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ABSTRACT
A physically based model of an object is a mathematical
representation of its behavior, which incorporates principles
of Newtonian physics. Dynamic soil models are required in
animations and realtime interactive simulations in which
changes of natural terrain are involved. Analytic methods,
based on soil properties and Newtonian physics, are presented
in the paper to model soil slippage and soil manipulations.
These methods can be used to calculate the evolution of a given
soil configuration under the constraint of volume conservation
and to simulate excavating activities such as digging, cutting,
piling, carrying or dumping soil. Numerical algorithms with
linear time and space complexities are also developed to meet
the requirement of realtime computer simulation.

CR Categories:  I.3.7 [Computer Graphics]: Graphics and
Realism;  I.6.3 [Simulation and Modeling]: applications.
Additional Keywords: physically based modeling, real-
time simulation, soil dynamics, slippage, soil manipulation.

1. INTRODUCTION
Physically-based modeling is a growing area of computer

graphics research. A good deal of work has been done toward
physically based models of objects such as rigid and nonrigid
bodies, hydraulic surfaces or natural terrain. However, soil
models that are both physically realistic and computationally
efficient in realtime simulations have not been developed.
Recently, substantial interest in dynamic soil models has been
expressed by some developers of realtime simulations of
Dynamic Terrain systems. Such systems provide the
capability, within a realtime graphical simulation, of
reconstructing landscape architecture or rearranging the terrain
surface.  These systems  essentially involve allowing the
simulation's user to conduct  excavating activities in the
terrain  database at any freely chosen location. These activities
may include digging ditches, piling up dirt, cutting the soil
mass from the ground, carrying it for a distance, and dumping
it at another location. To these deformations, the soil mass
must behave in realistic manners under external stimuli.

Moshell and Li developed a visually plausible kinematic
soil model [10].  In their work, a bulldozer blade serves as a
local force function used to change the heights of the terrain.
Excess terrain volume which is "scaped off" by the moving
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blade is added to the moving berm in front of the blade. The
berm is then smoothed by a bidirectional Cardinal spline
algorithm. The demonstration of the model appears realistic
and runs in realtime. The simulation, however, is kinematic.
No forces are computed. The soil does not slump when the
bulldozer leaves. The volume of given soil is not conserved.

Burg and Moshell  focussed on the problem of piling up
soil such that the soil spills down from the mounds in a
realistic-looking way [3]. In their approach, the terrain is
modeled by a 2-d grid of altitude posts. Constraint equations
are defined to describe  relationships among altitude posts and
their neighbors. An iterative relaxation algorithm, suggested
in [11], is used to simulate the falling soil. The constraints
enforce an averaging or "smoothing" of each altitude post with
its neighbors. The algorithm is volume-preserving under
certain conditions. The model is purely kinematic. The
physical properties of different types of soil are not modeled.

Our research work is focused on dynamic models of soil
slippage and soil manipulations. For the slippage model, we
determine if a given soil configuration is in static equilibrium,
calculate forces which drive a portion of the soil to slide if the
configuration is not stable, and meanwhile preserve the
volume conservation.  For the soil manipulation models, we
investigate interactions between soil and excavating
machines, implement a bulldozer model and a scooploader
model. These models are based on  analytic methods and
Newtonian physics. The computational times of the
corresponding algorithms are fast enough to meet the
requirement of realtime graphical simulations. For clarity, this
paper mainly focuses on the 2-d case. Extensions to 3-d have
been completed and are briefly discussed.

2. PRELIMINARIES
The discussion of soil models needs some understanding

of soil properties. In this section, we introduce some concepts
which are borrowed directly from civil engineering. Interested
readers are referred to [2], [4], [5] and [7] for more details.

The shear strength of the soil is the resistance per unit
area to deformation by continuous shear displacement of soil
particles along surfaces of rupture. It may be attributed to three
basic components: 1) frictional  resistance to sliding among
soil particles; 2) cohesion and adhesion among soil particles;
and 3) interlocking of solid particles to resist deformation.
(Cohesion is molecular attraction among like particles.
Adhesion is a molecular attraction among unlike particles.)

The shear stress, on the other hand, is the force per unit
area experienced by a slope, which pushes the mass to move
along the failure plane. The combined effects of gravity and
water are the primary influences on the shear stress. It may
also be influenced by some natural phenomena such as
chemical actions, earthquakes, or wind.

The shear strength force and stress force, denoted by s and
τ respectively, are defined as the shear strength and stress



multiplied by the total area. The measure of s and τ can be
determined from the Mohr-Coulomb theory  indicated in [5]:
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Fig. 1:   The Failure Plane

(2.1) s = c L + W cos(α) tan(φ)
(2.2) τ = W sin(α)

where L is the length of the failure plane, α is the degree of

natural slope, and W=γΑ is the weight of soil above the failure

plane (see Fig. 1). c, φ and γ describe properties of the soil,

where c indicates the cohesion,  φ  is the angle of internal
friction (i.e. it is a measure of the friction among soil
particles) and γ is the unit weight. Some typical parameters and
their units are listed in the table below [1]:

SOIL TYPE       c  (t/m)              φ (degree)           γ (t/m2)
dry sand                       0                26-33                   1.9-2.0
Sandy loam            0-2.0             14-26                  1.8-2.0
Loam                     0.5-5.0            10-28              1.8-2.1

Soil is a very complex material. It may be influenced by
changes in the moisture content, pore pressures, structural
disturbance, fluctuation in the ground water table, underground
water movements, stress history, time, chemical action or
environmental conditions. Predicting the changes of complex
configurations is either intractable or highly costly. However,
for many interactive applications, speed and realistic
appearance are more important than accuracy. Hence in this
paper, we assume that only homogeneous and isotropic soil
will be processed. Conditions such as seepage, pore pressure,
existence of tension cracks and deformation resulting from
permanent atomic dislocation will not be considered.

3. STATIC EQUILIBRIUM AND RESTORING FORCE
In this section, we develop methods to determine whether

or not a given configuration is stable, calculate the critical
angle above which sliding occurs, and quantify the force which
pushes the soil mass moving along the failure plane.

3.1 STABILITY
The stability of a given soil configuration is determined

by the factor of safety, denoted by F, of a potential failure
surface. From the Mohr-Coulomb theory, F is defined as a ratio
between the strength force and the stress force [5]:

(3.1)     F =  
s

τ
   =  

c L + W cos(α) tan(φ)
W sin(α)

When F is greater than 1, the configuration is said to be in a
state of equilibrium. Otherwise, failure is imminent. To
analyze the factor of safety, we divide the given soil mass into
n slices with equal width ∆x:
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Fig. 2:  Dividing the given mass into small slices

The calculation of the factor of safety of each slice can be
done individually. The following free body diagram shows
forces applied on slice i:
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Fig. 3:  Free body diagram for slice i

In (a), the P’s are forces exerted between slices. They are
pairwise equal and in opposite directions and thus can be
cancelled.  At any time t, therefore, sliding can only happen in
the top triangle area of a slice.  (b) shows forces acting on this
area, where strength and stress forces are given by (2.1) and
(2.2) with L, W and α replaced by Li, Wi and αi respectively.

To determine if there exists a  failure angle αi (so that the
soil mass above it will slide) and calculate the net force exerted
on the failure plane if αi does exist, we start from (3.1). Note

that Li and Wi can be expressed in terms of αi. Replacing Li
and Wi in (3.1) with functions of αi,  we obtain

(3.2)     F(αi) =  
2c+γtan(φ)[hcos(αi)-∆xsin(αi)]cos(αi)

γ(hcos(αi)-∆xsin(αi))sin(αi)

where h=yi-yi-1 is the height of the triangle in Fig. 3-(b). For

any angle αi>tan-1(h/∆x), function F(αi) makes no physical

sense. In the range of [0, tan-1(h/∆x)],  F(α i) reaches its

minimum when the first derivative of F(αi), with respect to αi,
is equal to 0.  That is

(3.3)
dF

dα
  = 

1
 τ 2  

  [A cos(2αi) + B sin(2αi) + C] = 0

where

A = 
γ2

2  tan(φ)(∆x2-h2)-2γch,

B = γ2h∆xtan(φ)+2γc∆x,  and

C = - 
γ2

2  tan(φ)(∆x2+h2).

Solving (3.3) gives us four angles (see [9]). We can choose the
one which satisfies 0≤αi≤tan-1(h/∆x) in (3.2) to calculate the
factor of safety F. The given configuration is statically stable
if F>1. Otherwise sliding is inevitable.

3.2 CRITICAL SLOPE ANGLE
Suppose that we have  F<1 for a given configuration. In

the range of [0, tan-1(h/∆x)] there are at most two angles, say

β1 and β2, such that F(β1)=F(β2)=1. The angle β0=min(β1, β2)
is said to be the critical-slope angle of the configuration.
Above this angle impending slip occurs. β1 and β2 can be

obtained by solving the equation (3.4) for α:

(3.4)   F(α) = 
2c+γtan(φ)[hcos(α)-∆xsin(α)]cos(α)

γ[hcos(α)-∆xsin(α)]sin(α)
  = 1

where all symbols are as explained earlier. The solution to
(3.4) is derived in [9].



3.3 RESTORING FORCE

Let a configuration be given in Fig.4-(a) with β0 as the
critical-slope angle. The force that pushes the mass in the
triangle along the edge gh0 can be computed as follows. First
the line segment h0hn is divided into n small segments with

equal length ∆h.  Fig 4-(b) shows the free body diagram of the
i-th dovetail indicated by the shaded area in (a).
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Fig. 4:  Analyzing the restoring force

Let's analyze forces exerted on the dovetail. The weight
W i can be decomposed into two forces, namely Ni and τi,
which are normal  and parallel to the edge Li respectively.  si is
the strength force resisting the sliding motion, si’ the
opponent force generated by strength force si+1, and Ni’ the
force supporting the dovetail above it.  The net force fi applied
on dovetail-i is therefore given by a vectorial summation:

(3.5) fi = Ni + τi + si +si’ + Ni’

The total net force f acting on the whole triangle area is the
summation of fi’s, 1≤i≤n, i.e.

(3.6) f =Σn
i=1(Ni+τi+si+si'+Ni’) =Σ n

i=2 τi

since τ1=s1 (due to F(β0 )=1), Nn’=0, sn’=0, Ni’= Ni+1  and si’
= -si+1 for 1≤i≤n-1. Based on (3.6) and Fig.4, [9] gives a

derivation of (3.7) by letting ∆h tend to zero.

(3.7) f = 
γ∆x2

4
 Ln ( 

hn
2+∆x2

h0
2+∆x2  ) cos(β0) +

                 
γ∆x

2
  (hn-h0-∆x(βn-β0)) sin(β0)

where βn=tan-1(hn/∆x) and β0=tan-1(h0/∆x). (3.7) can be used
to quantify the total force on the top triangle area of each slice.

4. VOLUME CONSERVATION
The approach used in this section is strongly related to

[8]. Recall that, in the previous discussion, a given
configuration is divided into n slices. The i-th slice, 1≤i≤n,
can be conveniently thought of as a container holding an
amount of soil whose quantity is given by (yi+yi-1)∆x/2.
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Fig. 5:  Considering slices as containers

Let us consider a small change, denoted by ∆Wi , of the

mass Wi in slicei  Since Wi = (yi+yi-1)γ∆x/2,  we have

(4.1)   ∆Wi = (yi+∆yi+yi-1+∆yi-1)γ∆x/2 - (yi+yi-1)γ∆x/2

   = (∆yi+∆yi-1)γ∆x/2

On the other hand, let us assume that there is a force fi exerted
on the triangle area Ai at the top of slicei, which is parallel to
the edge Li. Due to fi, Ai tends to move along the direction of fi
at a velocity vi.  The rate of the "flow" of mass of Ai through

slice i can be computed by γA iv i/∆ x. Thus, the "mass

throughput" of slicei can be quantified by γAivi∆t/∆x, where

∆t is a unit of time. Similarly, the mass throughput of slicei+1
is given by  γAi+1vi+1∆t/∆x.

From the principle of volume conservation, the change of
soil quantity in  slicei  is the amount of  soil  which goes out,
minus the amount of soil which goes in. It can be expressed by

(4.2) ∆Wi = 
γAi

∆x
 vi∆t  -  

γAi+1

∆xvi+1
 ∆t

where Ai=(yi-hi)∆x/2. Putting (4.1) and (4.2) together and
rearranging it, we have

(4.3)
∆yi

∆t
 + 

∆yi-1

∆t
  = 

1

∆x
 [(yi-hi))vi - (yi+1-hi+1))vi+1]

Now let ∆t tend to 0. It follows that

(4.4) 
dyi
dt   + 

dyi-1
dt    =  

1

∆x
 [(yi-hi))vi - (yi+1-hi+1))vi+1]

Recall that (3.7) gives us a formula to compute force fi.
From Newton's second law, we have

(4.5)     fi = γAi 
dvi
dt   = 

γ∆x
2  (yi-hi) 

dvi
dt

Rearranging, we obtain both

(4.6)
dvi
dt   =  

2fi

γ∆x(yi-hi)
  ,  and

(4.7) vi =  
2

γ∆x
 
 ⌡
⌠ fi

yi-hi
 dt

Now we take the second derivative of (4.4) with respect to t and
plug (4.6) and (4.7) into the resulting formula. That yields

(4.8) 
 d2yi

dt2
  + 

 d2yi-1

dt2

  = 
2

γ∆x
 [

dyi-dhi
dt  ⌡

⌠ fi
yi-hi

dt+fi - 
dyi+1-dhi+1

dt  ⌡
⌠ fi+1

yi+1-hi+1
 dt + fi+1]

Note that we can denote hi and fi as functions of yi-1 and
yi, i.e. hi=h(yi-1,yi) and fi=f(yi-1 ,yi), since they can be

determined based only on yi-1 and yi if ∆x and other soil
properties are fixed. Hence, (4.8) is an equation with  three
variables, namely  yi-1, yi, yi+1. Let us suppose that we have
divided the given configuration into n slices. Now we end up
with n+1 unknowns, y0 , y1 , ...,  yn , and n+1 ordinary
differential equations involving yi's, their time derivatives and
integrals. Solving these equations, we will obtain the solution
for the soil behavior which satisfies both the soil dynamics
and the volume conservation.



5. NUMERICAL SOLUTION
In this section we linearize equations (4.8) for both

purposes of simplification and discretization. we start from
(4.4).  Assume that, at any instance of time tm, velocity vi of
the mass on the top of slicei is represented by vi(tm), the value

of yi is represented by yi(tm), the rate of the change of yi is
represented by yi'(tm)=dyi(tm)/dt. Then, at the very next time
instance tm+1, the force fi=fi(yi-1(tm), yi(tm)) can be computed
by (3.7) according to the value of yi-1 and yi from the previous
step. If the Euler integration algorithm is used, the velocity vi
at the time tm+1 can be computed by

(5.1) vi(tm+1) = vi(tm) + 
fi(yi-1(tm), yi(tm))

Wi
 ∆t

where ∆t is the integration step size. Similarly vi+1(tm+1) is
calculated. It follows that, from (4.5), we have

(5.2) yi'(tm+1) + yi-1'(tm+1)

         = 
1

∆x
 [(yi(tm)-h(yi-1(tm),yi(tm)))vi(tm+1)

      -  (yi+1(tm)-h(yi(tm),yi+1(tm)))vi+1(tm+1)]

Since at the time instance tm+1,  all items on the right hand
side are knowns, either from the previous step of the
simulation or from the calculations of vi(tm+1) and vi+1(tm+1),
we may treat it as a constant, namely Ci.  We now have n+1
equations in the following format:

y0'(tm+1) = C0
(5.3) y1'(tm+1) + y0'(tm+1) = C1

          ......
yn'(tm+1) + yn-1'(tm+1) = Cn

Solving (5.3) for yi'(tm+1),  i=0, 1, ... n, we will be able to use
the Euler method again to determine the new values for each yi:

(5.4) yi(tm+1)  =yi(tm) + yi'(tm+1)∆t

Algorithm 1 describes the procedure of the numerical
solution, in which each step of the algorithm takes linear time
to execute. Thus the time complexity of the algorithm is O(n)
where n is the number of elevation posts in a given
configuration. The space required to store forces, velocities
and heights of posts is also proportional to n.

Algorithm 1.

At any time tm+1 of simulation, do the following:

1)  for each post yi, calculate its mass velocity vi(tm+1) by
using (5.1);

2)  for yi, compute the right hand side of (5.2);
3)  use forward substitution to solve equations (5.3) for

yi'(tm+1), i=0, 1, ... n;
4)  use Euler integration to determine new value for each

yi(tm+1).

6. EXTENSION TO 3-D
In going to 3-d soil dynamics, we use some essential

concepts and results from the discussion on 2-d. First, a given
soil configuration is partitioned into small prisms. The values
of elevation posts (i.e. vertices) of each prism are evolved by
an approximation procedure as follows.

Consider, in Fig. 6, the post z(i,j) chosen arbitrarily:

z(i,j) x-plane

d-plane

y-plane

X

Y
Z

Fig. 6:  An approximation of the 3-d configuration

z(i, j) is surrounded by  six prisms. At any time instance t,
those prisms are the only ones that affect the height of z(i,j).
The effect caused by those prisms can be approximated by
considering forces exerted on three planes, namely the x-
plane, y-plane and d-plane. They are indicated by different
types of shaded areas in Fig. 6. Thus the 3-d problem is reduced
to a 2-d problem. The finer the partitioning is, the smaller the
base triangles of prisms are,  and the more accurate the
approximation will be.

Let's assume that, at any time tm, the height of post z(i,j)
is represented by zij(tm), and the rate of change of z(i,j) is
represented by zij'(tm). Since zij'(tm) is affected by forces from
3 planes, it can be expressed as a summation of three terms:

(6.1)    zij'(tm) = zxij'(tm) + zyij'(tm) + zdij'(tm)

where zxij'(tm), zyij'(tm) and zdij'(tm), are rates of changes of
zij'(tm)  caused by forces exerted on  the x-plane, y-plane and
d-plane respectively.

During a simulation, each time slice ∆t is divided into two

substeps ∆t1 and ∆t2.  In ∆t1, we first use (3.7) to compute
forces  exerted on three different planes. Then zxij'(tm+1),
zy ij'(tm + 1 ) and zdij'(tm + 1 ) can be obtained by solving

equations (5.3). In step ∆ t2, Euler integration is used to
determine new values for each  zij(tm+1):

(6.2)  zij(tm+1) = zij(tm) + [zxij'(tm) + zyij'(tm) + zdij'(tm)]∆t

     For ∆ t1 and ∆ t2 of each iteration in the simulation, we
split our 2-d computational problem into 3 terms: x-plane
scan, y-plane scan and d-plane scan. Each scan has two phases
corresponding to two time substeps.  A scan on any plane
involves calculations of forces exerted on that plane, rates of
changes of z(i, j) caused by the forces,  new height of each
post, etc.  Computations for each scan in a time substep are
independent of  scans on the other planes in the same substep,
and therefore can be performed either sequentially or in
parallel.  It is important to notice that, in the same time
substep, scans in different orders (x-scan then y-scan then d-
scan,  or y-scan then x-scan then d-scan, etc.) will have the
same effect. The reasons are discussed in [9].

The 3-d algorithm can be briefly described as follows:
Each iteration of simulation is divided into two phases. Steps
(1)-(3) of Algorithm 1 are performed first for each scan. Then
step (4) is applied for each scan to calculate new values of
posts. Both time and space complexity of the 3-d algorithm
remain linear in the number of posts.



7. INTERACTION BETWEEN SOIL AND BLADE
In this section, we analyze the interaction between the

soil mass and a bulldozer's blade. Let's assume that the height
of the blade is H. The shape of the blade can be modeled by an
arc of a circle centered at the location <xc,yc> with radius R.
We divide the arc into n segments, each of which has length
R∆β. Furthermore, the soil mass in front of the blade is also
partitioned into n slices by horizontal lines at  each joint
point  of two arc segments as shown in Fig. 7.

∆β

<X0, Y0>

<Xc, Yc>
<Xn, Yn>

R

H

X

Y

Fig. 7:  Dividing the blade and soil mass

To calculate the force resisting cutting, we arbitrarily pick
the i-th slice from the partitioning. The arc segment can be
approximated by a line segment from point <xi,yi> to point
<xi+1, yi+1>. Note that the length of the line segment, denoted

by ∆L, approaches the length of the arc when ∆β approaches
0. The idea is explained in Fig. 8:

<Xi, Yi>

<Xi+1, Yi+1>

<Xi, Yi>

<Xi+1, Yi+1>

Slice-i
Ti fni

ftifi
∆L

αi

(a) (b)

Fig. 8:  Free body diagram for i-th slice

If the cutting part of the bulldozer pushes the soil mass
with enough force, the equilibrium will be destroyed. At this
moment, the resistance parallel to blade motion at the point
<xi,yi> can be calculated by the formula [1]:

(7.1) Ti = Ae2αi+B[γ(H + y0 - yi) + c cot(φ)] tan(φ)

where Ti is the localized shear stress and αi is the magnitude of

the angle of inclination of ∆L to the horizon. The remaining
symbols are as explained earlier. All angles are given in
radians. Constants A and B are only related to φ and δ (δ is the
angle of  external friction), of the given soil:

(7.2) A  =  
sin(δ) [ cos(δ) + √sin2(φ ) - sin2(δ)  ]

1 - sin(φ )

(7.3) B = δ + sin-1 ( 
sin(δ)

sin(φ)
 ) - π

Due to different cutting depths (given by  H+y0−yi ) and

different inclination angles αi, the magnitudes of Ti vary.  The

resistance force exerted on ∆L can be computed by fi = Ti ∆L.
As shown in Fig. 8-(b), fi can be further decomposed into two

components, one normal to ∆L and another parallel to ∆L. The
normal force is cancelled by the opposite force contributed by
∆L. The parallel force has the following property: In the upper

portion of the blade, it has a smaller magnitude and points in
the negative y-direction. In the lower portion, it has a larger
magnitude and points in the positive y-direction. Let fyi be the
y component of the parallel force. It can be computed by:

(7.4) fyi  = (C1 - C2yi ) e
2αi sin(αi) cos(αi) ∆L

where C1=AeB[γ(H+y0)tan(φ)+ c]  and C2 =AeBγtan(φ).

Now we calculate the summation of all fyi's, represented

by Fy, which gives us the total force pushing the soil mass in
front of the blade upwards.

(7.5)  Fy = 
1
2 Σn

i=1 (C1 - C2yi ) e
2αi sin(2αi) ∆L

To get an accurate solution, we let ∆α approach 0. In this
case we have the following equations [9]:

(7.6) αi = α0+ i ∆α

(7.7) Lim
∆α→0

 ∆L = R ∆α

(7.8) Lim
∆α→0

yi  =  yc - Rcos(α0 + i ∆α)

Replacing αi ,∆L and yi  in (7.5) by right hand sides of above

equations and making ∆α infinitesimal, we obtain:

(7.9)   Fy = 
R
2  ⌡

⌠
α0

αn
[C1-C2yc+C2Rcos(α)]  e2αsin(2α) dα

To simulate cases in which the blade are not fully loaded,
we fix the lower bound angle of the definite integral and keep
the upper bound angle changing from α0 to αn. That will give
us the following figure:
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Fig. 9: Total upward force along the blade

In Fig 9, the vertical axis indicates y coordinates of
points up to which the soil is loaded and the horizontal axis

gives Fy under the given configuration. The data is recorded
with α0=1.22, R=100cm, c=1.9, δ=0.5, φ=0.54 and γ=2.0
(angles are measured in radius). For example, if the soil is
loaded up to the middle point of the height of the blade, i.e.
y=36.0 cm, the curve shows that at this point the total upward
force reaches its maximum (about 20 metric tons).

The analysis shows that the total force is always positive.
That is, the soil mass being cut always moves upward along
the blade. This phenomenon is also observed experimentally
[1]. The sequence of events occurring during the process of
interaction between the cutting blade and the excavated soil
before the blade can be described by 3 steps. 1) the soil chip
being cut from the main soil mass moves upward along the



blade because of resistance to the soil. 2) the soil chip is
broken up into individual lumps on the upper part of the blade.
3) These lumps move downward toward the soil layers being
further cut and from the soil prism which is being dragged.
This phenomenon is depicted by Fig. 10:

Fig. 10:  Pattern of soil movement ahead of the blade

8. SOIL IN A BUCKET
In this section, we present a graphical model of a

scooploader. For clarity, we assume that only buckets which
can be represented by convex polygons will be processed.
Again we first divide the soil configuration and the bucket into
n slices with equal width ∆x. This is shown in Fig 11, where
the thick line segments indicate the bucket:

yi

∆x∆x

yi-1 yi+1

bi-1
bi+1bi

X

Y

Fig. 11: Dividing the soil mass in a bucket

The motion of the soil mass in the bucket is a
combination of two movements: 1) the movement of a portion
of the given soil mass along a potential failure plane on the
top; and 2) the whole mass along the bucket surface. We will
refer to these motions as local movement and g l o b a l
movement respectively. In general, a local movement is
caused by an unstable configuration of the given soil, while a
global movement is due to the shear stress experienced by a
surface of the soil mass in contact with the bucket. This can be
seen more clearly through the free body diagram of slice-i
arbitrarily picked from the partitioning (see Fig. 12), where fi
is the force driving a local movement along the failure plane
denoted by line segment <y i-1, hi>. This force can be
quantified by (3.7).

α i

f i

si
Mi

τi Ni

∆x
bi-1

bi

yi-1

hi

Fig. 12: Analyzing forces of slice-i

Let's now consider the global movement. The driving
force, denoted by G,  can be calculated by analyzing the free
body diagram of each free body. As shown in Fig. 12, the
weight Mi of slice-i can be decomposed into two elements: the

shear stress force τi  and the normal stress force Ni. Ni is
canceled by the opposite force provided by the bucket surface
<bi-1, bi>. τi  is the force which pushes the mass to move
along the bucket surface. The shear strength force si, on the
other hand, resists the shear displacement of soil particles
along the bucket surface. These forces can be determined from
the Mohr-Coulomb theory as indicated by [5]:

(8.1) τi = Mi sin(αi)
(8.2) si = cLi + Mi cos(αi) tan(δ)

where c is the coefficient of cohesion, δ  is the angle of
external friction, Li is the length of the line segment from bi-1
to bi, Mi is the weight of slice-i, and αi is the angle between

the bucket surface and the horizontal. δ indicates a measure of
the friction between soil and the surface of the bucket. It is
given in radians. For loamy clay and sand, the typical values
of δ are 18 and 30 respectively [1]. The units of these symbols
are as explained earlier.

For equilibrium consideration, we use a method similar to
the one described in [6]. The stress force τ and the strength
force s can be expressed by vectorial summations:

(8.3)   τ =Σn
i=1 τi  = Σn

i=1 Mi sin(αi) <cos(αi), sin(αi)>

(8.4)  s = Σn
i=1 si =Σn

i=1 Mi cos(αi) tan(δ)<cos(αi), sin(αi)>

Note that the term cLi is dropped from(8.4), since the cohesion
coefficient c describes molecular attraction among like
particles and is zero between soil and a bucket surface. Thus,
the safety factor Fs can be defined as

(8.5) Fs =  
 |s| 

  |τ |  

When Fs is less than one, sliding of the whole mass along the
bucket surface is inevitable. In this case, the total driving
force G of the global movement can be computed by

(8.6) G = 
 

τ−s, if τ> 0

   
τ+s,    otherwise

In order to simulate the movement of soil mass in a
bucket, we decompose G to smaller components which are
parallel to the bucket surface. These component forces are
distributed to slices so that the dynamics of soil can be
considered individually for each slice. After carefully
analyzing the behavior of the soil mass, we know that the
following constraints must be satisfied:

1)  The summation of component forces should equal G;
2)  All slices should have the same x-acceleration.

The first constraint is obvious. The second one should be
always true simply because: 1) a bucket always has a convex
shape; and 2) some slices would fall apart and tension cracks or
deformation would occur if the x components of their
accelerations are different.

Let Gx= G c o s ( α ) and Gy=Gs in (α ) be the x and y

components of G respectively, where α is the angle between
the vector G and the horizontal.  Let gi be a component force



of G, which is experienced by the bucket surface of i-th slice.
From the constraints we have

(8.7) G cos(α) = Σn
i=1 gi cos(αi)

(8.8) G sin(α) = Σn
i=1 gi sin(αi)

(8.9) 
g1

M1
 cos(α1) = 

g2

M2
 cos(α2) = ..... = 

gn

Mn
 cos(αn)

(8.7)~(8.9) give us n+1 equations with n+1 unknowns, namely
g1, g2, ... gn and α. Other variables can be computed according
to the geometry of the given configuration. Solving the
equations we obtain

(8.10) gi = 
 Mi cos(α)

 M cos(α i)
 G ,        for i = 1, 2, ..., n.

where  α = tan-1( 
1
M Σn

i=1 Mi tan(αi) ).

Having fi and gi computed, we model the soil dynamics in
a bucket by using Algorithm 1 to evaluate simultaneous
equations in (5.3).  In order to do so, we simply replace fi by
fi+gi  when calculating the rate of changes of each post at the
time tm+1. The rest of the algorithm remains unchanged.

9. IMPLEMENTATIONS

9.1 IMPLEMENTATION OF A BULLDOZER
Recall that the terrain surface is represented by a regular

tessellation model. An array, namely z, of size m×n is used to
store the height of elevation posts. An element z(i,j) in the
array represents the elevation at the location <i,j>.

As mentioned in section 7, an excavating process of a
bulldozer can be separated into three phases. These actions can
be simulated by an algorithm with three corresponding stages:
digging,  piling and soil slipping. First, the algorithm keeps
track of the motion of the blade. If the altitude value of the
bottom of the blade is denoted by b(i,j) at the location <i,j>,
then any elevation post z(i,j) passed through by b(i,j) are
forced to have the same value. This procedure will create a ditch
along the path of the bulldozer on the terrain surface.

The second stage models the upward movement of the soil
along the blade. Let P be a set of soil prisms which have been
passed through by the blade in the last time step. Let zp(i,j),
zq(i,j) and zr(i,j) be surrounding posts of a prism p(i,j). The
amount of soil contributed by prisms in P to the soil chip
moving upwards can be computed by:

(9.1)   V = 
∆x∆y

6 ∑
p(i,j)∈P

 

  ∆ V(i, j)

where
∆V(i,j) = zp(i,j)+zq(i,j)+zr(i,j) - bp(i,j)-bq(i,j)-br(i,j)

Finally, in the third stage the amount of soil computed by
(9.1) is put in front of the blade. Since the height that the soil
is lifted upward along the blade and the speed in which the soil
chips are broken into individual lumps depend on the cohesion
property of the given soil, the procedure can be simulated by
spreading the soil to a chunk shown below:

Blade direction

∆z W

u

Fig. 13:  Dimensions of soil chunk

The dimensions of the soil chunk are determined according to
the following equation:

 (9.2) ∆z = κ (1+ c)

u    = 
V

 w κ   (1+c)

where V is the total volume calculated by (9.1), w the width of
the blade, c the cohesion coefficient, and κ a constant which
determines how far forward the soil chip moves during one
time step. In the implementation, κ is chosen experimentally
to make the simulation looks more realistic.

After all this is done, ∆z is added to the elevations of
corresponding posts, and the slippage model introduced in
previous sections is used to simulate the free flow motion of
broken lumps of soil. It should be mentioned that the soil
being brought to the top of the berm arrives continuously in
the real world. However, with a discrete time simulation
process, the chunk is a reasonable representation of the
amount and location of the soil that would really arrive during
one time step. The slippage model smoothly integrates this
chunk into the berm, resulting in a realistic appearance.

Another important phenomena associated with physical
properties of soil is swelling, which is due to a number of
reasons: 1) the affinity of the soil for water; 2) the base
exchange behavior and electrical repulsion; and 3) the
expansion of entrapped air within the soil mass [4]. The model
simulating the expansion of excavated soil is also discussed
and implemented  in [9].

9.2 IMPLEMENTATION OF A BUCKET

In implementing a 3-d bucket,  we first divide it into m×n
cross sections in a way such that they are parallel to either the
x-z plane or the y-z plane. We refer to these sections as x-
sections and y-sections respectively. The result of the division
is shown in Fig. 14, where an x-section and a y-section are
emphasized by two shaded polygons.

x-section
y-section

Y

Z

X

Fig. 14: Dividing a bucket into sections

Therefore, the 3-d soil dynamics in a bucket is reduced to
m×n 2-d cases. For each individual cross section, we further
partition a 2-d soil configuration into soil slices (see Fig.



11.). The soil dynamics of each slice is handled by means of
the technique introduced in section 8.

A simulation procedure can be described as follows: Each
iteration of a simulation can be accomplished by two steps.
The first step computes forces for each soil slice of every
bucket section according to (5.3) and (8.10).  The second step
uses the Euler integration method to determine new values for
each elevation post (see Algorithm 1). These posts are
intersections of x-sections and y-sections.

The cutting and loading activities of a scooploader can be
modeled by a method similar to the one presented in section 7.
The discussion, therefore, is omitted.

10. CONCLUSION AND FUTURE WORK
Experimental realtime models of a bulldozer and a

scooploader have been implemented in the c programming
language. Both time and space costs of algorithms are linear in
the size of the bulldozer's blade, the size of the bucket and the
resolution of the ground mesh. The simulations were done on a
Silicon Graphics 4D/240 GTX computer. When using 4
processors, two bulldozers run at 6-8 frames/second. The
scooploader model uses 2 processors, running at 10-15 frames
per second. The number of elevation posts to model the ground
for both models is 90×90. The simulations look very realistic.

Future research work may include soil compressibility and
moisture content. The compression of soil layers is due to
deformation and relocation of soil particles and expulsion of
air or water from the void spaces [6]. Fundamental principles
for estimating settlements of soil under superimposed loading
should be explored so it can be used to provide vehicle tracks
or conduct trafficability studies. The moisture content of the
soil affects its unit weight and cohesion and results in different
behaviors. Those properties should be incorporated into
analytical models to provide more realistic simulations.

Fig. 15: Two bulldozers are at a work scene



Fig. 16: A scooploader is loading

Fig. 17: A scooploader is dumping
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