
~ Computer Graphics, Volume 24, Number 4, August 1990

Rapid, Stable Fluid Dynamics for Computer Graphics

Michael Kass and Gavin Miller
A d v a n c e d T e c h n o l o g y G r o u p

A p p l e C o m p u t e r , Inc .
20705 Va l l ey G r e e n D r i v e

C u p e r t i n o , C A 95014

ABSTRACT

We present a new method for animating water based on a
simple, rapid and stable solution of a set of partial differential
equations resulting from an approximation to the shallow
water equations. The approximation gives rise to a version of
the wave equation on a height-field where the wave velocity is
proportional to the square root of the depth of the water. The
resulting wave equation is then solved with an altemating-
direction implicit method on a uniform finite-difference grid.
The computational work required for an iteration consists
mainly of solving a simple tridiagonal linear system for each
row and column of the height field. A single iteration per
frame suffices in most cases for convincing animation.

Like previous computer-graphics models of wave motion,
the new method can generate the effects of wave refraction
with depth. Unlike previous models, it also handles wave
reflections, net transport of water and boundary conditions
with changing topology. As a consequence, the model is
suitable for animating phenomena such as flowing rivers,
raindrops hitting surfaces and waves in a fish tank as well as
the classic phenomenon of waves lapping on a beach. The
height-field representation prevents it from easily simulating
phenomena such as breaking waves, except perhaps in
combination with particle-based fluid models. The water is
rendered using a form of caustic shading which simulates the
refraction of illuminating rays at the water surface. A wemess
map is also used to compute the wetting and drying of sand as
the water passes over it.

CR Categories and Subject Descriptors: 1.3.7: [Computer
Graphics]: Graphics and Realism: Animation; G.1.8:
[Mathematics of Computing]: Partial Differential Equations;
1.6.3 [Simulation and Modeling]: Applications.

Additional Keywords and Phrases: Wave equation, fluid
dynamics, flow, finite-difference, height-field, caustic.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

INTRODUCTION

The problem of realistically modeling scenes containing
water has captured the attention of a number of computer-
graphics researchers in recent years[l; 2; 3; 4; 51, The omni-
presence of water as well as the complexities and subtleties of
its motion have made it an attractive subject of study. Yet
existing computer-graphics models of water motion
adequately cover only a very small range of interesting water
phenomena. Among other effects, they fail to account for
wave reflections, net transport of water and boundary
conditions with changing topology. A computationally
inexpensive method of simulating these phenomena will be
presented here. Based on solving a partial-differential
equation on the surface of a height-field, the method is easy to
implement and very stable. The approximations involved may
not be suitable for high-precision engineering applications, but
they produce pleasing animation with little effort.

Many popular methods for modeling water surfaces work
well for producing still images, but are unsuitable for
animation because they do not include realistic models for the
evolution of the surface over time. Examples of these
techniques include stochastic subdivision [6] and Fourier
synthesis [5]. Other techniques work well only in large bodies
of water away from boundaries [7; 1; 8]. Recently, the realism
of water modeling in computer graphics was substantially
improved by three papers [2; 3; 4-] that took into account refrac-
tion due to changing wave velocity with depth. In each case,
specialized methods based on tracking individual waves or
wave-trains were used to avoid the need to directly solve a
differential equation. These papers deal adequately with
waves hitting a beach, but they leave a wide range of water
phenomena unexplored. None of the papers includes
simulations of reflected waves. In addition, the underlying
model in each case is that particles of water move in circular
or ellipsoidal orbits around their initial positions, so there can
be no net transport or flow. Finally, none of the papers
considers situations in which the boundary conditions change
through time altering the topology of the water -- for example
a wave pushing water up over an obstacle and down the other
side to create a puddle. It appears to be very difficult to deal
with these phenomena efficiently by tracing waves.

Two alternatives to tracing the propagation of waves or
wave-trains exist. One is to simulate the fluid by the
interaction of a large number of particles [9; 101, and the other
is to directly solve a partial differential equation describing the
fluid dynamics [11; 12; 13]. Both have been used by hydro-
dynamicists to create iterative simulations of fluid flow. The
problem is that a truly accurate simulation of fluid mechanics
usually requires computing the motion throughout a volume.
This means that the amount of computation per iteration
grows at least as the cube of the resolution. If there are linear

©1990 ACM -0- 89791-34.4-2/90/008/0049 $00.75 49

SIGGRAPH '90, Dallas, August 6-10, 1990

h 0 h 1 h 2 h a . . . hn. 3 ha. 2 hn.1

b 0 b I b 2 b 3 • . . b~. 3 b._2 b~.l

U 0 U 1 Un_ 3 Un. 2

Fig. 1: Discrete two-dimensional height-field representation of the
water surface h, the ground bottom b, and the horizontal water veloc-
ity u.

systems to be solved at every iteration, the computational cost
can grow even faster. In addition, the number of iterations
required may grow as the resolution is increased. As a
consequence, accurate simulation of fluid mechanics is
typically reserved for vectorized supercomputers or very
highly parallel machines.

For the purposes of animation, accuracy is much less im-
portant than stability and speed. An animator using tech-
niques of physical simulation will typically have to
experiment with a number of different conditions of a simula-
tion before achieving satisfying motion. If the experiments
take too much time or if the numerical methods become
unstable, the process can become excruciating.

Here, we examine the differential equation approach with
the goal of constructing the fastest stable simulation which
yields a wide range of convincing motion. We begin by
considering a very simplified subset of water flow where the
water surface can be represented as a height field and the
motion is uniform through a vertical column. This subset of
water flow is representative of a variety of non-turbulent
shallow-water phenomena. Under these conditions, we can
approximate the equations of motion of the water in terms of a
grid of points on a height-field. The amount of computation
can then be proportional to the number of samples on the
surface of the water which varies as the square of the
resolution instead of the cube.

Integration of the partial-differential equations is done
with an alternating-direction implicit technique [14]. The
result is a very stable integration scheme which is also very
fast. Stability derives from the use of an implicit integration
scheme; speed derives from the tridiagonal structure of the
required linear systems which are solvable in linear time. Be-
cause of the stability, the time-step of the solution can be
made equal to the frame time of the animation in most cases.

SHALLOW WATER EQUATIONS

In lieu of simulating the full Navier-Stokes equations of
fluid flow, we begin with a vastly simplified set of equations
which has been widely used for shallow water [15; 16; 17]. The
simplification arises from three approximations. The first ap-
proximation is that the water surface is a height field. This, of
course, has some obvious limitations. The water cannot
splash and waves cannot break. However, so long as the
forces on the water are sufficiently gentle, the height-field as-

sumption will not introduce error. The second assumption is
that the vertical component of the velocity of the water
particles can be ignored. Once again, the limitations of this
assumption are fairly clear. If a disturbance creates very steep
waves on the water surface, the model will cease to be accu-
rate. The third assumption is that the horizontal component of
the velocity of the water in a vertical column is approximately
constant. If there is turbulent flow or unusually high friction
on the bottom, this assumption will break down. Nonetheless,
the experience of hydrodYnamicists suggests that this is a very
useful approximation to phenomena ranging from the effect of
a single rain drop to the refraction of waves in a sea port.

For simplicity, we begin with a height-field curve in two
dimensions. Later, the same techniques will be extended to a
height-field surface in three dimensions. Let z = h(x) be the
height of the water surface and let z = b(x) be the height of the
ground, tf d(x)=h(x)-b(x) is the water depth and u(x) is the
horizontal velocity of a vertical column of water, the shallow
water equations that follow from the above assumptions[16; 17]
can be written as follows:

ON oN Oh - - + u N + a g =0
at (eq. 1)

,gd 0 -~- + ~ (u d) = 0
(eq. 2)

where g is the gravitational acceleration. Eq. 1 expresses
Newton's law F=ma while eq. 2 expresses the constraint of
volume conservation. Note that even with the above three
simplifying assumptions, the resulting differential equations
are non-linear. A further simplification which is often used is
to ignore the second term in eq. 1 and linearize around a con-
stant value of h. This will be reasonable if the fluid velocity is
small and the depth is slowly varying. The resulting equations
are then:

oh - - + g ~ = 0
at (eq. 3)

Oh ON
- 5 - + d - g = 0 (eq. 4)

If we differentiate eq. 3 with respect to x, then differentiate
eq. 4 with respect to t and finally substitute for the cross-deriv-
atives, we end up with

d 2h d 2h
- gd at 2 0x 2 (eq. 5)

which is the one-dimensional wave equation with wave
velocity ~ . While this degree of simplification is suspect
for many engineering purposes, our experience suggests that
the resulting equations are quite adequate for a wide range of
animation applications.

DISCRETIZATION

In order to solve eq. 5, we need to construct a discrete rep-
resentation of the continuous partial-differential equation.
There are two established techniques for doing so. The first is
the finite-difference technique where the continuous functions
are represented by a collection of samples. The second is the
finite-element technique where the continuous functions are
represented as the sum of a collection of continuous basis
functions. Here, the finite-difference technique works particu-
larly well because of the simple height-field representation.
The resulting algorithm is very easy to implement and the

50

~ Computer Graphics, Volume 24, Number 4, August 1990

linear systems involved are tridiagonal.
Figure 1 shows the discrete representation of the height-

field in two dimensions. Note that the samples for u lie half-
way in between the samples of h. After experimenting with a
number of finite-difference approximations to equations 3 and
4, the most stable version we have found is

Ohi (di_l + d i
- ; : t. 3m<- J",,

(di + di+ 1 ~tli
~, 2-z~c J (eq. 6)

t~U i - g (h i + l -- h i)
Ot Ax (eq. 7)

where Ax is the separation of the samples along the x direc-
tion. Putting the above two equations together, we get

t9 2h i
Ot 2

(d~ , + d i~ ,

(d i + di+ 1 h

(eq. 8)

which is a discrete approximation to eq. 5.

INTEGRATION

The finite differences convert the partial-differential equa-
tion into an ordinary differential equation involving h and its
time derivatives. The remaining problem is to solve the
ordinary differential equation. While there are a number of
possible choices of solution method, the wave equation is a
notoriously bad example for explicit differential equation
methods such as Euler 's method or Runge-Kutta integration.
As the wave velocity approaches one sample per iteration,
explicit methods tend to diverge very rapidly. Since the wave
speed is proportional to the square-root of the depth, an
ordinary explicit method would have to use a time-step appro-
priate for the deepest water in the model. Implicit methods,
on the other hand, do not suffer from these difficulties.

For simplicity, we use a first-order implicit method which
appears to be perfectly adequate. Let h(n) to denote h at the
nth iteration and let dots denote differentiation with time.
Then the first-order implicit equations can be written

h (n) - h (n = 1) = /~(n)
At (eq. 9)

/ ~ (n) - / ~ (n - 1) = f i (n)
At (eq. 10)

Note that the right-hand sides of these equations are evaluated
at time n which corresponds to the end of the iteration rather
than time n-1 which corresponds to the beginning of the
iteration. This is what makes the iteration implicit and stable.
Rearranging the above, we get

h (n) = h (n - 1) + A t / ~ (n - l)
+ (At)2f i (n) (eq. 11)

h (n) = 2 h (n - I) - h (n - 2) + (At)2t~(n) (eq. 12)

h i (n) = 2 h i (n - 1) - h i (n - 2)

2 { di-1 + di) "
- g(A,t) (~ - z ~ c ~ fl (h i (n) - hi-l(n))

(d~ + d~+~ ~.
+ g(At)2 (; & - ~ f l (h i ÷ ' (n) - h i (n))

(eq. 13)

We are still left with non-linear equations because d depends
on h. In order to solve these equations rapidly, we need a final
linearization. Once again there are several possible choices,
but a particularly well-behaved linearization is to regard d as a
constant during the iteration. This means that the wave veloc-
ity is fixed as a function of x. It limits the non-linearities to
changing the wave velocities in-between iterations and virtual-
ly ensures that the iteration will not diverge• With this linear-
ization the next value of h can be calculated from previous
values with the symmetric tridiagonal linear system

Ahi(n) = 2hi(n - 1) - hi(n - 2) (eq. 14)

where the matrix A is given by

A =

"e0 f0
f0 el

f,
f l

"•° e2
".. ".°

".° e,-3 flu-3

f n-3 en-2

fn-2

and the elements of A are as follows:

f f n-~

en-1 (eq. 15)

e 0 = l + g (A t) 2 do + dl

ei=l+g(At)Z(di-1+2di2(~x)2+di÷I) (O<i<n-l)

e._, = I+ gfm)2t 2(~x)2)

2 (di + di+l f, = - g (A t) ~ -2-(~c'-~) (eq. 16)

Note that right-hand side of eq. 14 can be regarded as an
extrapolation of the previous motion of the fluid surface.
Some interesting effects are possible by slightly changing the
extrapolation. In particular, if the equation is changed to be

Ah~(n) = h; (n - 1)
+ (1 - "r) (h i (n - 1) - h i (n - 2))

(eq. 17)

then , introduces some damping in the extrapolation. If

51

SIGGRAPH '90, Dallas, August 6-10, 1990

f

_~_Light
/ T \

B
Fig. 2: Illumination Refraction for Uneven Terrain

x .

= 0, then it reduces to eq. 14, but if r is between zero and
one, it will make the waves damp out over time. The visual
effect is that of a viscous fluid.

There is one further subtlety of importance in the two-di-
mensional case. Even though eq. 14 was derived from eq. 6
which specifies conservation of volume, there is no guarantee
that the results of the iteration will precisely conserve volume.
The primary cause of departures from volume-conserving be-
havior is that the iteration may leave h i < b i for some index
i. To compensate for this negative volume, the iteration will
create excess positive volume elsewhere. While the effect is
small, it can accumulate over time and create substantial drift.
If the entire surface acquires a small net upwards velocity it
will very quickly create noticeable amounts of water. To
combat this effect, the following simple projection appears to
be adequate. After each iteration, find the connected pieces of
the fluid. This can be done by scanning the h and b vectors in
order and testing whether h~ < b i. For each connected piece
of the fluid, calculate the old volume and the new volume. If
the new volume is different, distribute the difference uniform-
ly over the samples in the connected region.

We can now state the entire algorithm for the two-dimen-
sional case in some detail:

Begin by specifying h(0), h(1) and b.
Loop for j starting at 2 incrementing by one.

If there are net sources or sinks of water, add or subtract
the amounts from the current and last values of h.

Calculate df rom h(j-1) and b. If h i < b i then d i = 0.
Calculate the new value of h from h([-1) and h(#-2)

using eq. 14.
Adjust the new value of h to conserve volume as above.
I f h i < b i 'TOI some index/, set h i (j)

andhi(j - 1) t o b i - e .
The resulting value of h is h(j).

While there are a number of possible refinements, this is the
basic version of the two-dimensional case. It can be
implemented in one to two pages of very efficient,
straightforward C code.

T H R E E D I M E N S I O N S

Height fields in two dimensions are interesting, but
moving to three dimensions opens up a much wider range of
possibilities. Fortunately, the three-dimensional equations can
be approximated by a series of two-dimensional equations, so
the complexity does not increase radically. The basic wave
equation for water in three dimensions is the same as the two-
dimensional case except that the second derivative of h with
respect to x is replaced with the Lap!acian.

a2h /a2h a2h)
&2 = ga t ' -~ 'T + 3y2) = eq. 18

In order to solve the equations in three dimensions, we
rely on the alternating-direction method[14]. The basic idea of
the method is to take eq. 18 and split the right-hand side of it
into the sum of two terms, one of which is independent of y
and the other of which is independent of x. We then divide
the iteration into two sub-iterations. In the first sub-iteration,
we replace the right-hand side of eq. 18 with the first term,
and in the second sub-iteration, we replace the right-hand side
of eq. 18 with the second term. More specifically, in the first
sub-iteration, we solve the equation

32h O2h
- - = g d - -
0t 2 ogx 2 (eq. 19)

and in the second sub-iteration, we solve the equation

0 ~ 2h t~ 2h
oat 2 = gd Oy 2 " (eq. 20)

The advantage of this technique is that the required linear sys-
tems remain tridiagonal so the computational cost per itera-
tions is proportional to the number of samples on the surface.
The resulting implementation remains very simple. For the
first sub-iteration, we compute the update as before on each
row of the height-field. For the second sub-iteration, we do
the same for each column in the height-field. While artifacts
can potentially arise from the favored directions, our experi-
ence with the alternating-direction formulation of these equa-
tions is very favorable. More so than in two-dimensions, it is
important to be careful with the details of the volume conser-
vation. Errors manifest themselves as line artifacts along the x
or y axes.

R E N D E R I N G WITH CAUSTIC S H A D I N G

Given a realistic way of simulating water motion, the
next step is to render it convincingly. Several different effects
must be taken into account. Firstly, rays of light which are
incident on a water surface are refracted by that surface. This
results in uneven illumination of the terrain undemeath the
water. This effect is illustrated in Fig. 2 in which the ray from
the light source is shown being deflected by the water surface.

Instead of the incident light ray hitting the terrain at A,
the ray ends up at B. The total illumination at B will depend
on all the rays which are refracted in that direction for the
entire water surface. To compute this exactly, it would be
necessary to render a hemicube around B of all of the water.
This is prohibitively expensive, especially since the shading of
the water surface depends on the view point unlike the typical
diffuse case in radiosity. An alternative approach[18l, feeds
rays forwards from the light source and accumulates the
results in an illumination texture for the surface to be shaded.
Such an algorithm requires the intersection of a ray both with
the water surface height field and the terrain height field for
each illuminating ray. A very large number of rays is required
for this technique, especially for grazing-incidence
illumination. For samples evenly spaced around the light
source, the average sample density on the terrain is inversely
proportional to the cosine of the angle between the incoming
ray and the surface normal. For grazing incidence
illumination, very large numbers of illuminating rays are
required.

To avoid this expense, we use two approximations. The
first is the flat bottom approximation which is illustrated in
Fig. 3. If the terrain is locally flat, then the destination of the

52

~ Computer Graphics, Volume 24, Number 4, August 1990

\ S \ _•_ Light

Air

Water

Fig. 3: The

ray may be computed using simple trigonometry.

b = h (tan(r))

So, instead of tracing a ray from W towards the terrain to find
the intersection point B, a simple expression suffices. To
avoid undersampling the terrain with incident rays, we take
samples which are evenly spaced in terrain grid coordinates. If
there is no water present the samples will just remain on the
surface point. This results in a uniform illumination map. We
have effectively divided out the cosine of the angle between
the normal and the illumination direction. To compute the
correct shading intensity, the illumination map value must be
multiplied by the cosine term. (This is unnecessary for the
correctly ray-traced case since the decreasing sample density
automatically takes this effect into account.) The second
simplification is the flat water approximation. The point A is
considered as the destination of a ray as if it was undeflected
by any water. The height of the water above A is then used to
compute an approximate position for a ray intersection with
the water surface.

a = h / (tan(i))

This value of a gives an estimate of the position of W. The
refracted ray is computed from the water depth and normal at
W using Snelrs law. The refracted ray is then used in
combination with the fiat bottom approximation to compute
the position of B. The net result of this process is that a sample
moves from A to B. No ray-tracing against terrain is done at
any stage and the intersection calculations are extremely
economical. Each sample acts as the center for a conical
convolution kernel which is added into the illumination map.
The caustic illumination for the images in this paper took 40
seconds on a Silicon Graphics 4D/210 workstation. The final
stage of the rendering is to scan-convert the height field into a
Z-buffer. The shading for the scan-conversion again uses the
fiat bottomed approximation for the shading of the surface of
the water. A ray is assumed to pass from the eye through the
surface point, and is refracted towards the terrain. The terrain
intersection point for this ray is computed in the same way as
point B in Fig. 3. The illumination map value for that point is
then used for the terrain shading contribution to the ray color.
A second contribution to the ray color arises from light being
reflected towards the eye by the water surface. An
environment map for the sky is used for this term and the two
are blended together using the Fresnel equations for
unpol arized light [19].

To get a realistic appearance for water on sand it is nec-
essary to take into account the fact that sand becomes wet on
contact with water and then gradually dries when the water is
no longer covering it. This effect may be achieved using a

Flat Bottom Approximation
J

/
Fig. 4: Real-time two-dimensional example showing wave reflection.
Top: A user has created a disturbance in the water producing two
waves going in opposite directions. Bottom left: The wave is reflect-
ing off the left wall. Bottom Right: After the reflection, both waves

~are travelling to the right.

Ill / /
Fig. 5: Real-time two-dimensional example showing changing
boundaries. Left to right, top to bottom: A user has created a wave
that carries some water over the hump to fall on the other side.

J

wetness map. At each frame time, the water is tested to see if
it is above the terrain for each sample position. When this is
the case, the wetness value for the sample is set to one. For
samples in which the water is not above the terrain the
wetness value is decreased by a constant amount with the
wetness value clipped to zero if necessary. During rendering,
the wetness value is used to darken the diffuse shading of the
terrain by up to 50%. Also, the same wetness value is used to
blend between the terrain shader and the water shader.
Unfortunately, the wetness map has to be the same resolution
as the water grid so, for a 256 by 256 simulation, aliasing
artifacts are visible in the boundary between wet and dry
areas. These artifacts may be partially reduced by filtering the
wetness map before using it for shading.

The 3-D figures in this paper were renderd at NTSC res-
olution using a 256 by 256 array of surface points and two by
two supersampling. Each frame took about ten minutes to
compute on an SGI 4D/210.

EXAMPLES

We begin with some two-dimensional examples to illus-
trate basic wave phenomena. Fig. 4 shows four frames
calculated by a real-time implementation of the two-dimen-

53

O SIGGRAPH '90, Dallas, August 6-10, 1990

Fig. 6: Three-dimensional real-time implementation of the fluid equa-
tions. The implementation runs at 30 frames per second with a 32 by
32 grid size on an SGI 4D/210.

J
sional equations on an SGI 4D/210. A user creates a distur-
bance in the water surface which causes waves propagating in
both directions. When the waves hit the walls, they are re-
flected back towards the center. The reflecting walls are
created simply by making the ground function b very steep.
Unlike techniques which explicitly track the behavior of indi-
vidual waves, there is no need to create additional data struc-
tures to handle the reflections. They simply emerge as a
consequence of solving the differential equation.

Fig. 5 shows four frames from a real-time simulation
that exhibits changing boundary conditions. A user creates a
wave which carries water over a hump and down the other
side. These changing boundaries emerge very easily from
eq. 13. As a wave-front propagates over previously dry
ground, it can lift the next sample in the height field to a
position above the ground at each iteration and continue on its
way. The boundary cannot advance more than one sample per
iteration because of the fact that d is considered constant
throughout an iteration. This is not a serious problem because
waves slow down as they approach shallow areas where the
boundary conditions can easily change. In deep areas where
the wave velocity is greatest, the waves are free to move mul-
tiple numbers of samples per iteration.

Fig. 6 shows a still frame from a real-time simulation in
three dimensions. The simulation achieves a 30 frame-per-
second update rate using a 32 by 32 grid on an SGI 4D/210.
Interactive controls allow the user to select the position of a si-
nusoidal disturbance on the height field, adjust the time-step
(and therefore the effective wave velocity) and control the
viewing parameters. This type of interaction is very different
from the traditional batch-oriented approach required by stan-
d a d methods on supercomputers.

The first rendered animation example is shown in Fig. 7.
Here rain drops fall on a concave surface and begin dribbling
down towards the low point in the center. After enough drops
have accumulated, waves begin to form on the puddle at the
bottom and exhibit extensive reflections and refractions as
they interact with the complex depth patterns that arise from
the flow. The motion of the rain drops in the air is simulated
using a standard particle system.

Fig. 8 shows two frames from an animation of fluid
smoothly flowing down from a spring near the top of a hill.
As the fluid flows downward, it goes around bumps in the ter-
rain. The fluid has been made very viscous-looking by means
of eq. 17. As a result, the waves are of very low amplitude
and most of the interesting behavior is in the way the bound-

aries change.
Fig. 9 shows six frames from an animation which begins

with waves hitting a beach. After the first wave goes up the
beach and recedes, rain begins to fall.

CONCLUSION

There is a long history of people using differential equa-
tions to analyze and simulate fluid flow for engineering pur-
poses. Here we have attempted to make use of that work to
derive a simplified model that is well suited to the demands of
animation. The model is stable, rapid and easy to program.
The computation time is linear in the number of samples of
the height field, making high-resolution simulations possible.
In the three-dimensional case, the computation for each row
and each column is independent, so it can be easily parallel-
ized. Unlike models which rely on tracking individual waves
or wave-trains, reflected waves, changing boundaries and net
flow can be handled in a simple manner. As a consequence,
this model extends the range of water effects which can be an-
imated in a reasonable time.

By using a number of approximations it is possible to
render convincing caustic shading effects at little computa-
tional cost. A wetness map adds to the realism of water flow-
ing over sand. When combined with the fluid dynamics
model, the results are encouragingly realistic.

ACKNOWLEDGEMENTS

We thank the Advanced Technology Group at Apple
Computer for supporting and encouraging this work and pro-
viding a stimulating work-environment. In addition, we thank
the ATG graphics group for discussions and helpful advice.
We also thank Scott Stein for system support and the Apple
Library for aiding us with literature searches.

REFERENCES

[1] Max, N., "Vectorized proceedural models for
natural terrain: Waves and islands in the sunset,"
Proceedings of SIGGRAPH 81, (August 1981) 317-
324.

[2] Peachy, D., "Modeling Waves and Surf," Proceed-
ings of SIGGRAPH 86, (August 1986), 65-74.

[3] Fournier, A. and Reeves, W., "A Simple Model of
Ocean Waves," Proceedings of SIGGRAPH 86,
(August 1986), pp 75-84.

[4] Ts'o, P. and Barsky, B., "Modeling and Rendering
Waves," ACM Transactions on Graphics, 6, 3 (July
1987), 191-214.

[5] Masten, G., Watterberg, P. and Mareda, I., "Fourier
Synthesis of Ocean Scenes," IEEE Computer
Graphics and Application, 7, 3 (March 1987) 16-23.

[6] Lewis, J., "Generalized Stochastic Subdivision,"
ACM Transactions on Graphics, 6, 3 (July 1987)
167-190.

[7] Perlin, K., "An Image Synthesizer," Proceedings of
SIGGRAPH 85, (July 1985) 287-296.

[8] Schachter, B., "Long crested wave models," Com-
puter Graphics and Image Processing 12 (Feb,
1980), 187-201.

[9] Miller, G. and Pearce, A., "Globular Dynamics: A
connected particle system for animating viscous flu-

54

' ~ ' Computer Graphics, Volume 24, Number 4, August 1990

[10]

[11]

[12]

[13]

[14]

[151

[16]

[17]

[18]

[19]

ids," Computer Graphics 13,3 (1989) 305-309.

Sims, C., "Particle Dreams,"[Video] Siggraph Video
Review 38/39, ACM SIGGRAPH, New York, seg-
ment 42 (1988).

Patel, B. and Dvinsky, A., "The solution of the
reynolds averaged Navier-Stokes equations in gen-
eral curvilinear coordinates and its application to ve-
hicular aerodynamics," in Computers in Design,
Manufacture and Operation of Automobiles, Murthy
and Brebbia, FEds., Springer Verlag, Berlin (1987).

Kallinderis, Y. and Baron, J., "Adaptation methods
for a new Navier-Stokes algorithm," AIAA Journal,
27, 1 (January 1989) 37-43.

Miyata, H. and Nishimura, S., "Finite difference
simulation of nonlinear waves generated by ships of
arbitrary three-dimensional configuration," Journal
of Computational Physics 60 (1985) 391-436.

Press, W., Flannery, B, Teukolsky, S. and Vetter-
ling, W., Numerical Recipes: The Art of Scientific
Computing, Cambridge University Press, Cam-
bridge (1986).

Le Mehaute, B., An Introduction to Hydrodynamics
and Water Waves, Springer-Verlag, New York
(1976).

Crapper, G., Introduction to Water Waves, John
Wiley & Sons, New York (1984).

Stoker, J., Water Waves, Interscience, New York,
(1957).

Shinya, M., Saito, T. and Takahashi, T., "Rendering
Techniques for Transparent Objects," Proceedings
of Graphics Interface, London, Ontario (June 1989).

Hall, R., Illumination and Color in Computer Gen-
erated Imagery, Springer Verlag, Berlin (1988).

55

O SIGGRAPH '90, Dallas, August 6-10, 1990

(a) (b)

(c) (d)

Fig. 7: Rain fall on a concave surface. After the drops hit the surface, they begin rolling towards the low point in the center. In (a), the first drops have
hit the previously dry surface. In (b) most of the surface is wet and the first drops have started rolling towards the center. In (c) and (d) the rain continues
to fall and enough water accumulates to create interesting wave patterns.

(a) (b)

Fig. 8: A source of fluid near the top of one of the bumps is turned on, creating a gentle spring. The damping term in eq. 17 is used to make the flow very
viscous. The fluid begins to flow downward in (a) and rolls gently down the hill in (b) going around bumps in the terrain.

56

~ Computer Graphics, Volume 24, Number 4, August 1990

(a) (b)

(c) (d)

(e) (f)

Fig. 9: In (a) and (b) a wave approaches the shore. Note that the wave bends markedly between (a) and (b). This is due to refraction caused by the depen-
dence of wave speed on depth. In (¢) the wave recedes, leaving wet sand behind. In (d) through (f) rain begins to fall and flow downward over the sand.

57

