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ABSTRACT 

We present a new method for animating water based on a 
simple, rapid and stable solution of a set of partial differential 
equations resulting from an approximation to the shallow 
water equations. The approximation gives rise to a version of 
the wave equation on a height-field where the wave velocity is 
proportional to the square root of the depth of the water. The 
resulting wave equation is then solved with an altemating- 
direction implicit method on a uniform finite-difference grid. 
The computational work required for an iteration consists 
mainly of solving a simple tridiagonal linear system for each 
row and column of the height field. A single iteration per 
frame suffices in most cases for convincing animation. 

Like previous computer-graphics models of wave motion, 
the new method can generate the effects of wave refraction 
with depth. Unlike previous models, it also handles wave 
reflections, net transport of water and boundary conditions 
with changing topology. As a consequence, the model is 
suitable for animating phenomena such as flowing rivers, 
raindrops hitting surfaces and waves in a fish tank as well as 
the classic phenomenon of waves lapping on a beach. The 
height-field representation prevents it from easily simulating 
phenomena such as breaking waves, except perhaps in 
combination with particle-based fluid models. The water is 
rendered using a form of caustic shading which simulates the 
refraction of illuminating rays at the water surface. A wemess 
map is also used to compute the wetting and drying of sand as 
the water passes over it. 
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INTRODUCTION 

The problem of realistically modeling scenes containing 
water has captured the attention of a number of computer- 
graphics researchers in recent years[l; 2; 3; 4; 51, The omni- 
presence of water as well as the complexities and subtleties of 
its motion have made it an attractive subject of study. Yet 
existing computer-graphics models of water motion 
adequately cover only a very small range of interesting water 
phenomena. Among other effects, they fail to account for 
wave reflections, net transport of water and boundary 
conditions with changing topology. A computationally 
inexpensive method of simulating these phenomena will be 
presented here. Based on solving a partial-differential 
equation on the surface of a height-field, the method is easy to 
implement and very stable. The approximations involved may 
not be suitable for high-precision engineering applications, but 
they produce pleasing animation with little effort. 

Many popular methods for modeling water surfaces work 
well for producing still images, but are unsuitable for 
animation because they do not include realistic models for the 
evolution of the surface over time. Examples of these 
techniques include stochastic subdivision [6] and Fourier 
synthesis [5]. Other techniques work well only in large bodies 
of water away from boundaries [7; 1; 8]. Recently, the realism 
of water modeling in computer graphics was substantially 
improved by three papers [2; 3; 4-] that took into account refrac- 
tion due to changing wave velocity with depth. In each case, 
specialized methods based on tracking individual waves or 
wave-trains were used to avoid the need to directly solve a 
differential equation. These papers deal adequately with 
waves hitting a beach, but they leave a wide range of water 
phenomena unexplored. None of the papers includes 
simulations of reflected waves. In addition, the underlying 
model in each case is that particles of water move in circular 
or ellipsoidal orbits around their initial positions, so there can 
be no net transport or flow. Finally, none of the papers 
considers situations in which the boundary conditions change 
through time altering the topology of the water -- for example 
a wave pushing water up over an obstacle and down the other 
side to create a puddle. It appears to be very difficult to deal 
with these phenomena efficiently by tracing waves. 

Two alternatives to tracing the propagation of waves or 
wave-trains exist. One is to simulate the fluid by the 
interaction of a large number of particles [9; 101, and the other 
is to directly solve a partial differential equation describing the 
fluid dynamics [11; 12; 13]. Both have been used by hydro- 
dynamicists to create iterative simulations of fluid flow. The 
problem is that a truly accurate simulation of fluid mechanics 
usually requires computing the motion throughout a volume. 
This means that the amount of computation per iteration 
grows at least as the cube of the resolution. If there are linear 
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Fig. 1: Discrete two-dimensional height-field representation of the 
water surface h, the ground bottom b, and the horizontal water veloc- 
ity u. 

systems to be solved at every iteration, the computational cost 
can grow even faster. In addition, the number of iterations 
required may grow as the resolution is increased. As a 
consequence, accurate simulation of fluid mechanics is 
typically reserved for vectorized supercomputers or very 
highly parallel machines. 

For the purposes of animation, accuracy is much less im- 
portant than stability and speed. An animator using tech- 
niques of physical simulation will typically have to 
experiment with a number of different conditions of a simula- 
tion before achieving satisfying motion. If the experiments 
take too much time or if the numerical methods become 
unstable, the process can become excruciating. 

Here, we examine the differential equation approach with 
the goal of constructing the fastest stable simulation which 
yields a wide range of convincing motion. We begin by 
considering a very simplified subset of water flow where the 
water surface can be represented as a height field and the 
motion is uniform through a vertical column. This subset of 
water flow is representative of a variety of non-turbulent 
shallow-water phenomena. Under these conditions, we can 
approximate the equations of motion of the water in terms of a 
grid of points on a height-field. The amount of computation 
can then be proportional to the number of samples on the 
surface of the water which varies as the square of the 
resolution instead of the cube. 

Integration of the partial-differential equations is done 
with an alternating-direction implicit technique [14]. The 
result is a very stable integration scheme which is also very 
fast. Stability derives from the use of an implicit integration 
scheme; speed derives from the tridiagonal structure of the 
required linear systems which are solvable in linear time. Be- 
cause of the stability, the time-step of the solution can be 
made equal to the frame time of the animation in most cases. 

SHALLOW WATER EQUATIONS 

In lieu of simulating the full Navier-Stokes equations of 
fluid flow, we begin with a vastly simplified set of equations 
which has been widely used for shallow water [15; 16; 17]. The 
simplification arises from three approximations. The first ap- 
proximation is that the water surface is a height field. This, of 
course, has some obvious limitations. The water cannot 
splash and waves cannot break. However, so long as the 
forces on the water are sufficiently gentle, the height-field as- 

sumption will not introduce error. The second assumption is 
that the vertical component of the velocity of the water 
particles can be ignored. Once again, the limitations of this 
assumption are fairly clear. If a disturbance creates very steep 
waves on the water surface, the model will cease to be accu- 
rate. The third assumption is that the horizontal component of 
the velocity of the water in a vertical column is approximately 
constant. If there is turbulent flow or unusually high friction 
on the bottom, this assumption will break down. Nonetheless, 
the experience of hydrodYnamicists suggests that this is a very 
useful approximation to phenomena ranging from the effect of 
a single rain drop to the refraction of waves in a sea port. 

For simplicity, we begin with a height-field curve in two 
dimensions. Later, the same techniques will be extended to a 
height-field surface in three dimensions. Let z = h(x) be the 
height of the water surface and let z = b(x) be the height of the 
ground, tf d(x)=h(x)-b(x) is the water depth and u(x) is the 
horizontal velocity of a vertical column of water, the shallow 
water equations that follow from the above assumptions[ 16; 17] 
can be written as follows: 

ON oN Oh - - + u N + a g  =0 
at (eq. 1) 

,gd 0 -~- + ~ ( u d )  = 0 
(eq. 2) 

where g is the gravitational acceleration. Eq. 1 expresses 
Newton's law F=ma while eq. 2 expresses the constraint of 
volume conservation. Note that even with the above three 
simplifying assumptions, the resulting differential equations 
are non-linear. A further simplification which is often used is 
to ignore the second term in eq. 1 and linearize around a con- 
stant value of h. This will be reasonable if the fluid velocity is 
small and the depth is slowly varying. The resulting equations 
are then: 

oh - - + g ~ = 0  
at (eq. 3) 

Oh ON 
- 5 - + d - g  = 0 (eq. 4) 

If we differentiate eq. 3 with respect to x, then differentiate 
eq. 4 with respect to t and finally substitute for the cross-deriv- 
atives, we end up with 

d 2h d 2h 
- gd at 2 0x 2 (eq. 5) 

which is the one-dimensional wave equation with wave 
velocity ~ .  While this degree of simplification is suspect 
for many engineering purposes, our experience suggests that 
the resulting equations are quite adequate for a wide range of 
animation applications. 

DISCRETIZATION 

In order to solve eq. 5, we need to construct a discrete rep- 
resentation of the continuous partial-differential equation. 
There are two established techniques for doing so. The first is 
the finite-difference technique where the continuous functions 
are represented by a collection of samples. The second is the 
finite-element technique where the continuous functions are 
represented as the sum of a collection of continuous basis 
functions. Here, the finite-difference technique works particu- 
larly well because of the simple height-field representation. 
The resulting algorithm is very easy to implement and the 
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linear systems involved are tridiagonal. 
Figure 1 shows the discrete representation of the height- 

field in two dimensions. Note that the samples for u lie half- 
way in between the samples of h. After experimenting with a 
number of finite-difference approximations to equations 3 and 
4, the most stable version we have found is 

Ohi ( di_l + d i 
- ; :  t. 3m<- J",, 

( di + di+ 1 ~tli 
~, 2-z~c J (eq. 6) 

t~U i - g ( h i + l  -- h i )  
Ot Ax (eq. 7) 

where Ax is the separation of the samples along the x direc- 
tion. Putting the above two equations together, we get 

t9 2h i 
Ot 2 

( d~ , + d i~ ,  

( d i + di+ 1 h 

(eq. 8) 

which is a discrete approximation to eq. 5. 

INTEGRATION 

The finite differences convert the partial-differential equa- 
tion into an ordinary differential equation involving h and its 
time derivatives. The remaining problem is to solve the 
ordinary differential equation. While there are a number of 
possible choices of solution method, the wave equation is a 
notoriously bad example for explicit differential equation 
methods such as Euler 's method or Runge-Kutta integration. 
As the wave velocity approaches one sample per iteration, 
explicit methods tend to diverge very rapidly. Since the wave 
speed is proportional to the square-root of the depth, an 
ordinary explicit method would have to use a time-step appro- 
priate for the deepest water in the model. Implicit methods, 
on the other hand, do not suffer from these difficulties. 

For simplicity, we use a first-order implicit method which 
appears to be perfectly adequate. Let h(n) to denote h at the 
nth iteration and let dots denote differentiation with time. 
Then the first-order implicit equations can be written 

h ( n )  - h ( n  = 1) = /~(n) 
At (eq. 9) 

/ ~ ( n )  - / ~ ( n  - 1 )  = f i ( n )  
At (eq. 10) 

Note that the right-hand sides of these equations are evaluated 
at time n which corresponds to the end of the iteration rather 
than time n-1 which corresponds to the beginning of the 
iteration. This is what makes the iteration implicit and stable. 
Rearranging the above, we get 

h ( n )  = h ( n - 1 ) +  A t / ~ ( n - l )  
+ (At)2f i (n)  (eq. 11) 

h ( n )  = 2 h ( n  - I) - h ( n  - 2) + (At)2t~(n) (eq. 12) 

h i (n  ) = 2 h i ( n  - 1) - h i (n  - 2) 

2 { di-1 + di ) "  
- g(A,t) ( ~ - z ~ c ~  fl ( h i ( n )  - hi-l(n)) 

( d~ + d~+~ ~. 
+ g(At )2  ( ; & - ~  f l (  h i ÷ ' ( n ) -  h i ( n ) )  

(eq. 13) 

We are still left with non-linear equations because d depends 
on h. In order to solve these equations rapidly, we need a final 
linearization. Once again there are several possible choices, 
but a particularly well-behaved linearization is to regard d as a 
constant during the iteration. This means that the wave veloc- 
ity is fixed as a function of x. It limits the non-linearities to 
changing the wave velocities in-between iterations and virtual- 
ly ensures that the iteration will not diverge• With this linear- 
ization the next value of h can be calculated from previous 
values with the symmetric tridiagonal linear system 

Ahi(n)  = 2hi(n - 1) - hi(n - 2) (eq. 14) 

where the matrix A is given by 

A =  

"e0 f0 
f0 el 

f, 
f l  

"•° e2 
".. ".° 

".° e,-3 flu-3 

f n-3 en-2 

fn-2 

and the elements of A are as follows: 

f f  n-~ 

en-1 (eq. 15) 

e 0 =  l + g ( A t )  2 do + dl 

ei=l+g(At)Z(di-1+2di2(~x)2+di÷I) (O<i<n-l) 

e._, = I+ gfm)2t 2(~x)2 ) 

2 ( di + di+l f, = - g ( A t )  ~ -2-(~c'-~ ) (eq. 16) 

Note that right-hand side of eq. 14 can be regarded as an 
extrapolation of the previous motion of the fluid surface. 
Some interesting effects are possible by slightly changing the 
extrapolation. In particular, if the equation is changed to be 

Ah~(n) = h; (n  - 1) 
+ (1 - "r ) (h i (n  - 1) - h i (n  - 2))  

(eq. 17) 

then , introduces some damping in the extrapolation. If 
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= 0, then it reduces to eq. 14, but if r is between zero and 
one, it will make the waves damp out over time. The visual 
effect is that of a viscous fluid. 

There is one further subtlety of importance in the two-di- 
mensional case. Even though eq. 14 was derived from eq. 6 
which specifies conservation of volume, there is no guarantee 
that the results of the iteration will precisely conserve volume. 
The primary cause of departures from volume-conserving be- 
havior is that the iteration may leave h i < b i for some index 
i. To compensate for this negative volume, the iteration will 
create excess positive volume elsewhere. While the effect is 
small, it can accumulate over time and create substantial drift. 
If the entire surface acquires a small net upwards velocity it 
will very quickly create noticeable amounts of water. To 
combat this effect, the following simple projection appears to 
be adequate. After each iteration, find the connected pieces of 
the fluid. This can be done by scanning the h and b vectors in 
order and testing whether h~ < b i. For each connected piece 
of the fluid, calculate the old volume and the new volume. If 
the new volume is different, distribute the difference uniform- 
ly over the samples in the connected region. 

We can now state the entire algorithm for the two-dimen- 
sional case in some detail: 

Begin by specifying h(0), h(1) and b. 
Loop for j starting at 2 incrementing by one. 

If there are net sources or sinks of water, add or subtract 
the amounts from the current and last values of h. 

Calculate df rom h(j-1) and b. If h i < b i then d i = 0. 
Calculate the new value of h from h([-1) and h(#-2) 

using eq. 14. 
Adjust the new value of h to conserve volume as above. 
I f  h i < b i 'TOI some index/,  set h i ( j )  

andhi(  j - 1 ) t o b  i - e .  
The resulting value of h is h(j). 

While there are a number of  possible refinements, this is the 
basic version of the two-dimensional case. It can be 
implemented in one to two pages of very efficient, 
straightforward C code. 

T H R E E  D I M E N S I O N S  

Height fields in two dimensions are interesting, but 
moving to three dimensions opens up a much wider range of 
possibilities. Fortunately, the three-dimensional equations can 
be approximated by a series of two-dimensional equations, so 
the complexity does not increase radically. The basic wave 
equation for water in three dimensions is the same as the two- 
dimensional case except that the second derivative of h with 
respect to x is replaced with the Lap!acian. 

a2h /a2h a2h) 
&2 = ga t ' -~ 'T  + 3y2 ) = eq. 18 

In order to solve the equations in three dimensions, we 
rely on the alternating-direction method[14]. The basic idea of 
the method is to take eq. 18 and split the right-hand side of it 
into the sum of two terms, one of which is independent of y 
and the other of which is independent of x. We then divide 
the iteration into two sub-iterations. In the first sub-iteration, 
we replace the right-hand side of eq. 18 with the first term, 
and in the second sub-iteration, we replace the right-hand side 
of eq. 18 with the second term. More specifically, in the first 
sub-iteration, we solve the equation 

32h O2h 
- - = g d - -  
0t 2 ogx 2 (eq. 19) 

and in the second sub-iteration, we solve the equation 

0 ~ 2h t~ 2h 
oat 2 = gd Oy 2 " (eq. 20) 

The advantage of this technique is that the required linear sys- 
tems remain tridiagonal so the computational cost per itera- 
tions is proportional to the number of samples on the surface. 
The resulting implementation remains very simple. For the 
first sub-iteration, we compute the update as before on each 
row of the height-field. For the second sub-iteration, we do 
the same for each column in the height-field. While artifacts 
can potentially arise from the favored directions, our experi- 
ence with the alternating-direction formulation of these equa- 
tions is very favorable. More so than in two-dimensions, it is 
important to be careful with the details of the volume conser- 
vation. Errors manifest themselves as line artifacts along the x 
or y axes. 

R E N D E R I N G  WITH CAUSTIC  S H A D I N G  

Given a realistic way of simulating water motion, the 
next step is to render it convincingly. Several different effects 
must be taken into account. Firstly, rays of light which are 
incident on a water surface are refracted by that surface. This 
results in uneven illumination of the terrain undemeath the 
water. This effect is illustrated in Fig. 2 in which the ray from 
the light source is shown being deflected by the water surface. 

Instead of the incident light ray hitting the terrain at A, 
the ray ends up at B. The total illumination at B will depend 
on all the rays which are refracted in that direction for the 
entire water surface. To compute this exactly, it would be 
necessary to render a hemicube around B of all of the water. 
This is prohibitively expensive, especially since the shading of 
the water surface depends on the view point unlike the typical 
diffuse case in radiosity. An alternative approach[18l, feeds 
rays forwards from the light source and accumulates the 
results in an illumination texture for the surface to be shaded. 
Such an algorithm requires the intersection of a ray both with 
the water surface height field and the terrain height field for 
each illuminating ray. A very large number of rays is required 
for this technique, especially for grazing-incidence 
illumination. For samples evenly spaced around the light 
source, the average sample density on the terrain is inversely 
proportional to the cosine of the angle between the incoming 
ray and the surface normal. For grazing incidence 
illumination, very large numbers of illuminating rays are 
required. 

To avoid this expense, we use two approximations. The 
first is the flat bottom approximation which is illustrated in 
Fig. 3. If the terrain is locally flat, then the destination of the 
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ray may be computed using simple trigonometry. 

b = h (tan(r)) 

So, instead of tracing a ray from W towards the terrain to find 
the intersection point B, a simple expression suffices. To 
avoid undersampling the terrain with incident rays, we take 
samples which are evenly spaced in terrain grid coordinates. If 
there is no water present the samples will just remain on the 
surface point. This results in a uniform illumination map. We 
have effectively divided out the cosine of the angle between 
the normal and the illumination direction. To compute the 
correct shading intensity, the illumination map value must be 
multiplied by the cosine term. (This is unnecessary for the 
correctly ray-traced case since the decreasing sample density 
automatically takes this effect into account.) The second 
simplification is the flat water approximation. The point A is 
considered as the destination of a ray as if it was undeflected 
by any water. The height of the water above A is then used to 
compute an approximate position for a ray intersection with 
the water surface. 

a = h / (tan(i)) 

This value of a gives an estimate of the position of W. The 
refracted ray is computed from the water depth and normal at 
W using Snelrs law. The refracted ray is then used in 
combination with the fiat bottom approximation to compute 
the position of B. The net result of this process is that a sample 
moves from A to B. No ray-tracing against terrain is done at 
any stage and the intersection calculations are extremely 
economical. Each sample acts as the center for a conical 
convolution kernel which is added into the illumination map. 
The caustic illumination for the images in this paper took 40 
seconds on a Silicon Graphics 4D/210 workstation. The final 
stage of the rendering is to scan-convert the height field into a 
Z-buffer. The shading for the scan-conversion again uses the 
fiat bottomed approximation for the shading of the surface of 
the water. A ray is assumed to pass from the eye through the 
surface point, and is refracted towards the terrain. The terrain 
intersection point for this ray is computed in the same way as 
point B in Fig. 3. The illumination map value for that point is 
then used for the terrain shading contribution to the ray color. 
A second contribution to the ray color arises from light being 
reflected towards the eye by the water surface. An 
environment map for the sky is used for this term and the two 
are blended together using the Fresnel equations for 
unpol arized light [ 19]. 

To get a realistic appearance for water on sand it is nec- 
essary to take into account the fact that sand becomes wet on 
contact with water and then gradually dries when the water is 
no longer covering it. This effect may be achieved using a 

Flat Bottom Approximation 
J 

/ 
Fig. 4: Real-time two-dimensional example showing wave reflection. 
Top: A user has created a disturbance in the water producing two 
waves going in opposite directions. Bottom left: The wave is reflect- 
ing off the left wall. Bottom Right: After the reflection, both waves 

~are travelling to the right. 

Ill  / / 
Fig. 5: Real-time two-dimensional example showing changing 
boundaries. Left to right, top to bottom: A user has created a wave 
that carries some water over the hump to fall on the other side. 

J 

wetness map. At each frame time, the water is tested to see if 
it is above the terrain for each sample position. When this is 
the case, the wetness value for the sample is set to one. For 
samples in which the water is not above the terrain the 
wetness value is decreased by a constant amount with the 
wetness value clipped to zero if necessary. During rendering, 
the wetness value is used to darken the diffuse shading of the 
terrain by up to 50%. Also, the same wetness value is used to 
blend between the terrain shader and the water shader. 
Unfortunately, the wetness map has to be the same resolution 
as the water grid so, for a 256 by 256 simulation, aliasing 
artifacts are visible in the boundary between wet and dry 
areas. These artifacts may be partially reduced by filtering the 
wetness map before using it for shading. 

The 3-D figures in this paper were renderd at NTSC res- 
olution using a 256 by 256 array of surface points and two by 
two supersampling. Each frame took about ten minutes to 
compute on an SGI 4D/210. 

EXAMPLES 

We begin with some two-dimensional examples to illus- 
trate basic wave phenomena. Fig. 4 shows four frames 
calculated by a real-time implementation of the two-dimen- 
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Fig. 6: Three-dimensional real-time implementation of the fluid equa- 
tions. The implementation runs at 30 frames per second with a 32 by 
32 grid size on an SGI 4D/210. 

J 
sional equations on an SGI 4D/210. A user creates a distur- 
bance in the water surface which causes waves propagating in 
both directions. When the waves hit the walls, they are re- 
flected back towards the center. The reflecting walls are 
created simply by making the ground function b very steep. 
Unlike techniques which explicitly track the behavior of indi- 
vidual waves, there is no need to create additional data struc- 
tures to handle the reflections. They simply emerge as a 
consequence of solving the differential equation. 

Fig. 5 shows four frames from a real-time simulation 
that exhibits changing boundary conditions. A user creates a 
wave which carries water over a hump and down the other 
side. These changing boundaries emerge very easily from 
eq. 13. As a wave-front propagates over previously dry 
ground, it can lift the next sample in the height field to a 
position above the ground at each iteration and continue on its 
way. The boundary cannot advance more than one sample per 
iteration because of the fact that d is considered constant 
throughout an iteration. This is not a serious problem because 
waves slow down as they approach shallow areas where the 
boundary conditions can easily change. In deep areas where 
the wave velocity is greatest, the waves are free to move mul- 
tiple numbers of samples per iteration. 

Fig. 6 shows a still frame from a real-time simulation in 
three dimensions. The simulation achieves a 30 frame-per- 
second update rate using a 32 by 32 grid on an SGI 4D/210. 
Interactive controls allow the user to select the position of a si- 
nusoidal disturbance on the height field, adjust the time-step 
(and therefore the effective wave velocity) and control the 
viewing parameters. This type of interaction is very different 
from the traditional batch-oriented approach required by stan- 
d a d  methods on supercomputers. 

The first rendered animation example is shown in Fig. 7. 
Here rain drops fall on a concave surface and begin dribbling 
down towards the low point in the center. After enough drops 
have accumulated, waves begin to form on the puddle at the 
bottom and exhibit extensive reflections and refractions as 
they interact with the complex depth patterns that arise from 
the flow. The motion of the rain drops in the air is simulated 
using a standard particle system. 

Fig. 8 shows two frames from an animation of fluid 
smoothly flowing down from a spring near the top of a hill. 
As the fluid flows downward, it goes around bumps in the ter- 
rain. The fluid has been made very viscous-looking by means 
of eq. 17. As a result, the waves are of very low amplitude 
and most of the interesting behavior is in the way the bound- 

aries change. 
Fig. 9 shows six frames from an animation which begins 

with waves hitting a beach. After the first wave goes up the 
beach and recedes, rain begins to fall. 

CONCLUSION 

There is a long history of people using differential equa- 
tions to analyze and simulate fluid flow for engineering pur- 
poses. Here we have attempted to make use of that work to 
derive a simplified model that is well suited to the demands of 
animation. The model is stable, rapid and easy to program. 
The computation time is linear in the number of samples of 
the height field, making high-resolution simulations possible. 
In the three-dimensional case, the computation for each row 
and each column is independent, so it can be easily parallel- 
ized. Unlike models which rely on tracking individual waves 
or wave-trains, reflected waves, changing boundaries and net 
flow can be handled in a simple manner. As a consequence, 
this model extends the range of water effects which can be an- 
imated in a reasonable time. 

By using a number of approximations it is possible to 
render convincing caustic shading effects at little computa- 
tional cost. A wetness map adds to the realism of water flow- 
ing over sand. When combined with the fluid dynamics 
model, the results are encouragingly realistic. 
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(a) (b) 

(c) (d) 

Fig. 7: Rain fall on a concave surface. After the drops hit the surface, they begin rolling towards the low point in the center. In (a), the first drops have 
hit the previously dry surface. In (b) most of  the surface is wet and the first drops have started rolling towards the center. In (c) and (d) the rain continues 
to fall and enough water accumulates to create interesting wave patterns. 

(a) (b) 

Fig. 8: A source of fluid near the top of one of  the bumps is turned on, creating a gentle spring. The damping term in eq. 17 is used to make the flow very 
viscous. The fluid begins to flow downward in (a) and rolls gently down the hill in (b) going around bumps in the terrain. 
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 9: In (a) and (b) a wave approaches the shore. Note that the wave bends markedly between (a) and (b). This is due to refraction caused by the depen- 
dence of wave speed on depth. In (¢) the wave recedes, leaving wet sand behind. In (d) through (f) rain begins to fall and flow downward over the sand. 
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