
not only has the ability to be a 2-D color frame 
buffer or a Z-buffer, but it can also hold addi- 
tional information (all optional) about the pixel. 
This could include: original object identifica- 
tion number, object geometric type (curved, 
planar, line, or point), object image type (solid, 
transparent, shadowed, etc.), positional pixel 
skewing in 'X' and 'Y', pixel transmittance, 
pixel reflectance, and additional color information 
which could be used for transparency or shadows. 

Data is moved into the frame buffers in one 
of two methods, either unconditional overwrite 
or conditional overwrite. Newell is the best 
known advocate of unconditional overwriting and 
he has written two such algorithms. Both his 
algorithms depth sort a list of polygons (divid- 
ing where overlapping occurs) and then simply 
write the polygon into a frame buffer starting 
with the most distant face from the observer. 
His first algorithm used a run-length frame 
buffer, but this was abandoned for a simple 2-D 
frame buffer in his second algorithm because of 
the extra time spent ordering (merging) the run- 
lengths in 'X', and because the number of run- 
lengths associated with each scan line severely 
limits the image complexity. 

Conditional overwriting is found with the 
frame buffers which store 'Z' information at each 
pixel. Here a brute force comparison is made at 
a new pixel's 'Z' position, and that pixel is 
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overwritten into the frame buffer only if it is 
closer to the observer than whatever was in there 
previously, or else it is ignored. Catmull, 
Myers and Crow have used the conditional overwrite 
approach as the heart of their visible surface 
algorithm. 

A variation of unconditional and conditional 
overwrite is unconditional and conditional modi- 
fy. Again, these techniques are used with 
frame buffers but instead of a direct replace F 
ment, a third pixel is formed as a result of two 
pixels (the current one in the frame buffer and 
the new pixel) combining and modifying each other. 
This condition is common when the effect of trans- 
parency is desired. 

When one deals with very high complexity data, 
a consideration that becomes almost as important 
to a display algorithm as its visible surface al- 
gorithm, is the manner in which the data is ar- 
ranged and presented to the visible surface rou- 
tines. There are two basic approaches. One 
approach converts an incoming list of object 
space data into one or several other lists of 
image space data in an attempt to make the data 
more "digestible" by the visible surface routines. 
The other approach is to treat each patch, face, 
llne or point of the incoming list as an isolated 
element, where the surface routines work directly 
on it in a "stream processing" manner. 

THE DISPLAY ALGORITHM 

R. Hackathorn of our group has approached 
this problem by choosing to process data in a 
stream, either by readin~ in data directly from 

POLYGONS 

DISK 
RESIDENT 
DATA 

BRING IN 
(PART) 
DATA TO 
SYSTEM 

a disk or by creating data "on the fly" with pro- 
cedural algorithms. In order to do this stream 
style of processing, his display algorithm relies 
heavily on two large memory arrays called a run- 
lensth buffer and pixel buffer (frame buffer), 
respectively. The run-length buffer always exists 
in main memory while the pixel buffer is always 
kept in disk memory with large blocks brought in 
and out of main memory as needed. 
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Our choice to internally represent all data 
as run lengths is not only a very efficient and 
fast method to store data, it also allows for a 
unified aproach to the display of data. In this 
process, triangles and lines break down into run 
lengths, and points and patch points are merely 
run lengths of length i. T1~eans that all 
these data types can exist together naturally 
within a scene description without the need to 
deal with special cases (see Figure i). 

While the display algorithm is very simple 
(i.e., run-lengths buffer to 'XY' pixel buffer 
using brute force 'Z' comparisons), it has traded 
off capabilities, primarily the ability to compare 
a face against other faces before making a deter- 
mination of their visible parts. This has tra- 
ditionally been required for such features as 
shadows, transparency, reflections and anti- 
aliasing. However, solutions exist for these 
cases, and though they may not yield the most 
optimal results, their output is a close enough 
approximation to be useful. 

Since animation in a video environment re- 
quires thirty frames per second, it is only 
natural to want as little information in the test 
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frames as is feasible. To achieve variable com- 
plexity, an object consists of a number of differ- 
ent representations. At the lowest level, an ob- 
ject can exist as a skeleton made up of points 
and lines. A final complexity level can consist 
of smooth, curved or textured surfaces mapped 
onto the skeletons' positions. Variable image 
quality can range from very low resolution (64 x 
64) up to high resolution (1024 x 1024 averaged 
to 512 x 512) and include options for image en- 
hancements. 

FLOW OF PROCESSING FOR THE DISPLAY ALGORITHM 

Assuming polygons as the data type, the flow 
of processing is as follows: 

l) Get a single triangle from disk or 
generate one using a procedure model 
algorithm. 

2) Update the triangle's 3 points with 
position, rotation and size trans- 
formations. 

~) Determine face color from angle of 
incidence between the light source, 
triangle and observer. 

4) Convert the triangle's points from an 
object space coordinate system to 
one of image space using a per- 
spective projection. 

5) Orient the triangle definition 
with respect to its highest 'Y' 
value. 

6) Raster-scan convert the triangle 
into run-lengths with one for each 
scan line the face crosses. 

7) Pass each run length to the buffer 
by adding it to the end of an un- 
ordered list of previous run-lengths 
found at the same Y scan line. 

8) When all triangles have been pro- 
cessed for one frame, the run 
lengths are decomposed into 3-D 
pixels and have their 'Z' values 
compared against a pixel with the 
same 'XY' values in the pixel 
buffer, effecting brute force hid- 
den surface removal. The pixel 
buffer is then read into main 
memory (one section at a time) 
and encoded into video run lengths 
for display on a TV. 

ADVANTAGES OF THE DISPLAY ALGORITHM 

The combination of a run length buffer and 
'XY' pixel buffer eliminates three common "growth 
pains" found in algorithms processing over i00,000 
polygons (or the equivalent with patch algorithms): 

i) There are no non-linear sorts by doing 
a 'Y' bucket dump into the run length 
and, when needed, doing a combination 
'X' bucket dump and brute force 'Z' 

comparison into the pixel buffer. 

2) There are no internal image space 
data lists which grow in length with 
the number of polygons. Variable 
image lists such as active faces/ 
edges per scan line or depth 
ordered faces or the dual list out- 
put of subdivision algorithms must 
be stored in disk memory when the 
image complexity gets too high. 
The use of disk storage distracts 
from the advantages of procedural 
model data generation, and com- 
petes with disk-resident object 
data descriptions for space, 
thereby limiting maximum complexity. 

3) The use of a run-length buffer 
virtually eliminates the timecosts 
in randomly accessing a disk- 
resident 'XY' pixel buffer by 
spreading the cost of disk trans- 
fers among many pixels. For 
example, if each scan line in the 
run length buffer holds i00 run 
lengths and 20 scan lines are 
moved to the pixel buffer when a 
scan line is full, and if each 
run-length describes an average 
of 3 pixels, then there is a po- 
tential of up to 6,000 pixels 
involved with each disk access. 
This translates into a cost per 
pixel of only a few micro-seconds 
for each memory access. 

Another advantage of this combination is that 
it provides a simple and flexible approach to high 
complexity image synthesis. This allows the dis- 
play algorithm to operate in a variety of modes 
and interface to a variety of external programming 
tasks. By using run lengths as the primitive data 
type, an internal image space data structure can 
be built which is common not only to simple 
images such as lines and large planar polygons, 
but also to complex imagery made of surface 
patches or millions of small triangles or points. 
Such a feature greatly facilitates interactive- 
ness in an animation environment by allowing ob- 
jects to be seen at various levels of detail. 

While the use of a run length buffer provides 
a common (fixed size) internal data structure, 
using a disk resident 'XY' pixel buffer provides 
a common sharable image. This makes possible a 
more flexible approach to generating video images" 
than we have used in the past. Using our run 
length encoded video interface for output we have 
written a 2-D color "painting" routine, a "star 
generation" routine (for producing interacting 
galaxies), and various random background genera- 
tion routines. But none of these programs could 
mix their image output with that produced by the 
display algorithm of ANIMA II, nor could ANIMA II 
mix in the output of any of these routines. By 
using a disk resident sharable image such as that 
found in the 'XY' pixel buffer, these incompar- 
ability problems are overcome simply by storing 
a common disk resident directory and status 
block, and allowing various routines to access 
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any one of several 'XY' pixel buffers using tech- 
niques of conditional or unconditional overwrite 
or modify overwrite. 

This approach makes possible a variety of 
useful interactive animation techniques as well 
as post processing techniques for special effects 
and image enhancement. One interactive technique 
is to store several pixel buffers on a disk, but 
use Just one to process the video image. At the 
start of each frame, the separate pixel buffer 
can either be cleared (restarted to background 
color), simply reused as it was left from pre- 
vious calculations causing multiple images to be 
successively built up, or reset by unconditionally 
overwriting one of the other pixel buffers, or 
conditionally overwritten by several of the pixel 
buffers (using brute force 'Z' comparisons), 
effectively merging the 3-D surfaces together. 
The interactive advantages of resetting and merg- 
ing pixel buffers together can be shown in an 
animation example: A bird could be interactively 
flown around in a forest by precalculating a view 
of all the trees and storing the 2-D surfaces in 
a pixel buffer for a background image a bird could 
be interactively animated with a very quick re- 
sponse time between frames, because only the bird 
would need to be recalculated each frame. Yet the 
bird would be subject to all the same 3-D cues as 
if the trees were also being recalculated. The 
bird could fly around the trees, disappearing as 
it goes behind them, or it could fly through 
grass or leaves, becoming only partially ob- 
scurred. Further, just as in conventional anima- 
tion, the background landscape of trees and 
mountains could be precalculated much larger 
than the actual 512 x 512 TV viewing resolution 
so that the field of view could be moved around 
the scene, only showing part of it at a time. 
Using this technique, the animator can enjoy 
the benefits of animating with complex imagery 
without losing the benefits of interactiveness 
as a result of slow response time. 

A variation of merging pixel buffers is to 
store only as much of the pixel buffers as need- 
ed to contain a single object (or object group). 
Using this technique an animator can not only 
interactively manipulate an object around a com- 
plex 3-D background, but can now manipulate parts 
of the background also. This is done by cal- 
culating an object at 512 x 512 but only using 
a pixel buffer just big enough to hold it (such 
as 136 x 120 or 250 x 74, etc.). Then for each 
frame, these pixel buffer sections can be inter- 
actively moved around with a very rapid response 
time while benefiting from 3-D cues like overlap 
and intersection. Precalculating several views 
of an object and storing them in this manner 
also has advantages for object instancing and 
high complexity data generation techniques in 
which the user can interactively work on part 
of a detailed object while the rest of the ob- 
Ject has been precalculated. 

SOME PROBLEMS AND POSSIBLE SOLUTIONS 

One problem in our approach is that all sur- 
faces are treated as visible, so that a fair 
amount of processing is done to each polygon 
whether it is ultimately visible or not. In a low 

complexity environment this problem has generally 
been solved by not using a frame buffer, but in- 
stead depth sorting all the polygons and finding 
the visible surfaces using segment overlapping or 
image subdivision techniques. The problem with 
this approach is that with a very complex scene, 
such as a view of a city, the time spent sorting 
can easily be far longer than the time spent 
using a brute force apprQach. A more acceptable 
way of modeling the city example is to use a 
hierarchical approach such as Clark (ii) used. 
However this method also suffers from non-linear 
sorting/searching steps. A simple linear solu- 
tion does exist using a pixel buffer, but re- 
quiring extra bits per pixel. Using this 
approach the city example could exist as a very 
simple block model and as a very detailed (win- 
dows, doors, interiors, etc.) model. The simple 
model would be scanned first, using a brute 
force algorithm to find visible surfaces and 
storing an object number with every pixel indi- 
cating where it came from. Then the pixel buffer 
could be searched, making up a list of objects 
which had some visible pixels in the rouch scan. 
Then the detailed model could be scanned but with 
only those objects which showed up on the visible 
list. Thus for a small preprocessing cost, a 
huge number of polygons can be eliminated. 

Another problem with using a pixel buffer is 
that only two surfaces can be involved when 
pixels are being modified. Many situations, 
notably scanning a mixture of transparent and 
solid surfaces and using the anti-aliasing 
techniques of Catmull and Crow, require not only 
three or more surfaces to interact but also need 
an ordering of the surfaces from back to front. 
In an environment where the production of real- 
istically simulated still photographs are de- 
sired, there is no easy solution to this problem. 
However in an animation environment in which 
simplicity and speed are more important than 
accurately simulating a physical phenomenon, we 
believe this problem can be minimized so as to 
produce acceptable results. In the case of 
transparency, a lot of the problems with mixing 
solid and transparent surfaces can be avoided by 
scanning all solid objects first, and then 
transparent ones. This avoids the problem that 
occurs when a solid pixel lies between two trans- 
parent pixels that have already interacted and 
modified each other. The problems of trying to 
modify a set of randomly positioned colored 
transparent surfaces can be minimized by keeping 
a separate color value at each pixel for a trans- 
parent pixel which lies in front of a solid pixel 
or background. This, plus keeping transmittance 
bits and extra bits indicating whether a pixel 
is solid or transparent and whether it's been 
modified or not (and by how much), will result 
in an image that is merely a simulation of trans- 
parency, but which will be consistent and produce 
an adequate effect. 

Solutions to the aliasing problem require a 
great deal of computer time making a software 
implementation impractical for highly complex 
data. It can take two to five times longer than 
the visible surface calculation. We plan to im- 
plement, partially in hardware, a special case 
solution to this problem. Our scheme involves 
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calculating pictures at 1024 x 1024 resolution and 
averaging the intensities (not colors) of four 
pixels into one pixel (using dominant chroma) into 
a normal 512 x 512. We also plan to experiment 
with various low pass filters implementing them in 
microcode. 

TEXTURE 

In our attempt to handle visually complex 
objects, we are concerned not only with objects 
possessing hundreds of thousands of polygons to 
define smooth surfaces but also with the pro- 
cessing necessary to give the surface of an object 
the appearance of a particular texture. By "tex- 
ture" we mean the visual properties associated 
with a surface when that surface is made of a 
certain material, e.g., plastic, wool, plaster, 
hair, etc. 

To date, there have only been a few signifi- 
cant attempts known to us at accomplishing this. 
The most recent, and most successful, was pre- 
sented at SIGGRAPH '78 by Blinn. Blinn's paper 
describes a technique using a quadrilateral patch 
defining a normal-vector perturbation function. 
This patch is stretched to fit each surface patch 
and new normal vectors are computed at each sur- 
face point on the patch. Although very effective 
in certain situations and as a demonstration, the 
technique has three major drawbacks. First, 
because the texture patch is repetitively mapped 
onto every surface patch in a uniform manner, it 
is subject to forming undesirable patterns on the 
object when the actual texture possesses no such 
pattern (due to the pattern formed by the surface 
patches themselves, such as in a crater texture 
mapped onto a sphere consisting of eight uni- 
form surface patches). On the other hand, the 
technique is also capable of destroying an over- 
all pattern of the texture if the surface patches 
are not appropriately aligned (as in the case 
of mapping a brick texture onto an irregularly 
shaped object). 

Second, because the visible surface portion 
of the display processing is performed without 
regard to the texture, the image calculated 
when using certain textures will not appear to be 
"reasonable." Not only will a silhouette of an 
object not reflect the texture on the surface 
(e.g., bumps, bricks, hair), but relatively deep 
textures will not hide adjacent features (e.g., 
deep holes, craters, mountains). 

Third, because of the simplification used 
in calculating the perturbed normal vector 
(i.e., that the value of the bump function is 
negligably small) in order to make the calcu- 
lation tractable, patterns with relatively 
large texture features (e.g., long hair, deep 
depressions, large bumps) are not correctly cal- 
culated. 

We have taken a different approach to repre- 
senting a textured object in that we define a 
three-dlmensional perturbation of the object's 
surface (i.e., surface detail) as well as varia- 
tions in reflectance and color properties along 

the surface. Because our high complexity data 
consists of hundreds of thousands of small poly- 

gons we can rearrange their position as well as 
assign individual color and reflectivity in order 
to more realistically model "physical" texture on 
an object. Instead of simulating the reflectiv- 
ity of craters on the surface of an object (a la 
Blinn) we can actually "create" craters on the 
surface. Our efforts up to this point in time 
have been a relatively simple repetitive replace- 
ment of a physical texture onto an arbitrary 
solid of revolution. 

To specify a texture, the user interactively 
selects the rectangular size of the patch, and 
the displacement, color and reflectivity for each 
point on the rectangular patch. The size of the 
patch is controlled by two dials. The user se- 
lects a point on the patch using two additional 
dials. The user specifies the displacement, 
color and reflectivity by pressing the appropriate 
function button and adjusting the input-value 
dial. At all times the texture rectangle is dis- 
played on the TV monitor with each point's value 
of the attribute the user is currently concerned 
with encoded in color. Thus the user can create, 
modify or view the attribute values of a texture. 
The user can also request a visible surface dis- 
play, with a modeled light source, of a texture 
patch on the monitor. Additionally he can re- 
quest the display of the texture on a primitive 
shape, for example, a sphere or cube. 

In order to specify a textured object, the 
user selects a contour llne and a texture patch 
(or makes hi own). At the time the object is 
to be displayed, a routine is called which gener- 
ates the solid of revolution defined by the con- 
tour line while simultaneously applying the per- 
turbation function to the surface being generated. 
This procedurally based object definition results 
in a flexible and straightforward representation 
as well as a great savings in space allocated to 
such representations. 

In our current implementation of processing 
texture, the texture specification contains the 
number of ohject slice points to be replaced as 
a group (call it k) and an n x m array of x, y, 
z displacements. As each object slice is gener- 
ated (by rotation of the object contour line) 
each k points of the slice are replaced by the n 
points of the appropriate column of the texture 
array. The number of the appropriate column is 
the number of the object slice modulo m+l. The 
replacement is performed by using the first and 
kth points of the group to be replaced to d4ter- 
mine the rotation, scale and translation opera- 
tions necessary for the first and nth points of 
the texture column to coincide with the positions 
of the first and kth points of the object group. 
The n transformed texture column points are then 
substituted for the k points of the untextured 
object. This process is repeated for each succes- 
sive group of k points in the object slice. When 
the next object slice is generated, the next 
column of the texture array is used for the re- 
placement. 

Once we have a good understanding of the re- 
suits obtainable by our method, we hope to devel- 
op techniques by which we can impart a texture 
onto an irregularly shaped object. This is a 
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difficult problem in the case where the texture 
has some overall pattern and this pattern must be 
kept intact over the surface of the object. In 
order to avoid some of the problems cited with re- 
gard to Blinn's technique it may be necessary to 
adopt other methods of imparting a texture on an 
object. For example, a texture may be propagated 
along the surface of an object spreading out 
from an arbitrary starting point. Or each vertex 
may be considered a probabilistic finite state 
automation which will stabilize into a state 
dependent on the texture specification, chance, 
and the state of the neighbors of the vertex. 
Another, although simpler, extension to our tex- 
ture specification is the introduction of random- 
ness. This is very desirable for use in many 
textures such as hair, craters and plaster. This 
could be accomplished either by successively se- 
lecting from a number of texture patches at ran- 
dom or by random modifications to a standard tex- 
ture patch. 

SMOKE 

As Blinn says in the summary of his disser- 
tation, existing display techniques leave much to 
be desired when it comes to the display of "soft" 
objects such as clouds, fur, smoke, and fire. 
The CGRG has been investigating an alternative 
technique, which allows for the possibility of 
representing solid or nonsolid objects, not as a 
collection of boundary curves (patches, polygons, 
etc.), but rather as a collection of points. 
Each of the points comprising the object can be 
treated as a separate data entity, and will have 
associated with it properties of intensity and 

Smoke Cloud 
300,000 points 

chromaticity, position, and orientation, as well 
as any properties necessary for animation pur- 
poses. 

The main motivation for this investigation 
is that non-solid objects can be more accurately 
represented, with more realistic visual cues, 
such as the billowing of clouds, the dancing of 
fire, or the flowing of water. Another desirable 
property of a point representation is that a 
solid object could indeed be solid in its repre- 
sentation, as all points inside the boundary sur- 
faces could be defined as well as those on the 
boundaries. Some data input techniques are point- 
sampling techniques, such as medical cat-scans, 
and raster scan output displays can be considered 
as a collection of ordered points (pixels). Con- 
sequently, determination of visible Surfaces re- 
duces to a Z comparison of points in the data 
structure. 

There are certainly many disadvantages to 
this approach, such as the large number of points 
necessary to describe an object, and the need to 
somehow relate a point to it's nearest neighbors. 
But we believe that a technique of this type is 
important in achieving the degree of realism de- 
sired in an animation environment. 

We have experimented with a point-based ob- 
ject representation by creating an image of a 
cloud of smoke rising from an elevated source. 
This first attempt uses the theory of particular 
clouds attributed to Green and Lane (ii) as the 
basis for generating the data. The intensity of 
each point (x,y,z) in the cloud is dependent on 
the density of the particles there. This can be 
determined using the equation for elevated sources 
diffusion: 

-(~-h)2 (~h) 2 

where 
X = is concentration in g/cm 3 at pt (x,y,z) 
Q = is rate of emission 
h = is height of source 

and C and C z are temperature gradients 
Y 

determined from wind velocity, turbulence, dif- 
fusing power, viscosity of air, and eddy velocity. 

By varying one or more of the parameters in 
the model, different images of the clouds can be 
generated, and these can be combined to create an 
image that more closely approximates the actual 
form and intensity of experimental smoke clouds. 

EXPERIMENTAL RESULTS 

The animation subsystem implemented on the 
PDP-ii/45 was intended as an experiment to better 
understand the problems associated with highly 
complex data. No attempt was made to optimize 
code for greater speed and efficiency. In this 
system it takes the display algorithm approxi- 
mately four and one half minutes ("wall" time) to 
process and display 150,000 triangles or 450,000 
edges. We are now designing a new system for our 
VAX/780 and new graphics display processor. While 
it is difficult and dangerous to predict the ex- 
pected improvement in performance, we hope that 
the new system will be a significantly better one. 
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Tribbles - 500,000 triangles 

Burley, Idaho - 25,000 triangles 
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Beldar's Hat - 12,000 triangles 

Cocklebur - 46,000 triangles 
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GRAPHICS DISPLAY PROCESSOR 

The VAX 11/780 Graphics System is a hardware/ 
software interface designed to aid in the creation, 
calculation, and output phases of computer anima- 
tion. The main objective behind the hardware/soft- 
ware design is to reduce the time between object 
description and final animation output while at the 
same time increasing the artists' control over the 
process. 

The graphics system consists of three main 
parts. They are the Z buffer, the 2-D color frame 
buffer(s), and the run length animation port (see 
Figure 2). The purpose of the Z buffer is to take 
in 3-D run length formatted data and to produce, 
on a frame by frame basis, 2-D run length data 
which describes the visible surfaces of the orig- 
inal 3-D information. The Z-buffer sorting algo- 
rithm is implemented by a bit-slice microprocessor 
because of the relative ease with which the algo- 
rithm may be modified. 

For example, adding anti-aliasing or trans- 
parency processing requires making changes to the 
microprocessor' s writeable control store (micro- 
program). This approach also gives the capability 
to process a higher resolution 1024 x 1024 image 
space and to do intensity averaging in microcode. 

Operation of the algorithm involves transla- 
ting the 3-D run length data into a pixel format. 
Each generated pixel is Z value sorted into the 
core memory. After all the runs for a frame have 
been processed, additional processing (such as 
low pass filtering) may occur. Then the pixel 
representation of the image is translated into 
the 2-D format that the run-length port recog- 
nizes and sent back to the VAX 11/780 for storage. 

The purpose of the 2-D color frame buffer(s) 
is to provide a static 512 x 512 pixel image. 
These will be used for operator interaction dur- 
ing the object definition phase. 

vAx ] VAX GRAPHICS SYSTEM I ,,,',80 | 
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FIG.2 

The run-length port is the animation port of 
the system. It takes in 2-D run-length formatted 
data and produces real-time NTSC video suitable 
for tape recording. The run-length port accepts 
2-D run-lengths data from the VAX DMA interface 
and translates this data into the appropriate 
real-time NTSC video. 

The inclusion'of the core memory in the data 
path also allows for the playback of multiple 
frame (less than 6 metabytes in length) sequences 
of high complexity. These sequences are of such 
high data band widths that the DMA interface 
might not be able to supply data fast enough. 

CONCLUDING REMARKS 

The details of the graphics language for 
ANTTS is the subject of another paper but it is 
important to note some of its basic capabilities. 
It can handle various arithmetic and transforma- 
tional commands which are either unscheduled or 
scheduled (of a type similar to those of ANIMAII) 
as well as incorporating commands used to modify 
the flow of control. Variables can be set either 
programmatically or interactively which allows 
great flexibility in controlling the animation. 
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