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COMPUTER ANIMATION OF THE SPHERE EVERSION
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The Sphere Eversion

In 1958, Stephen Smale, a mathenatici anwho

was then at the University of Chicago, proved that

it was possible to turn the surface of a sphere

i nside out by a special kind of deformation, called

a 'regul ar honotopy'. During a regul ar honot opy,

the surface nust remain continuous, without any

tears or holes; and snmpoth, w thout any creases or

singularities. However, the surface is allowed to

cross and pass throughitself.
In other words, if we consider a position of
the sphere as a function fromthe standard round

spherical surface S into three dinensional space

R3, this function nmust be continuous and snooth

(C), but not necessarily one-to-one. Such a

function is called an imersion, and some sanple
i mrersions of the sphere are shown in the figures

here. A regular honptopy is then a continuous

family of i mersions, satisfyinga technical con-

dition that its partial derivativesw th respect

“pioosar 2

tions of time, as well as of positionon S . This

is the smoot hness conditionwhich prohibits creases
and ki nks.
there was a regul ar

Smal e actual |y proved that

homotopy between any two immersions of the sphere.

* .
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The ordinary round sphere and an i nsi de-out round

sphere are special cases of inmersions, so there

must be a regul ar honot opy between them Snale's

proof was by induction and in principal containeda
construction of an actual regul ar honot opy but one
so conplicated that it would be inpractical to vi-
sualize. Once the solutionwas known to be pos-

sible, a nunber of people tried to invent sinple

and easily visualizedhonotopies. One of these is
discussed in ScientificAmericanarticle [7], which
contains a nore extensive descriptionof the prob-

lem and a conpl ete sequence of illustrationsfor

the honmotopy. However, in order to understand the

deformation, the reader nust inmagine the notions
between the illustrationsin the sequence, and con-
vince hinself that they are continuous and snoot h.
Clearly it would be preferable to have a novie show
ing the whol e defornmation. Since each frane is a

different conplicated surface, this is an obvi ous

candi date for conputer ani mation.
The film projectedat the neeting and illus-

trated in the figures here shows a regul ar honot opy
devel oped by Bernard Morin, a blind French nat hema-
tician who was al so instrumental in the creation of
such honot opi es. The one used here

several other

is anong the sinplest known, since it contains only

fourteen critical stages, the mnini mumanong the
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honot opi es known at present.

There were two main problems in the creation
of the film first the mat hematical definition of
the honot opy to the conputer, and second, the ef-
ficient conputationof the frames for output

through suitabl e hardware onto film These will

be di scussed in the sections to follow.

Definitionof the Surface

The surface of the sphere was divided into
ei ght een rectangul ar and ei ght triangul ar patches,
shown in Figure 1.

For each patch, the three co-

ordinates X, y, and z were represented as cubic
polynom als in the two patch parameters u and v.
Thus the rectangul ar patches were Coons' ' bicubic
pat ches'

[3l,

Birchoff's '"tricubic' patches [2].

and the triangul ar ones were

The coeffici-
ents for these polynonials were cal cul ated from
the coordi nates of the vertices,

the tangent vec-

tors at the vertices, and the mixed partial deriv-

ative vector, called the 'tw st vector'.

Patches on the sphere. The exterior of

Figure 1.
' the pattern is a final patch.
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In order for two independent tangent vectors

at a vertex to relate neaningfully to the partial

derivatives for the patches having this vertex as

a corner, each vertex nust be a corner of four

patches. Since it is inpossibleto cover a sphere

usi ng only rectangul ar patches which nmeet in this
way, the triangul ar patches were needed.
Since the rectangul ar patches are entirely

determined by the tangent informationat their ver-

tices, they join automatically al ong their common

edges to forma snooth continuous surface. After

the programwas written, Ed Catrull and Robert
Barnhill at the University of Ut ah pointed out
that the formulas for the triangul ar patches cause

slight creases at their edges. However the snooth

shadi ng al gorithmto be described | ater suppressed
these creases anyway, so they were never corrected.

The coordi nate, tangent, and tw st information

to descri be the surface invol ves nore than 200 num
bers, whi ch nust be specified for each position of

the surface. However, each surface of the regular

honot opy has two-fold rotational symetry, visible

in the symretry of the patch structurein Figure 1.

By taking advantage of this symetry, the amount of

informati onto describe each positionis cut in

hal f.
In addition, the regul ar honotopy is synmet -

rical intime. At the halfway stage, shown in

Figures 2 and 3, the inside surface and outside

surface appear in identical positions, rotated by

90 degrees. The second half of the honptopy is a

reversal of the first half with the inside and
out si de surfaces changing roles. Thus only half

the honot opy need be specified.



Figure 2. Wre frame network on halfway stage.

Figure 3.

Smooth surface rendering of
stage.

hal f way

The vertex and tangent descriptions were en-

tered interactively into a PDP-10 conputer, using

a program inspired by Andrew Arnit's 'MiltiCbject’

system ) . .

y [ at Canbridge University. The original

hope was to create the surfaces conpletely wth

this interactive program conparing graphical

put of the patches to a nental image of how the

surfaces should 1 ook,

However it was found that

ingly.

just too conplicated for this to work well. One

particularly annoying problem was the fact that

out -

a

and revising the data accord-

the surfaces were
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differentiable surface can nevertheless have a
. I . Wwhere the two partial de-
singuiarity, at a point

rivative vectors becone linearly dependent. It is,

difficult to recognize how to nodify the vertex

and tangent information to elimnate these singu-

larities.

Luckily, a sequence of chicken-wire models for

the homotopy had been constructed by Charles Pugh,

at the University of California Berkel ey (see

Figure 4). Patches were laid out on these nodels,

and the necessary data neasured by hand, and en-

tered into the conputer. The interactive program

was then run at the Stanford Artificial Intelli-

gence Laboratory, so that the data could be im
proved while the nodels were still accessible.
This proved to be a much nmore satisfactory process,

and we wish to thank Les Ernest for making the fa-

Stanford avail able.

cilities at

Figure 4.
Since the deformation proceeds sinilarly for-
wards and backwards from the halfway position

shown in Figures 2 and 3, the patches were chosen

to fit best on this central surface, in the hope

that they could be deformed both forward and back-

ward to the beginning and final round spheres.
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However, this involved nuch twisting and distortion
of the patches, and the surfaces resulting at the

extremes of the honotopy had an unpleasant appear-

ance.

Therefore a conpletely different global rep-

resentation, in terns of spherical coordinates,

i.e. latitude and longitude, was enployed for the

beginning and final stages of the honotopy. Start-

ing with the round sphere, trigononetric polynoni-

als in the spherical coordinates were applied to

push and twist the surface until it reached posi-

tion Sl, Figure 5 approximating the model M, of

1

Figure 4 part way through the homotopy, where the

patch representation takes over. In order to get

a transition between the two representations, the

patch surface P, for M, was al so conputed, and

each patch subdivided into a nunber of small poly-

gons, as shown in Figure 6. For each vertex of

this subdivision, the spherical coordinates of

the closest on §

1
metric which required nearness of

poi nt were conputed, using a

the tangent

planes as well as ordinary distance. In effect,

this plastered the patch representation P, onto

1

the spherical coordinate surface S,, and once the

"’

crunpled parts of the surface were straightened

out by hand, a smooth transition resulted.

Each square patch was subdivided into a 6
by 6 array of smaller squares, shown on Figures

3 and 6 and the triangular and rectangul ar patch-

es were divided simlarly. For the global rep-

resentation in terms of spherical coordinates,

the sphere was subdivided onto a collection of tri-

angles based on Buckminster Fuller's geodesic done

(see [4]). The coordinates of the vertices of

these subdivisions and of their "outward" surface

normals were conputed for a number of key franes
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and used as

o
a1 e

definition of

input,_h’for the shading process. The

o,

these key frames was done at the

Carnegi e-Mel lon University Conputer Science Depart-

ment and we wish to thank Raj Reddy for nmaking the

facilities there available to us.

Figure 5.

Figure 6.

Smooth Surface Representation
The Evans and Sutherland LSD2 animation ma-

chine at Case Western Reserve University was used

to output the regular honotopy as a continuous

famly of snoothly shaded opaque surfaces. This

machine takes as its input a sequence of polygon



edges on the surface, and sends them through a

pipeline where they are translated and rotated in
a matrix nmultiplier, clipped on the screen edges,
put into perspective, and stored in a sorted list.

Then, a 'Watkins box' [8] conputes those segnents

of these polygons which are visible on each scan

line, and a shader outputs the appropriate inten-
sity signal at video rates.

The shader conmputes the intensity by linearly
interpolating the z conponent of the unit nornal
vectors at the vertices of the polygons. This
piecewise linear intensity function approximtes a

cosine |law of

[5].

reflection as suggested by Gouraud

If the subdivision into polygons is suffici-

ently fine, an apparently smoothly shaded surface

results. However if two polygons neet at an edge

with too sharp an angle, the eye,using contrast en-

hancenent edge detection circuits in the retina,

detects the discontinuity of the derivative of the

pi ecewi se linear shading and the edge shows as a

bright 'Mch band', some of which are visible in

Figure 7. There is also an anti-rastering device
on the pipeline, to elimnate the staircase effect

produced on sharp edges by the finite resolution

of the raster scan.

The inside and outside surfaces of the sphere
are colored in two contrasting colors, depending
on whether the normal to the 'outside' surface
points toward or away from the viewer. To produce

a segment of the novie, two key frame descriptions

are stored in the PDP-11 conputer which works with

the LDS-2.  These descriptions contain the posi-

tions and normals for corresponding vertices on

the two surfaces, and a list of polygons which con-

nect them For each internediate frame, the PDP-11
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interpolates the data between the key franmes, and

sends it through the LDS-2.

Figure 7.

The only problem is with polygons which-cross

the profile curve, and thus have some vertex nor-

mal s pointing cowards the viewer, and sone pointing

away, making the decision as to color inpossible.

For each vertex the dot product of the vertex nor-

mal times the vector pointing from the vertex to

the point of view is taken. These dot products are

positive if the vertex is visible in the outside

surface, and negative otherwise. An edge |ike AB

connecting two points whose dot products have op-
posite signs is assumed to cross the profile curve

at a point E. To find it, a weight is conmputed

whi ch woul d make the weighted average of the dot
products for A and B come out

zero. A cubic ap-

proximation to the curved side AEB of the patch is
then formed using the normals of A and B to specify

the curvature, and evaluated at the weight to find

E. The point F is found sinilarly. The profile

curve EGF is then also approximted by a cubic,
and internediate points G H, cal cul ated, so

that the polygon EFGH approximtes the snooth



profile curve, and the polygon ABC‘I{)':,LE replaced by
the two polygons AEGHFD and BEGHFC which can then be
colored appropriately. The resulting smoothed pro-
file is particularly beneficial when the surface is
rotating or deforming, since otherw se vertices

moving past the profile would cause tenporary bunps

to appear and disappear.

Figure 8.

The LDS-2 is capable of continuously refresh-
ing a fixed position of the surface for viewng
with a 512 line raster, and is even capable of ro-
tating it in real time if the dot product and pro-
file smoothing conmputations are onitted. For high
quality filmng in color, three color filters are
moved into place in turn under conputer control,
and a slower 1024 line high resolution scan is
used. The conputer also controls the advance of
the filmin the animation camera. We wish to
thank Ted daser at Case Western Reserve Univer-
sity for making the LDS-2 available during the
preparation of this paper.

Once the key frame.8 have been defined, the
surfaces may be rotated, magnified, and filmed from
any point of view, as in Figure 9. They can also
be sliced by a clipping plane, to show the interior

structure which would otherwise be obscured. As

shown in Figure 10, this can be done on the LDS-2
hardwa.re, which can clip with respect to a front
and back plane, as well as on the screen boundaries.
It can also be done in software, giving the snooth-
er clipping edge shown in Figure 11, using nethods

anal ogous to those which produce a smooth profile

edqpe.

Figure 9.

Figure 10. ]

Another way to show the interior structure is
to shrink the polygons on the surface, so that gaps
appear between them as shown in Figure 12, reveal-
ing the surfaces behind. A final way is to use a
wire frame representation, as described below

which can be drawn on a vector scope.



Figure 11.

Figure 12.

Wre Frame Representation

The wire frame sequences in the film were

made on a Gaphics Display Processor (GDP), a high-
speed digital vector scope, developed at Carnegie-
Mellon University. Like the LDS-2, the GDP works

in conjunction with a PDP-11, which can perform

the interpolation between key frames, and in this

case also does the matrix nultiplication for the

rotation. The screen has sixteen |ogarithnically

spaced intensity levels, which are used to nake

the distant parts of the surface dimer.
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For the animation, the two key frames are de-

scribed in display lists, containing visible and

invisible vectors in three dinensions. These are

interpolated to form internediate frames, and the
vectors are rotated and transfornmed into a display
the vectors

list suitable for the GDP. Only half

need be kept in core, since the others can be ob-

tained by rotation about the axis -of two-fold sym

metry of the surface.
Iwo sorts of wire frame approximtions were
used: a cross hatching, suitable for the patch

representation shown in Figures 2, 6, and 13 and a

"chicken wire' array of hexagons, derived from the

subdivision on the global representa-

' geodesi ¢’

tion,shown in Figures 5 14 and 15. No attenpt

was made to provide a consistent representation

throughout the deformation, since any pleasant

| ooking wire frane approximation to the round
sphere would inevitably become unpleasantly dis-

torted when the sphere was turned conpletely inside
film of the real chicken

out. Instead, 'live'

wi re nodel IV{ in Figure 4 was used to cover the

transition.

Figure 13.



.LAkgl;eve tbgsfilm provides a viéualization
which could not H;;;ibeen achieved in any other
medium, and could never have been animated by hand,
In fagt, it is just at the borderline of what is
now practical with computer animation, and illus-
trates what may be accomplished in the future, in

the direction of precise renderings of scientific

phenomena,
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