
z Computer Graphics, 26,2, July 1992

Interval Analysis For Computer Graphics

John M. Snyder
CaliforniaInstituteof Technology

Pasadena,CA 91125

Abstract

This paper discusses how interval analysis can be used to solve a wide vari-
ety of problems in computer graphics. These problcrna include ray tracing,
interference detection, polygonal decomposition of parametric surfaces, and
CSO on solids kmnderf by parametric surfaw?s. Ordy two basic afgorhfuna
MErequired SOLVE,which computes solutions to a system of constraints,
and MINIMIZE,which computes the global minimum of a function, subject
to a system of constraints.
Wepresent algorithms for SOLVEmd MINIMIZEusing intervaf analysis as

the conce~uat framework. Crtrciafto the tedtnique is the creation of ‘“inclu-
sion functions” for each eoastraint and function to be minimised. Inclusion
functions compute abound on the range of a function, given a similar bound
on its domain, aflowing a branch and bound approach to constraint solution
and constrained rnirrimir.ation.Inchrsion functions also allow the MINIMIZE
algorithm to compute global rather than local minima, urdike many ofher
numerical algorithms.
Somevery recent theoretical results are presentedregardingexistence and

uniquenessof roots of nonlinear equations, and global parameterizsrbllity of
implicitly described manifolds. To illustrate the pwer of the approach, the
hadc algorithms are further developedinto a new afgotithm for the approx-
imation of implicit curves,

CR Categork: 1.3.5 [Computer Graphics]: Computations Geometry and
object Modeling; G.4 [Mathematical Software]: Reliability andRobustness

Additional Key Words: constraint solution, constrsinczt minimization, in-
terval analysis, inclusion function, approximation, implicit curve

1 Introduction

Intervaf anatysis is a new and promising branch of applied mathematics.
A general treatment can bs found in [MOOR66] and [MOOR79], by R.E.
Moore, the originator of this field. The main benefit of intervst analysis is
that it can solve problems an that the results are guaranted to be correct,
even when computed with finitely precise floating point operations. ‘flris is
accomplished by using inclusion functions that compute bounds on functions
relevant to the problem, thus controlling approximation errors.
Although the applicationof interval methods to computer graphics is nor

new, it haa been applied only to a limited class of computer gra~tcs prob
lents. Mudur and Kopswkar [MUDU84] have presented m sdgorithm for
raaterizing parametric surfaces using interval arithmetic. They also suggest
the utility of such methcda for other operations in geometric modeling. T@h
[TOTH85] has demonstrated the usefulness of interval baaed methods for
the direct ray tracing of general parametric surf=. Most recently, inter-
val methods have been used for error bounding in computing topological
properties of tolerance polyhedra [SEGA90], for contouring 2D functions

Pcmuwmn to copy wlthtwt fee All or parl c>fthis materialis granted
provided(htitthe copici we notmadeor distributedfor dmect
commercialwfvmhrgc.the ACM cnpyright notice and the titIe nf the
publication and i[i &ItCoppcm.and notice is given that copyingis by
pcrmiwion{>fthe Associationfnr Computing Mach!nery. Tn copy
otherwise, (w In republish, requires a fee and/nr yxcific permission

and rendering implicit surfaces [SUFF90], and for ray tracing implicit sur-
faces [MITC90]. Several researchers have also used Lipaehitz bounds, a
S*SI CMeof M interval method, in their algorithrrtx to approximate fWS-
ntetric surfaces [VONH87], to compute collisions between time-dependent
parametric surfaces [VONH89,VONH90], and to ray trace implicit surfaces
[KALR89].
This paper extenda the work of these researchers by showing how a gen-

erat set of problems in computer graphics can be solved using only two
algorithms that employ interval analysis: constraint solution (SOLVE) and
constrained rrdrsirtdzation(MINIMIZE). Many of the ideas presented here
are krrowed from recent work in the area of interval amatysis ([IUTS88,
ALEF83]), but are new to computer graphics. ‘flrese ideaa inchr& the X-
trsalafgorithrna for SOLVE(Section 3.1) and MINIMIZE(Section 3.3), and a
robust test for the solution of nonlinear systems of equations (Swtion 3.2).
Section 2 presenta bsckgrod information neccsaary for the understanding
of these ideaa. Using the techniques described, Section 4 presents a new,
robust algorithm for the approximation of implicit curves, an important af-
gorithm in shape mcxieling operations such as CSG.

1.1 Problem Deflnitlon for SOLVE and MINIMIZE
SOLVEcomputes solutions to a consfraintprobkm, which seeks points from
a domain, 1 D C R“, that satisfy a logicat combination of equalities and
inqualities. That is, it seeks the set given by

where F: R“ + {O, 1} represents the constraint to be solved. For example,
F(x) may be given by the simultaneous satisfaction of the r +s constraints

gj(x) = o i=l,. ... r

/lj(X) < 0 j=l,s

The scalar functions gi(.r) and hj(~) are called the consfrainlfwrcrionals, and
are assumed to be continuous.
Related to the constraint problem is what we call the cons;rainedpar?i-

tioning problem, which seeks to partition a domain D into a collection of
hyper-redangles, {Ri}, such that each partition /?i satisfies a given set con-
straint. A se; constraint is a mapping from a hyper-reciarrgle to {0, 1}. For
example, let S R* + R’ he a parametric surface, and let R C R2. Define
the dkmrrce function of the surface, d(ft), asthemaximum distance between
two surface points, mapped from R 2

d(R) E SUp{ll~(pI) – ~@)ll I PI, P2 E ~}

A useful set constraint for the surface approximation problem, G@), is

G(R) ~ (d(R) < t) (1)

which rquires that no two pints on S from R be farther apart than t. A con-
strained partitioning problem can afso be combined with a constraint prob
lem, in order to partition the constraint problem’s solution set. We will later
show how SOLVE can be applied to the constrained partitioning problem.

1WewitlUWMCh tin ofd pmbknuisa hy~mtqk, alsoatkd ● vector.valued
intervalinSdm 2.t
2supdcmoussupmmum,rk W u~ bud O(IM.

!, 199~ ACM-()-89791 -479- l/92/(~7/0i21 $01.50
121

SIGGRAPH ’92 Chicago, July 26-31, 1992

MINIMIZEcomputes aolutiom to a corwmined mininu”don problem,
which seeks the global minima of a scalar timetiortJ(x), called the objective
funcrwn, over the pointa in a given domain that satisfy a system of non-

objective funetiorr 3

MINIMUMf ~ infv(x) Ix E ~, F(x) = 1}
XGD,F(X)=I

or its set of global minimizers

Note that theMINIMUMoperators well-defined only if the feasible set of the
constraint system is nonempty. We assume the eontinuiry of the objective
function as well as the constraint fimctionsla involved in the definition of
F(x). This, together with the eompactneas of D, guarantees that the Mini-
mizers operator ia wetl-defined when the feasible set is nonempty.
We will w the term g/ohlproblem for a constraint problem,eortatrained

Partilionirrgpmblem or constrained miniiurtion problem.

L2 SOLVE and MINIMIZE InComputsrGraphics
SOLVE and MINIMIZEcan be applied to a wide variety of problems in ren-
dering and geometric modeling. We shall deaeribe an important, but by no
means exhaustive, set of examples in the following paragraphs. Further a~
piicatiom of the algorithms to computer graphics include scan conversion
of parametric surfaces, pararnetridlmplicit representationconversion, aelee-
tion of feaaible@timal parameters for parsmeteriz.ed shapes, and computa-
tion of tolerance geometric queries such as point enclosure.

Ray Tracing Rsy tracing a parametric surface, S(u, V} R 2 + R’, in-
volves a minimisation problem over (u, v) space. LA o and d be the origin
and dkeetion, respectively, of a given ray. Aa in m85], to find the first
intersection of this ray with S, we may solve

MINIMUM1(U, V)
(U,v)eq
F(.,v)=l

where the objeetive function, r(u, v), is given by 4

S.(U, v) - ox SY(u, v) - OY w? v)—%r(u, v)~min{ d , d , d }
x Y z

and the constraint function F(u, v) is given by

(s(u, v) -o)xd=Osndr(u, v)~O

Ray tracing of implicit surfaces cartbe aceomptiahed with a similar, lD mirt-
irnizntion problem [MITC90].

Polygonal Decompnaltloss Approximating shape, aueb as a curve or sur-
face, as amllection of simple pieees is a fundarnentrdoperation in computer
grapMcs. For example, we may wish to pr-odueca collection of trisngks that
ap~~~t~ a ~c SUrf=t ~U, V), tO 50t0e erKOStokranee. SuekrWI
approxnnatmn carsbe accomplishedusing constrained partitioning with the
set mnstraint, G@), from Formula (1). For eaeh remrltarrt(u, v) partition, a
set of triangles can be formed joining the partition’s four corner vertiees, as
well as any vertiees from more highly aubdNided neighbor partitions (Fig-
ure 1). The whole collection of triangles approximates the surface without
&viating from it more than a distsneeof c. Set constrsintacan be ASObe &-
fined that bound each partition’s surfaa w maximum variation of surfti
normrd, or any other function over the surf-. F@re 10 compares polygo-
nal decomposition using set umatrsinta with simple uniform sampling.

InterferenceDetedon Let S(u,v)andT(r,s) be twopmmetric surfaces,
with DS and DT theiurespective domains. To rmmpute whether these sur-
faces intersect, the following 4D constraint problem is appropriate:

SOLVE (S(u, v) = T(r, s))
(M,V)EQ
(r,.)@f

3hf km Mmum,rhcSI=restb~ ~ ‘fa*
41(myraydirdonCrlnqmmtsarerquatroo,uls.m’=lmdwq-imttitiomkm, d

soisign.x cdinlhemin.

I

*

,

L 1
Figure 1: Approximating a surface as a triartgulartoed - The surfsee’s pa-
rameter spaec is first broken into rectangles each of whkh satisfies a set
ematraint, controlling the appmxirrtdon quahty. A collection of triangles is
then generated connecting points at the comers of the rectangle or its neigb-
bora.

In this case, evaluation of the points of intemeclion is umeceq we ned
only eomputc whether or not the feaaibie set is empty. Siiar eonatmm“t
problems ean be solved to determine whether two moving srrrfatxa inter-
sect, by solving a SD constraint problem given the thtte-depertdent surfsrxa
S(U, V, t) and T(r, S,1) [VONH90].
A related problem is to determine the minimum distance between two

pametric arrrfaees, which maybe expressed as the urreonstrairredmini-
mization problem

WIIMIM IIS(U,v) - T(r, s)[I (2)

(,,.)6%

F@re 11 shows the results of the unconstrained rninimbtiorr problem 10
comp@e the minimum dkisnce between two parametric surfaces.

CSG Computing CSG operations on aolii represented by tkii ~
nc surface boundaries involves computing the curve of intersection between
pairs of parametric surfaces. The resulting curve ean be projected into the
respective parameter spaces of the two srrrfams, and used to perform trimm-
ing operationa. The curve of interaeclion ia an implicit curve solving a
system of three equations in four variables, of the form

SOLVE (s(u, v) = T(r, J))
(u,v)eD~
(,,.)E%

where Sand Tare the two intersecting parametric surfaeea. This probkm is
similar to the one presented for interference detection, execpttbat an approx-
imation of the solution is desired rather than a mere indhtioo of solution
existence. Such an approximation em be computed using the algorithm in
Seetion 4, which is buiit on the SOLVEalgorithm Figure 8 shows ttreresults
of CSG operations computed in thk way.

2 Inclusion Functions

Theinterval analysis approach to solving global problems works by recur-
sively subdividing so initial hyper-rectatrgk of the parameter space of tbe
global problem. Inclusion funetiorta are used to teat wbetbex a patticrdar
region satisfies the ematraints (corratraintandminimization probkrna), wrr-
tains points with a small enough value of the objective function (rnitdrrdxa-
tiorrproblem), or satisfies the set constraint (partitioning problem), by com-
puting a bound on the function over the region. For example, to teat whether
a region X inelu&s a solution to the equation~(x) = O,an inelrrsion function
forj is evaluated over the region X. If the resulting tmmd on~ does not

122

Com~uter Graphics, 26, 2, JUIV1992

contain O, t13enX may be rejected. The following section defines inclusion
functions more precisely, diaeuases some of their properties, and explains
how they may he implemented.

2.1 Terminology and Definitions
An interval, A = [a, b], is a subset of R defined as

[a, b]s{xla ~x~b, x,a, bCR}

The numbers a and b are called the bounds of the interval; a is called the
lower bound,written Ib[u, b], and b, the upper baurrd,written ub [a, b]. The
symbol 1 denotes the set of all intervals.
A vec~or-vsahudinrervalo~dirnerrsionn, A = (A t, Az, ..., An), is a stdmet

of R“ defined as

A~{.rl~i EAi~d AiEIfori =1,2,. ... n}

For example, a vector-valued interval of dimension 2 represents a rectan-
gle in the plane, while a vector-vafued interval of dknension 3 represents a
%ick” in 3D space. An intend AJ that is a component of a vector-vafued
interval is called a coordinate in~erval ofA. The symbol Imdenotes the set of
all vector-valued intervals of dimension m. Hereafter, we will use the term
interval to refer to twth intervals and vector-valued intervsfs; the distinction
will be clear from the context.
The width of an interval, written w([a, b]), is definedby

w([a, b]) E b – a

Similarly, the width of a vector-valued interval, A E I“, is defined as

w(A) ~ ~~~ tiAi)

Given a subset D of Rm, let I(D) be defined as the set of ail intervals that
are sut3sets of D

I(D) S{ YIYEf’”and Y~D}

Let f: D + R“ be a function. An inclusionfunction for f, written Of, is a
function ❑f: I(D) + 1“such that

x E Y * f(x) E ❑f(y) W’ E W)

In orher words, Of is a vector-valued interval hound on the range of f over a
vector-valued interval bound on its domain. Many possible inehsaion fimc-
tions maybe defined for a given functionf, each having different properties.
For example, an inclusion function ❑f is cafkd convergent if

w(x) + o * W(Df(x)) + o

Note thatf must be continuous for its inclusion function to be convergent.

2.2 Incluslon Functions for Arithmetic Operators
To see how inehrsion functions can be evshsated on a computer, let us fit
consider functions defined using arithmetic operations. Let g and h be func-
tions from Rm to R, and let X 6 Im. Let inclusion functions for g and h be
given and evaluated on the interval X

Og(X) = [a, b]

Oh(x) = [c, dl

Given these interval hounds on g and h, we can bound an arithmetic com-
bination, g * h, where * represents addition, subtraction, multiplication or
division. ‘f’his bound maybe computed by bounding the set Q ● , deftned as

Qaa{~*v[~E[a,bl,yE[c,4}

Q* CM hCbourtdd within an intervaf using the we]l-known tedtrti ae of
7interval an’lhmetic,which defines the operators + IJ, – o, *O, and o ac-

[a+c, b+dl
[a-d, b-c]
[min(ac, ad, bc, bd),msx(oc, d, bc,M)]
[dn(:, j,:> $),m($!~! :,$,]
providedO f [c, dl

The inchraion functions defined above rely on an infinitely precise rep
rcsentation for real numbers and arithmedc operations. To perform interval
analysis on a computer, m intervaf A = [a, b] must be WNrnated by a
machine irrterwdAM = [aM,bM] containing A, so that aM and b~ aremem-
bersof the machine’s set of tkating point numbers. we earstrotassume that
an inclusion function for g + h can be comtmcted by producing the intend
[a +Mc, b+~~, where+M&rtotes the hardwareaddition operator. Because
of ddition rOUS2dinge-, a+n Cmy not & a Iowa W for a+c. This
problem can be salved on maebinea that usnfarm to the lEfiE floating point
standard using using round-to- – m mcxte for computation of interval lower
hounda, sod round-to-+co mode for intervaf upper bosmda.

2.3 Natural Interval Extensions
It is clear that the interval bounds of the previous section ean be mxmsively
appliedto yield an inelosion frsnctiorrfor an arti~, tied ~ “onof
arithmetic operatora on a ad of functiom with known inehtsion functions.
For example, an inehssionfursetionforf + (g + h) is given by

n(f+(g + h)) s Of+IZ (Og +a Oh) (3)

Fwthermore, this n~ion can be extended to non-arithmetic operators. For
-h operator,P(fI ,fz, . . . ,.h), that producesa function given n simpIer
functions, we must define a method, Pa, that evahsates an inclusion func-
tion for P, dependktg only on the interval results of the inclusion functions
ofi. Let -h of tk functiomfi be defined on a domain D and let X E I (D).
Given Po. assinclusion function for P(fI,. . . .f“) is then given by

WV, ,fz , ,.. ,fn)(xl ~ POCYtKh afi(xl,. ~., ‘f.(x))
In a generalization of Equation 3, given a set of qeratora, PI, Pz,PN,
an inclusion function can bc evstuated for any function formrd by tbek com-
position (e.g., PI (Pz(fi,fz), PJ(fg))). Inclusion functionscorratructedin this
way are called natural interval extensions.
Construction of an operator’s inclusion function method may not be dif-

ficult if the operator’s monotonicity intervafs are known. For example, an
inclusion function evaluation methcd east be &fined for the eoairw operator,
baaed on the observation that the eoaine function is monotonically decreas-
ing in the interval [~2rr, @n + 1)], and monotonically increasing in the in-
tervaf [T(2JI+ 1), T(2n + 2)], forintegerrr. Letf be a function from R’” toR,
and let X c I“. f-et an inclusion functiom forf be given and evaluated on
the intenml X, yielding the interval [a, b]. Assinehsaionfunction for coa (f)
can be evaluated on X sccording to the following rules:

WSn([a, b]) S
([-1;1],
{

[-l, max(cos(tr), coa(b))], if ~~1 <$ and [:1 mod2= 1

[min(eos(a), cua(b)), 1], if (~l<$and [~lmod2=0

([min(ecm(o), cm(b)), tiw
tWX(COS(@,em(b))],

‘tI-wnumericsd cosine evakations implied by rain (coa(a), coa(b)), for ex-
ample. must be eomprsted so that they area lower bound for the Mid
result. Similar inclusion functions cartbe constructed for operators such ss
sine, square root, exponential, and logarithm.
Inclusion functions for vector and matrix operatiom are also easy to con-

struct. For example, m inchrsion function method for the dot product oper-
ator can be defined via

❑(f. g)s (ofl .0 ❑gl) +0 (of2 *Oag2) +0 . . . +0 (of. .0 ctg.)

Similarly, interval arithmetic can he used to define inehsaion funetian meth-
ods for the matrix multiply, inverse, and &terminant operators, and for vec-
tor operatora like addition, subtraction, length, acalhsg, and emaa product.

2.4 Inclusion Functions for Relational and Lq#cal Op-
erato~

Inclusion functions cart also be defined for relational and logical qeratora,
allowing natural interval extensions for functions used as wnatrsdnts.
A relational operator produces a result in the set{ 0,1 }, Ofor “fafse” and

i 23

SIGGRAPH ’92 Chicago, July 26-31, 1992

1 for ‘he”. l%e operators eqrsaf to, not aqtsalto, less tbast, andgreater
than or equal to amall bmafy felafiotudopemtors.An inclusion hrnctions
for a relational operator, such as Ieu than, caneasily be&6sted. Letf andg
be functions fmm R“ to R, with given iochtsiott functions, ❑j and Rg. Let
X E I“, and

❑f(x) = [a,b]
❑g(x) = [c, dl

Then we have

{

[0,o], ifd~a
a(f.cg)(~~ [1,1], ifb<c

[0, 1], otherwise

Logicat operators, such as and, or, and n@ combine reardts of the refs-
tiomd operators in Boolean expressions. Their inclusion functions am also
easily tfefittod. For example, if rl and r2 are two relational functions front
R“ to {O, 1}, and OrI and ❑r2 are their corresponding inclusion functions,
then an inclusion function for the logicsd and of the relations, r I A r2, is
given by

{

[0,0] , if Or, = [0,0] or ❑r2 = [0,0]
❑(rl A~)S [1,1], ifOrl =[1,1] andO~ =[1,1]

[0, 1], otherwise

2.5 Mean Value Forma
Glvena diffcrentiahlefurtctionfi Rm ~ R“, with pararnetera.q, x2,.. ., .%,
an inclusion fitnctiott, calfed the rneun vahu~orm, cartbe constructed for-f
as follows:

❑$(y) S f(c) +a ❑~’(Y) .0 (1’-O c) (4)

where c E Y, Y E Im and ❑t~’ is art inclusion function for the Jacobian
matrix off, i.e.,

That the at-me forrntttarepresents a vahd inclusion function for~ is an imme-
diate consequertceof Taylor’s theorem. The mean vatue form has the rrsefut
property that, under certain amditioos, the resutting bound 00 ~ quadrat-
ically converges to the ideally tight bound as tbe width of Y shrinks to O
(Krawczyk-Nickel1982 fora formal statentent andpmof, see [SNYD92b]).
Note thatthe addition, subtraction and -x-vector mrdtiplication opera-
tions implied by this definition arecomputedusing interval arithmetic. 5 The
ensuingtrcatmettt of interval analysis will drop the ❑ subscripts for interval
arithmetic operstiou, it should bc clear by the context whether the standard
opwatiotts or fheii intend analogs are meant.
The idea of a mean value form can be gerteralimd to produce inclu-

sion functions that incorporate more terms of a fmctioo’sTaylor expansiom
called T~lorfomu. A related inclusion function, called the monolorricify-
test inchrsionfunction, is alsodefitted using inclusion fisnctiottaon the partial
derivatives off [MOOR79]). By testing whether these derivatives exclude
O, (i.e., the function is monotonic with respect to a given parameter), very
tight bounds cart bc produced. Mcart vahse forms cart ah be detincd for
functions which are only pieccwise differentiable (see ~TS88]).

3 Solving Global Problems

3.1 Constraint Solution Algortthm

A system of constraints can be represented as a function, E R” ~ R, that re-
turns a 1if thecorrstrairttsare satisfied anda Oif they are not. Such a function
can incorporateboth eqtrality and ineqtrahty cxmstrainta,and can he repre-
sented with the relational and logical operators whose irtchrsicmfunctions
were examined in Section 2.4. Aa dtscuaaed in Section 2.4, an inclusion
function for F, ❑F, over a region X C 1“ can take on three possible vsfuex

❑~(x). [t), 1] * X is an indeterminate m@tr
OF(X) = [1, 1] ~ X is a feasible region

An iqfeosibk rsgion is a region in which no point solves the constraint sys-
tem. Afeasible regwn is a region in which every point solves the cortsfrairtt
system. An ina%lerrninaferegion is a region in which the constraint sys-
tem may of may not have solutions. We now present aft algorithm to find
solutions to this constraint system.

Algorltbm 3.1 (SOLVE) We are given a constraint irtchssionfunction ❑F,
an itdtiaf region,6 X, in which to find solutions to the corrstrrdntpvblem
F(x) = 1, and tbe solution acceptance set coftatraint, m, specifying when
an indeterminate region shouldbe accepted as a solution.

place X on list L
while L is nonempty

remove next region Y fmm L
evahsate •~ on Y
if OF(V = [1,1] add Y to solution
else if OF(Y) = [0,O]dkcard Y
ckeifOA(Y) = [1,1] add Ytoaolutiors
else subdhide Y into regions Yj and Y.2,

and insert into L
endwhile

Subdivision in Afgorifhm 3.1 can he achieved by dividing each candi-
date interval in hatf afong the midpoint of a singte dhneosion. By storing
the irt&x of tfte last suMivided dimension with each region, the afgonthrrt
carscyclicstly sttlxMi& all dhnenaions of the isitiat region, ensuring that
the width of cattdklate regions tenda to O as the number of iterations in-
creases. Grt the other hand, by knowing properties of the constraint sys-
tem whose solutions are sought, we cast offen deduoe smafler regions that
bound the solutions, especially through the use of internal Newtonmethods
[TCYTH85,RATS88,SNYD92b], The Hartaen-Greenbergalgorithm is an ef-
ficientmethod for finding zeroes of a function ~TS88] and uses exhaustive
suMlvisiou interval Newtonmcthcds, and local Newton methods.

3.1.1 The Problem of Indeterminacy

Algorithm 3.1 finds a set of intervals bounding the solutions to the wmstram“t
system. Jnparticular, by the pmpefty of inclusion functions, if this algorithm
finds no solutions, then the constraint system has no solutions, because a
region Y is rejected onfy when ❑F(Y) shows that it is infeasible. It can
afso he proved that the consffaiftt solution algorithm converges to the acftraf
solution set, when the inclusion functions used in the cquahty znd inequatky
conatrairrtaare convergent (see, for example, [SNYD92b]).
Unfortunately, a computer implementation of the constraint soiution sl-

gofithm cats not iterate fofeve~ it must terminate at some iteration n and sc-
cept the rermdrtingfegions as solutions. Espeziatly wftenequalky coostmints
are used, the afgorithm may accept some indeterminate regions, which may
contain zero, one, of more solutions, when these regions satisfy the solution
acceptance set constraint. This problem is mitigated by several factors.
Fret, it maybe enough to distinguish between the case that the cortatmint

problem possibly has solutions (to some tolerance), and the case that it has
no solutions. For example, to compute interfermm &text ion between two
parametric surfaces, SI, S2:R2 A R3, a constraint systemof three equations
in four variables can be solved of the form

S](UI, VI)= S2(U2, V2)

If we instead solve tbe relaxed constraint problem

IIs](rq, VI) - S2(M2,V2)II< c

the algorithm can hope to produw feasible solution regions, for which the
wmatrsinfs are sslisfied for every point in the region. 7 Such relaxed con-

%biOilidresiOOXcmbein6ni*iftb31dmiqucOfiw&ilcimlcdadhnw&-isud(W
[IrA’fass]).
7NOteMtbe SOhniCntOrhCUmf-e4fmkmisrypidy acurwof’maaeaimhelvmenlblwa

~M-hym~dspd mtimd&-prnufffkhti
fwOIUrracr.s60nxinrmec1mdhmadOOOtIotvelhesysremr#eqUAms.TherdUatpmbkm.rm
becshuhmat,tu, sotu60mforwhich1mci@bothondofmdtenoushsizeisccnqktdyccmuimd
Wirhinlb IOhuiOn*.

124

Computer Graphics, 26, 2, July 1992

stmirrt problems are called c-collisions in [VONH89]. If arty feasible re-
gions are found, the surfacca interfere, within the tolerance. If all regions
are evetiuatly found to be infeasible, the surfaces do rsrAinterfere within the
tokstrtee, and in fact come no closer than c. h is also possible that ordy
indeterminate regiona are accepted as solutiona. In this case, we may con-
sider the two surfacca to interfere to the extent that our limited floating pint
precision is able to ascertain.
second, we may know a priori that the system has a single solution. Let

the solution ace.eptance set corrstrrtirrthave the simple form

M(Y) a (s@ < t)

If the inclusion functions bounding the constraint equality and inequrdity
functions are convergent. then the solution approximation produced by Af-
gorirhm 3.1 achieves any degree of accuracy as c goes to O.
Third, we msy be able to compute information about sohrtions to the con-

straint system as the afgoritbstr progresses. Section 3.2 presents a theorem
specifying conditions computable with interval techniques under which a
region contains exactly one xern of a system of equations.
Finally, we carsrelax the constraints of a constraint system and/or accept

indeterminate resultsof the algoritbrn. In practice, although we carsnot guar-
antee the validity of such results, they are nevertheless useful.

3.1.2 Termination and AcceptssneeCriteria for Constraint solution

SOLVE can be applied to five specific problems:

t. find a bound on the set of solutions

2. determine whether a solution exism

3. find one solution

4. find all solutions

5. solve a constrained partitioning problem

The foliowing discussion analyzes the application of Algorithm 3.1 to these
spific problems, making the distinction between heun”sfic approaches, in
which the results are not guaranteed to be correct, and robu.r/ approaches, in
which the results are guaranteed to be correct.
Algorithm 3. I never rejects a region unless it contains no solutions to the

constraint prcblem. Therefore, an unmcr&fiedAlgorithm 3.1 can be used to
robustly find a set of regions bounding the solutions to the constraint system.
Such a solution superaet is often useful in hlgber-level algorithms, such as
the implicit curve approximation atgoritbm of Section 4. The solution super-
set can also be visualized to obtain a rough idea of the nature of the solutions,
even if the solutions form a multidimensiorrsd manifold rather than a finite
set of points.
To determine whether a solution exists, if the algorithm terminates with

so empty list of solutions, then the afgontbm should return the answer “no”.
If at any point the algorithm finds a feasible region, then the algorithm can
immediate y terminate with the answer “yes’”. If the algorithm finds only in-
determinate regions, then nothing can be conciuded with certainty. A heuris-
tic solution is to return “yes” anyway. This heuristic approach carsbe made
more robust through the choice of an appropriate solution acceptance set
constraint. For example, in solving the system ~(x) = O for a continuous
functionj, it is reasonable that a region, Y, before being accepted m a soiu-
tion, should satisfy

w(llf(Y)) < L5

for somesmall 6. The algorithm should report an error when none of the in-
determinate regions satisfy the acceptance criteria, before the machine pre-
cision limit is reached during subdivision. A robust solution to the problem
can be achieved by testing indeterminate regions for the existence of solu-
tions, using the test of Section 3.2.
Totind any single solution to a constraint system, Afgontbm 3.1 may con-

clude that the entire starting region is infeasible, or find a feasible region. In
Orelatter case, any point in the feasible region is chosen as a representative
solution and the atgorithm is hafted. Indeterminate regiona are beuristicatly
accepr~ whentheysatisfy the solution acceptance set constraint. ney may
also be tested for the existence of solutions, again using the test of Sec-
tion 3.2.
Algorithm 3. I can also be applied [o the problem of finding all solutions

to a constraint system, when a finite set of solutions is expected. Again, if

B
m

!33? El

Figure 2: Solution aggregation - The soiution regions returnedby Algo
rhhm 3.1 are the collection of nondaabed squares. The actual solutions are
marked by dots. An dequate level of suMivision has beersachieved so that
sets of contiguous regions encompass each of the four solutiona, and each
contiguous region may be bounded in an intervat (dashed boxes) that is dis-
joint from other such regions.

the aigorithrrrterminates with an empty solution list, there are no solutions.
If a feasible region is found, an infinite number of solutions exist. If ordy
indeterminate regions are found, then a useful heuristic approach is to union
all contiguous solution regions into a set of mutually disjoint aggregate re-
gions, as shown in Figure 2. A point inside each aggregate region is picked
as a solution. If the number of solutions is known beforehand, then the algo-
rithm cartbe terminated with an error condkion if the miwhlne precision is
reached in suMivision with a number of aggregated regions uoequat to the
number of solutions. Of course, we note that although this approach almost
always works correctly, it is still heuristic, since, for example, one region
may contain no solutions while another czmtairrstwo. A robust approach is
to test for solution existence in each aggregated region. In this case, reachb-tg
the machhw precision limit during subdivision withnut being abie to verify
solution existence should result in an error termination.
Finally, to solve a constrained partitioning problem, Algorithm 3.1 must

be sIightly modified so that it adda a region to the solution only when 0,4 is
true, regardless of the value of ❑F. Alternatively, the constraint inclusion
can be set so that it returns tme (i.e., tbe constant [1, 1]) for all regions.
The solution acceptanceset corrstraintthen becomesthe set constraint of the
constrained partitioning problem.

3.2 Interval Tests for Solutlon Existence and Unlque-
neas

An interesting sod useful remdt can be proved that guarantees the existence
of a unique zero of the furrction~.RM+ RRin an interval domain X.

Theorem 3.1 (Ba*Rokne 1987) LetF R“ + R“be continuously differ-
entiable in art interval domain X, sod let c E X. f-et OJ be the interval
Jacobian matrix off over X, i.e.,

Let Q k the solution set of the linear interval equation in x

f(c) + Cu(. – c) = o

That is,
Q= {Xl 3JE ❑Jsuchtkar\(c)+J(x– c)=O}

If Q # 0 and Q ~ X, tbenf has a unique zero in X.

A proof of this theorem can be found in [SNYD9’2b]. The hyptbeak of
the theorem cars kc verified using practicsd computations in several way~.
First, if the interval determinant of IW is not O, then

Q C c – a~-lj(C)

where ❑J -1 is tie interval matrix inverse of OJ. WeCSSStherefore compute

I15

SIGGRAPH ’92 Chicaao, Julv 26-31, 1992

the interval inverse of the Jacotkn matrix Ct.1,mmpute

Q* ~ C- ~-if(C)

and verify that X C Q*, in order to show the existenee of a unique solution
in X. Gther methods involve Gauss-Si&l iteration on the linear equation
[RATS88], or usc of linear optimisation [SNYD92b].
We note that the theorem is not useful in every ease, sirsee if there is a

sero ofj in X atp, and the determinant of the Jaeobhrr off atp is O,then we
can never verify solution uniqueness using thk theorem. We stso note that
an interval test for solution existenee (but not necessarily uniqueness) can
he found in [MGGR80]. The appendix discusses a test that indkites when
a region has atmost one zero.

3.3 Minlmlzatlon Algorlthm
Theconstrainedminimizntiorr problem involves finding the global minimum
(or global minimisers) of a fuoctionfi R“ + R for afl points that satisfy a
constraint function 1? R“ -+ {O, 1}. This umstraint function is defined
exactly as in Section 3.1.

Algorithm 3.2 (MINIMIZE)We are given a constraint inclusion timction
❑F, a solution aeeeprarsce set constraint, OA, an inelusion function for the
objective function, Of, and an initial region, X. The variable u is a pro-
gressively refined least upper bound for the vatoe of the objective function~
evaluated at a feasible pint. Regions are inserted into the priority queue L
so that regions with a smaller lower hound on the objective functia~ have

kc X on priority queue L
nitialir.e upper bound u to +co
uhlle L is nonempty

get next region Y from L
if ❑A(Y) = [1, 1] add Yto solution
eke

subdivide Y into regions Y1 and Y2
evaluate ❑F on Y1 and Y2
if ❑F(Yi) = [0,O]discard Yi
evaluate Of on YI and Y2
if lb ❑~(Yi) > u dl~~d Yi
insert Yi into L aczording to lb ❑~(Yi)
if Yi contains an identified feasible point q

u = min(u,f(q))
else if Yi contains an unidentified feasible point

u = min(u, ub ❑~(Yi))
ersdif

endif
ndwhile

Let the region U~be thei-th region on the priority queue L after n while
loopiterations of the algorithm. I-et u“ be the value of u at iteration n, and
let 1. be given by

1“ s lb Oj(fJ;)

The interval U: is called the leading condi&a/e intervol, and has the smallest
lower bound for the value off. Letf” be the minimum value of the objec-
tive function subject to the constraints. We note that if a region X contains
feasible points for the constraint function F, therr~ ● exists. Given existenee
of a feasible point, an important property of Algorithm 3.2 is

In <f’ < u. Vn

Algorithm 3.2 suffers the same problems that Afgorithm 3.1 does, in that
an indeterminate region (i.e., a region Y for which ❑F(Y) = [0, l]), mayor
may not include feasible points of the system of constraints. This implies that
the rdgorithmmay accept indeterminate regions as solutions that are, in feet,
infeasible. Moreover, if the constraints cart never be satisfied exactly, (e.g.,
they are represented using equafity mrrstraints), then all candidate regions
are indeterminate, so that u is never updated. In this ease, the algorithm is
unable to reject any of the candidate regions on the bask of the objective
function bound and accepts all indeterminate regions as solutions.
A robust solution to this problem is to use assexisterree test, such as the

one presented in Section 3.2, to verify that a region contains at least one

126

feasibk point. A heuristic approach is to eortaider inde@mbte regions of
strtall enough width as if they contained a feasible point. lheae Metermi-
rtateregions may&subjected to an appqxhe -p-t that provides
more umfi&nck that the region contains a feasible point.
Afgorithm 3.2 cartbe enhanced with techniques that find feasible points,

feasible points with a smalkr value of the objective function, or feasibk
regions in which the objective timction is monotonic with respect to any
input variable ~TS88].

33.1 Termination and AeceptarseeCriteria for Minimization

A constrained rninimiration poblem can be “solved” in three ways

1. find the minimum value of the objdve function

2. find one feasible point that minimi- the objective function

3. find all feasible points that rrtinimize the objective functiw

Slight mcsrMicationsto Algorithm 3.2 regarding when the algorithmic halted
and when indeterminate regions are accepted as solutions CMmake it appli-
cable to each of these spedic subproblems.
To find the minimum value of the objective function, ~ ●, Afgorithm 3.2

should he terminated when a kadiig tildate intervaf, U ~, is eneotrntered
with w(O~(iY~)) sufficient y small, given that U: contains at leastonefeasi-
ble points In this case, the vafuef(q) should be returned for some q E U~.
This approach is justified because if U~ contains a feasible point then

lb❑f(U;) ~ f“ ~ ub •~(@)

This apprnaeh presumes that we can verify the preaenee of a feasible point
in an indeterminate region before h machine precision is reached in sub-
division. Lack of this verification should result in some form of error ter-
mination. A heuristic approach is to accep indeterminate regions of smafl
enough width (and, possibly, satisfying other criteria) as though they con-
tained a feasible point.
Findhsg one or all minimizers of the objective function is a difficult prob

Iem that is currently not amenable to completely robust solution. Under
certain condkions9, Algorithm 3.2 emsverges, in a theoretical sense, to the
set of global minimisers of the minimisation problem. In praetiec however,
weoMain abound onthesetofglohal minimisers after atinitemmtberof
iterations. Afthmrgh techniques exist to verify whether a given interval in
this bound contains a kaf minitttkr of the minimization problem we wifl
not know, in generaf, if thae local minimisers are afso global minimizers.
If we know, a priori, that a singk gksbal rnirdrnizerexists, then the tech-

nique of solution aggregation (Seetion 3.1 .2) can be used to eolkct candidate
solutions into a single inkrval. We can then verify that the width of this in-
terval tends to zero as the algorithm iterates. If we expect a finite ~t of glebsl
mirrimizrs, then a reasonable heuristic approach is to aggregate solutions,
and pick a point in eaeh aggregated region as a global minimizer. Such an
aggregated mgiOISshould be small enough in width and satisfy other SC-
tance criteria that increase eonfi&noe that it rmntains a global minimizer.

4 Example: Approximating Implicit Curves

An implicit curve is the solution to a constraint system F(x) = 1, .x● X C
R“, such that the solution forms a ID manifold. Implicit cmwes are ex-
tremely useful in geometric modeling, especially for CSG and trimming w
erations on parametrically described shapes. They ean represent, for exam-
ple, the intersection of two pametric surfaces in R3, or the silhouette edges
of a pametric surface in R3 with respect to a given view.
The robustness of the algorithm presented here is superior to k.realmeth-

ods soeh as ~M77,BAJA88]. Timmer’s method, for example, sepamea
implicit curve approximation into a hunting phase, wherr intersections of
the implicit curve with a preselected grid are computed, and a trwing phase,
where the curve inside esch grid eel] is traced to determine how to connect
the intersections.
The new afgorithm computes #nts on the impficit cmve using Algo-

rithm 3.1, guaranteeing a bound 00 the resrsft. Ttds method is superior to
8W&~ ilrervmbsJemjsemd,ltlmrlOfeaaibtepc&be.aistirlrkoligiDd*soy

domeotc!xist
9A~t~~& .sxuraueefasequmccotpoimsinrbeinuriordti fAbtedom,io

rhueonvq m1gtobdMinializcr[RA1-sss].

Computer Graphics, 26,2, July 1992

Fk.ure 3: Implicit curve approximation - The figureon the left shows an
im-plicit curv; satisfying ~; algorithm’s assump;ons. It consists of three
segments two closed segments, and one segment intersecting the boundary
of the interval of consideration. The figureon the right showsan approxima-
tion of the implicit curve. In this case, the algorithm produces thres linked
lists of points as output, one for each segment of the implicit curve.

local methods, such as Newton iteration, which are not guaranteed to con-
verge. Ttmmer’s rnethcd also fails to find a disjoint segment of the curve if
it lies completely witbin one grid cell, while the proposed algorithm uses a
globai pstrameterizahility criterion that subdivides parameter space until no
curve segment can be lmt. The algorithm is similar to the one described in
[SUFF90], but differs in three respexw it uses this global parametenrabil-
ity criterion, it handles multivariate implicit curves, md it incorporates an
approximation quality metric.

4.1 An Implicit Curve Approxlmatlon Algorithm
The following arc inputs to the approximation algorithm

1.

2.

3.

artinterval X E 1“, called the irrfervafof consideration, in whtch to
approximatethe implicitcurve.
aninclusionfunction❑F(Y), Y E 1(X) for the constraint system defin-
ing the implicit curve.

an inclusion function m(y), Y E I(X), called the approximation ac-
ceptance inclusion function. This inclusion function tells when an in-
terval Y is small enough that each segment of the implicit curve it con-
tains can he approximated by a single interpolation segment between a
pair of solution points.

algorithm works by subdividing the region X into subregions, called
pro.rimareinlervals, that contain the implicit curve, satisfy the approximat-
ion accqmutce inclusion function, and allow simple computation of the lo-
cal topology of the curve. The algorithm makes the following assumptiotw

1.

2.

The solution to the constraint system F(x) = I is a continuous, 1D
manifold. This implies that the solution contains no self-intersections,
isolated singularities, or solution regions of dimensionaiit y greater than
1. It further implies that each disjoint curve segment of the solution is
either closed or has endpints at the boundary of the region X.

The intersection of the solution curve with a proximate interval’s
boundaries is either empty or a finite collection-of points, nor a 1D
manifold. ‘Ilk assumption is unimportant for implicit curves with no
segments entirely along the parametric axes. When the implicit curve
does have such segments, the constraint system most be reposed (of-
[en simply by a linear transformation of the parametric coordinates) as
discussed in [SNYD92b].

Under these assumptions, each point on the implicit curve is linked to two
neighbors, or possibly a single neighbor if the point is on the boundary of X.
The output of the approximation algorithm is a list of ‘“cmes”, where each
curve is a linked list of points on a single, disjoint segment of the implicit
curve, as shownin Figure3.

Algorithm 4.1 (Implicit Curve Approximation)

1. Subdivide X into a collection of proxirmste intervnis bounding the
impiicit curve and satisfying the approximation acceptance inciu-
siorsfunction. This carsbe accompiiahed using Algorithm 3.1. Fig-
ure 4 shows an exampie of a collection of proximate intervals.

2.

3.

4.

5.

6.

Check each proximate interval for giobai puameteriaabiiity. The
implicit curve contained in a proximate interval Y is called glo&Uy
paronreterizabk in a paransereri if thereis at moat one point in Y on
the curve for my value of the i-th parameter (see Figure 5). ff the
impiicit curve is not globally parameterizabie in Y for any pammetm,
then Y is recursively suhshvided and teated again.

Find use intersedosu of the impikit curvewithtbebnund8riaof
each proximate interval, using Algorithm 3.1. Assumption2 impiies
that this intersection will be empty or a finite collection of points.

Ensure that the boundary interudmu are disjoint in the giobai
pnrsrmeteriaabiiitypmmteter. Let i be the giobai parameterizabiiity
parameter for a proximate interval Y, computed from Step 2. Tbis step
checks that intersections of the implicit curve with rs boundary are
non-overlapping in smorshate i, as shown in F@e 6, so that they can
be utrambigtsotsalysorted in increaaing order of coordinate i.
If Y’sboundaryintersections are not disjoint in parameter i, Y is recur-
sively subdhided and retested.

Compute the connection of boundary intersedons in each proxi-
mate interval. If an interval Y contains no boundary intersections, it
can be dkarrded, because the global parsmeterizabiiity condition im-
piies that the solution cannot he a closed curve entirely contained in
Y. NW can the soiution be a cume segment that does not intemect ~s
boundary, by Assumption 1. MY contains a single boundaryintemec-
tion, then the solution is either tangent to a boundary of Y or pawes
through a corner of Y, but does not intersect the interior of Y,
If Y contains more than one boundary intersection, tireboundary inter-
sections are sorted in order of the global paramcterir.abiiity parameter i.
For each pair of boundary intersections adjacent in parameter i, Aigm
ritbm 3.1 is used to see if the solution curve intersects the i-th pmmeter
hypcrplane midway between the two boundary intetiions, as shown
in Figure 7. If so, the boundary intersections are connected in the Iocsi
curve tcqmlogy iinired iist.

Find the set of disJoint curve segments comprising the implkit
curve. After the impiicit curve has been traced ~nside of each proxi-
mate interval, the iist of connected boundary intersections is traversed,
using the foiiowing algorithm

iet S be the set of boundary intersections
while.$ is nonempty

remove an intersection point P from S
findand remove ail pointa Q in S that are

(indirectly) connected to P
*soci*e P and the set Q with a new curve

endwhile

We note that in accumulating the act of points on a particular curve
using this algorithm, if a point P’ E Q is eventually found such that
P = P then the curve is closed. Otherwise, the curve has two endpoints
on the boundary of X by Assumption 1.

Step 1 of the algorithm combines the constraint inciusion with the q
proxiriMion accept-a= inclusion to create an initial collection of Proxiti
intervals bounding the impiicit curve (subproblem 1 in section 3. 1.2). Step 2
ensures that each proximate interval satisfy a global pararmxerizabiiity cri-
terion. Tire appendix presents a theorem i&ntifying condhiorrs for global
paratneterizstility, computssbie with intenwi tcctilqtses already discussed.
This theorem pertains to the special case of a system of n - I continuously
differentiable equality constraints inn parameters. We have also deveioped
a more general but heuristic test for giobsi Prsrameterizalilily, dkcusaed in
[SNYD92b].
Step 3 of the algorithm computes the intersections of the impiicit me

with the boundary of each proximate interval. Algorithm 3. i is used with the
original constraint inciusion, OF, md an initial region formed by one of the
2n (n- 1)-sfimensionai hyperpianes kunding the proximate interval. For
eachboundary hyperpiane, Algorithm 3. i searches for ail the constraint sys-
tem’s solutions, producing a set of intervals bounding the solutions, caiied
boundary intersection infervai.r. Boundary intersection intervals that are
shared along edges or corners of contiguous proximate intervals sbouid be
merged, as discussed in [SNYD92b].

127

SIGGRAPH ’92 Chicago, July 26-31, 1992

Figure 4 Collection of proximate intervals boundingan implicit curve-In
these examples, the constraint system is given by the equation

A?+yz + cos(2mx)+ sin(27rv) + sin(2ff~)cos(2~y2) = 1

Theintervaf ofconsiderationis [-1.1, 1.1] x [–1.1, 1.1]. Theappmxirmr-
tion acceptance inclusion function for the let? example simply requires that
the width of the parameter space interval should he leas than 0.2, while that
on the right guarantees the global parameterizaMlity of the solution in each
intervaf.

I. Examples Globally Parameterizable in x

II. ExamplesNot Globally Parameterizable in x

III. Examples Not Allowed by Assumptions

TIEIPHZI
F@ue 5: Global Pararneteritilfity - The figure illustrates some of the pos-
sible behaviors of an implicit curve in an intend.

Steps 4 and 5 link boundary intersection intervals that are connected by
the same segment of the implicit curve. Boundary intersection intervals are
sorted in the global parameterikabilit y parameter, md each pair of adjacent
intersections is tested. The test uses Algorithm 3.1 to discover whether the
implicit curve intersects a hyperplarte midway between the pair of inter-
sections. This application of the constraint afgoritbm need only ascertain
whether a solution existq the location of the intersection point is not re-
quired. On the other hand, the intersection point earrbe used to better ap

at little extra computationalcost.
Fhlly, after all proximate intervafs have been examined, Step 6 asso-

ciates each of the boundary intersection intervals with a disjoint segment of
the implicit curve. A point insi& each of the boundary intersection intervals
should be chosen to represent the acturd point of intersection of the proxi-
mate intm%d’s boundary with the implicit curve. Tlds point can be chosen
arbitrarily (e.g., midpoint of the interval) or computed using a lcal iterative.
technique such as Newton’s method.
We note that an algorithm similar to Algorithm4.1 canbe used to generate

approximationsof impficit surfaces [SNYD92S]. This algorithm dso U=
the global parameterizaMlity criterion describedin the ap~ndix, for the case

a “q
‘A B

Figure 6 Boundary intersection sortabWy - Figure A illustrates a 2D inter-
val containing four hourtdmy interned ions that are dmjoint in the x prrrame-
ter (horizontal axis). ‘fhey can therefore be sorted in x, yielding the ordering
p, q, r,s. In figureB, boundaryintersections q and rare not disjoint in x (the
dashed line shows a common x coordinate).

1.Boundary Intersections of an Implicit Curve

II. Eight Cases of Implicit Curve Behavior

III. Not Allowed by Global Parameterizabllity

rzltswa
Figure 7: Global Par-ameterizatdity md the linking of boundary interjec-
tions - In thii figure, we assume an implicit curve defined in R2 ia globally
parameterizatde in x in artinterval. The implicit curve has four intersections
with the interval’s Lmrmdary,as shown in I. Because of global parameteriz-
ability and the curve approximation afgorithm’s assumptions, there are ordy
eight possible ways the implicit curve ean connect the Lmmdary intersec-
tions, as shown in II. The Possibilities shown in III are not globafly param-
eterizable in x, and are therefore excluded To disamblguate between these
eight cases, we rrc%donly see if the implicit curve intersects the x hyperplarre
(dashed vertical line in I) between each pair of adjacent boundary intersec-
tions.

of a 2D manifold rather than a 1D manifold.

5 Results

Figures 8 though 11illustrate the results of the interval analysis algorithms.
Running times for the examples ranged from about 5 seconds for the canpu-
tation of the minimum distance between two parametric surfaces (F@e 11)
to several minutes for the CSG example (Figure 8) on a HP9000 Series 835
Workstation.

6 Conclusions

We have shown how a variety of important problems in computer graph-
ics can be solved using the technique of interval analysis. These problems

128

Computer Graphics, 26,2, July 1992

include ray tracing, computation of tolerance polygonal decompositions,
detection of eollisiorta, computation of CSG operations, approximation of
silhouette curves, and many others. We have described two general kdgo-
rifhms, eonstrairtf solution and cortstrairtedminimization, which ean solve
these problems either directly, or when used in a higher level aJgorifhm such
as the implicit curve approximation afgotifhm of Seetion 4.
The advantage of the approach advocated here is twofold. Robust so-

lution of computer grapfdcs problems is achieved because interval analysis
controls numerical error. A simple implementation is achieved because ordy
two trade algorithms are necessary, which require inclusion functions for
functions relevant 10 the problem. Definition of inclusion functions ia not
difficul~ nafuraf interval extensions, a pimicukzr type of inclusion function,
can be defined by implementing an inclusion function metbcd for each op
erator used in the relevmt functions (e.g., the tithmetic opsratora and the
cosine operator of Section 2.3). Mean value forma, another type of inclusion
function, can be defined using natural interval extensions and a derivative
operator. An entire, very powerful geometric modeling system can be built
upon a act of operators exh having an inclusion method, such as the system
described in [SNYD92a,SNYD92b].

Acknowledgments

1would like to thartk At Barr for his support and encouragement of the pub-
lication of this research. Al Barr and Ronen Bat-d have provided many
helpful comments md suggestions. This work was funded, in part, by IBM,
Hewlett-Packard, and the National Science Foundation.

References
[ALEFW]

[BAJA88]

[KALR89]

[mm]

[MJTc91]

[MGGR66]

[MOGR79]

[M~R80]

[MUDU84]

[RATS88]

[SEGA90]

[SNYD91]

[SNYD92S]

Alcfcld, G., snd J. Hcrzberger,Intmductiun to Interval Computations,
Academic Press, New York. 1983.

Bsjsj,C., C.Hoffman, J. Hopcmft, and R. Lynch, ‘Tracing Suzface In-
tersections,” CorrrputerAidedGsmncfric Oe$igrz,5, 1988, pp. 285-307.

Kalra. Dsvendw and Alm H. Barr, “Gusrsntcxd Rsy Intersections with
Implicit Surfaces,” Computer Gmphics, 23(3), July 19S9, pp. 297-304.

Mitchell, Dun, “Robust Ray Intersecticmswith Interval Azidmrctic,” Pzc-
ceedings Clm@ics Interface ’90, Msy 1990, pp. 68-74.

Mhchcll, Don, ‘Thee Applications of Mend Anstysis in computer
Graphics; Course Notes for Frontiers in Rendering, Siggmph ’91.

Moare, R.E., Interval Ana/ysis, Prmticc Hskl, Englewood Ckiffs, New
Jersey, 1966.

Murme, R.E., Methcxlsand Applica:iom of Interval Anafysis, StAM,
Phhdelphia.

Mourc, R.E.. “f4ew Results on Nonlinear Systcrns; in Inttwal Math-
ematics /980, Karl Nickel, cd., Academic Press, New York, 19S0, W.
165-180.

Mudur, S.P,. and P,A. Koparkar,““kntezvatMethods fc+ processingGec-
nretricObjects.” /EEE CoenpulerGmphics andApplications, 4(2), Feb,
1964, pp. 7-17.

Ratschek. H. and J.RokzK,NewCornputerMeMcdsforGI0601Optimiza-
tion, EUisHorwoud Limited, Chichesta, Engkmd, 1988,

Segat, Msrk, “’UsingTolerances to Guarantee Valid Polyhedral Modeling
Results,” Computer Graphics, 24(4),August 1990, pp. 105-t 14.
Snyder, John, Gewmtiw Modeling: An .4pprtxmhto HighLmel Shape
Oesignfor ComputerGraphics and CAD, Ph.D. Thssis, Cafifomia Insti-
[Uk of Technology, 1991.

Snyder, John,“GenerativeModeling: A Symbolic System for (kmnekic
Modslingu to be published in Siggmph ’92.

[SNYD92b] %ydu, John,Genemtiw hfodeling for Computer Gmphics and CAD:

[SUFF9Q]

[ITMM77]

[TOTHR5]

SYm60ficShapeDesignUsingIntcrvalAnaIysis, m be published by Aca-
demic P2CSS,SU2 2U2 2C21992,

SutTem,Kevin G., and Edwatd Fsckaell. “fnteJwJ Methods in Computer
GrapMcsV Proceedingsof Ausgrsph ’90, M.lboums, Australia, 1990, pp.
35-44.

‘Tii, H.G,, Ana/ytic&ckgmwrd for ComputationofSwface lntersec-
fions,Oo@s ANZ4 CompanyTechnicalMmnorsndunrCI-250-CAT-
77-0.36, April 1977,

Toth, Daniel L., “On Rsy Tracing Parametric Surfxes,” Computer
Graphics, 19(3), July 1985, pp. 171-179.

[VONH87]

[VONH89]

[VONH90]

VonHct-zen,Brian P. andAJanH. Bazr;Accuratc .%nzplingof Defamsd,
Jmusecting Surfaces with Quadtrus,” Computer Gmp6ic$, 21(4), July
1987, pp. 103- I10.

VoztHsrzen, Brian P., Applications of Surface Networks to .%npfing
Pmkdemsin Computer Graphics, Ph.D. Thesis. Cafifomia hzstitutc of
Tecturdagy, 1989,

Von Herzen, B.. AH. Barr. and HR. Zatz, ‘Geometric Collisiau for
T*Depen&nt Pwamerxic Surfaces,” Computer Gmphics, 24(4), Au-
gusl 1990,pp. 39-48.

Appendix - A Robust Test for Global Parameteriz-
ability
Consider an rdimcnsicmsl manifold defined as he solution [o a systim of n - r cqux-
tiOnsin npamnWem(r E{ O,l,.. ,,n- l)):

fl(~l!~2,..., %) = o

Jkr(xl, q,...,%) = o

~lvenamtofrpmt=iAka,A= {kl, k2, . ..lk,), andmintavat XE 1“,
we detioss subimewufof X overA ass set dependiion rpammelm fY17Y2). ..?Yrk
yj E Xk,. ~fi~ by

Thus, a subint~sl is m intervat subset of X, r of whose com-diitez area spe c ikt
C0 2 kSW2 t .and the re s t of whose CO02dinStCSu= tbc karrx3as in X.
The sokution to a system of n - r equations in n pamwrem is Cs tkedgk2 k4 7 lfypa-

mmstsn”oz61e inrherparametas indexsdby A overanintavat Xifrhemisatrnmt
one soJution to he system in my subintenak of X overA. Put - sizqrly, the system
of equations is globally parameteriz.skdeif r parameters can be fuund -h that dzsre is
at most ane sotution to the systcm for my paAculsr vahze of ths r pmametm in ths
inrez’vd.
We &fiZZSlJJ{kl ,k2,,,, ,k,, (X), cakledthe inwwzl Jacobianwbmalrix, w m (n -

r) x (n - r) intervalmatrix given by

Forannx nintemat matrix O.M, we write det D.U+Oif tbcreexists nommtrix
M E ❑ IMsuch tbst &t M = O. The following tbeaomz guarantees the gfobat px-
rameterbxbfity of the solution in m inLe4wJX (for a Prcmf,- [SNY092bl).

TbcuremA.1(IntcrvatImpfkdtFuncdonlbeoran) Let the camtmint hmedom
fi(x), i = 1,2,. ..,.- rbscontinuoudy diff-ntiable. Letaregicm X E I“es-
ist such hat

&10J(kl,k2,.,,, k,)(~#0
Then the Zulut ion 1 0 the system OfCq2 at ions f i(x) .0 is gJObOtlyparameWhMe in
therpxrxmetsrs indexed by{kl, k2,k.)overX.

Inrbc case of appximatianof a ID zcdutiunmanifold, r = 1; i.e.. as~temofn - I
quariom in n varixtdm is to bs solved. Tbc rheomm guarantees that if, in xn herd
X,wecsnfindn- 1 Pwsrncters such thsl

then ths solution manifold is gkobakly paramcterizabtc in X over tbs paruneterx ~. MCI
thus satisfies the constraint of Step 2. We can verify that

dctaJ(q (X)# o

by forming m inclusion function f- the d+xerminantof any of then intervxkJEobian
submatrices using tbs intervsk arithmetic IWSsentcdin section 2.2.

I29

SIGGRAPH ‘92 Chicago, July 26-31, 1992

Figure 8: CSG Example.
Algorithm 4.1 was used to find
the curve of intersection between
a bumpy sphere surface and a
cylinder surface. ‘lhe output of
the algorithm was used in a
parametric trimming operatiat,
resulting in the subtraction of the
cylinder from the bumpy sphere
on the left, and the subtraction of
the bumpy sphere from the
cylinder on the right.

Figure 9: Silhouette Edge
Detection Example. The figures
show the results of the implicit
curve approximation algorithm to
approximate the silhouette curve
of a parametric surface, S(U, u).
with respect to a given (in this
case, orthographic) view. The
implicit curve is the solution in
two variables, u and V. of the
equationE.($$ x g)=O
where S(u, V) IS the parametric
surface and E is the viewing
direction.

Figure 10: PolygonalDecompositicnExample. The figureon theleft shows
poly8aral decomposition based on uniform sampling in parameter space.
On the right, the same surface has been decomposed using a slightly smaller
numberof triangles, usingtheconstrainedpartitioningalgorithm. which sub
divides the parameter space (shown below the two surfaces) until the maxi-
mum variation in the surface normal is below a threshold. Polygonal artifacts
on the highly curved projection are much reduced.

Figure 11: Minimum Distance Computation Example. The results of the
minimization algorithm to find the minimum distance between two paramet-
ric surfaces is displayed. ‘lhe green line connects the points on the two sur-
faces closest to each other. In this case, a single global minimizer was found
for the unconstrained minimivltion problem of Formula 2 in Section 1.2.

130

