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The ordinary round sphere and an inside-out round

sphere are special cases of immersions, so there

must be a regular homotopy between them. Smale's

proof was by induction and in principal contained a

construction of an actual regular homotopy but one

so complicated that it would be impractical to vi-

sualize. Once the solution was known to be pos-

sible, a number of people tried to invent simple

and easily visualized homotopies. One of these is

discussed in Scientific American article [7], which

contains a more extensive description of the prob-

lem, and a complete sequence of illustrations for

the homotopy. However, in order to understand the

deformation, the reader must imagine the motions

between the illustrations in the sequence, and con-

vince himself that they are continuous and smooth.

Clearly it would be preferable to have a movie show-

ing the whole deformation. Since each frame is a

different complicated surface, this is an obvious

candidate for computer animation.

The film projected at the meeting and illus-

trated in the figures here shows a regular homotopy

developed by Bernard Morin, a blind French mathema-

tician who was also instrumental in the creation of

several other such homotopies. The one used here

is among the simplest known, since it contains only

fourteen critical stages, the minimum among the

The Sphere Eversion

In 1958, Stephen Smale, a mathematician who

was then at the University of Chicago, proved that

it was possible to turn the surface of a sphere

inside out by a special kind of deformation, called

a 'regular homotopy'. During a regular homotopy,

the surface must remain continuous, without any

tears or holes; and smooth, without any creases or

singularities. However, the surface is allowed to

cross and pass through itself.

In other words, if we consider a position of

the sphere as a function from the standard round

spherical surface S into three dimensional space

3
R , this function must be continuous and smooth

(C ), but not necessarily one-to-one. Such a

function is called an immersion, and some sample

immersions of the sphere are shown in the figures

here. A regular homotopy is then a continuous

family of immersions, satisfying a technical con-

dition that its partial derivatives with respect
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tions of time, as well as of position on S . This

is the smoothness condition which prohibits creases

and kinks.

Smale actually proved that there was a regular
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homotopies known at present.

There were two main problems in the creation

of the film; first the mathematical definition of

the homotopy to the computer, and second, the ef-

ficient computation of the frames for output

through suitable hardware onto film. These will

be discussed in the sections to follow.

Definition of the Surface

The surface of the sphere was divided into

eighteen rectangular and eight triangular patches,

shown in Figure 1. For each patch, the three co-

ordinates x, y, and z were represented as cubic

polynomials in the two patch parameters u and v.

Thus the rectangular patches were Coons' 'bicubic

patches' [3], and the triangular ones were

Birchoff's 'tricubic' patches [2]. The coeffici-

ents for these polynomials were calculated from

the coordinates of the vertices, the tangent vec-

tors at the vertices, and the mixed partial deriv-

ative vector, called the 'twist vector'.

In order for two independent tangent vectors

at a vertex to relate meaningfully to the partial

derivatives for the patches having this vertex as

a corner, each vertex must be a corner of four

patches. Since it is impossible to cover a sphere

using only rectangular patches which meet in this

way, the triangular patches were needed.

Since the rectangular patches are entirely

determined by the tangent information at their ver-

tices, they join automatically along their common

edges to form a smooth continuous surface. After

the program was written, Ed Catmull and Robert

Barnhill at the University of Utah pointed out

that the formulas for the triangular patches cause

slight creases at their edges. However the smooth

shading algorithm to be described later suppressed

these creases anyway, so they were never corrected.

The coordinate, tangent, and twist information

to describe the surface involves more than 200 num-

bers, which must be specified for each position of

the surface. However, each surface of the regular

homotopy has two-fold rotational symmetry, visible

in the symmetry of the patch structure in Figure 1.

By taking advantage of this symmetry, the amount of

information to describe each position is cut in

half.

In addition, the regular homotopy is symmet-

rical in time. At the halfway stage, shown in

Figures 2 and 3, the inside surface and outside

surface appear in identical positions, rotated by

90 degrees. The second half of the homotopy is a

reversal of the first half with the inside and

outside surfaces changing roles. Thus only half

the homotopy need be specified.
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Figure 2. Wire frame network on halfway stage.

Figure 3. Smooth surface rendering of halfway
stage.

The vertex and tangent descriptions were en-

tered interactively into a PDP-10 computer, using

a program inspired by Andrew Armit's  'MultiObject'

system 
[l] at Cambridge University. The original

hope was to create the surfaces completely with

this interactive program, comparing graphical out-

put of the patches to a mental image of how the

surfaces should look, and revising the data accord-

ingly. However it was found that the surfaces were

just too complicated for this to work well. One

particularly annoying problem was the fact that a

differentiable surface can nevertheless have a

singuiarity, at a point 
where  the two partial de-

rivative vectors become linearly dependent. It is,

difficult to recognize how to modify the vertex

and tangent information to eliminate these singu-

larities.

Luckily, a sequence of chicken-wire models for

the homotopy had been constructed by Charles Pugh,

at the University of California - Berkeley (see

Figure 4). Patches were laid out on these models,

and the necessary data measured by hand, and en-

tered into the computer. The interactive program

was then run at the Stanford Artificial Intelli-

gence Laboratory, so that the data could be im-

proved while the models were still accessible.

This proved to be a much more satisfactory process,

and we wish to thank Les Ernest for making the fa-

cilities at Stanford available.

Figure 4.

Since the deformation proceeds similarly for-

wards and backwards from the halfway position

shown in Figures 2 and 3, the patches were chosen

to fit best on this central surface, in the hope

that they could be deformed both forward and back-

ward to the beginning and final round spheres.

IMAGING IDTC XEROX
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However, this involved much twisting and distortion
.:>t.

of the patches, and the surfaces resulting at the

extremes of the homotopy had an unpleasant appear-

ance.

Therefore a completely different global rep-

resentation, in terms of spherical coordinates,

i.e. latitude and longitude, was employed for the

beginning and final stages of the homotopy. Start-

ing with the round sphere, trigonometric polynomi-

als in the spherical coordinates  were applied to

push and twist the surface until it reached posi-

tion S', Figure 5, approximating the modelM, of

Figure 4 part way through the homotopy, where the

patch representation takes over. In order to get

a transition between the two representations, the

patch surface P, for M, was also computed, and

each patch subdivided into a number of small poly-

gons, as shown in Figure 6. For each vertex of

this subdivision, the spherical coordinates of

the closest point on S, were computed, using a

metric which required nearness of the tangent

planes as well as ordinary distance. In effect,

this plastered the patch representation P, onto

the spherical coordinate surface S,, and once the

crumpled parts of the surface were straightened

out by hand, a smooth transition resulted.

Each square patch was subdivided into a 6
,

by 6 array of smaller squares, shown on Figures

3 and 6 and the triangular and rectangular patch-

es were divided similarly. For the global rep-

resentation in terms of spherical coordinates,

the sphere was subdivided onto a collection of tri-

angles based on Buckminster Fuller's geodesic dome

(see [ 4 ] ) . The coordinates of the vertices of

these subdivisions and of their "outward" surface

normals were computed for a number of key frames
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and used as input for the shading process. The
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definition of these key frames was done at the

Carnegie-Mellon University Computer Science Depart-

ment and we wish to thank Raj Reddy for making the

facilities there available to us.

Figure 5.

Figure 6.

The Evans and Sutherland LSD2 animation ma-

chine at Case Western Reserve University was used

to output the regular homotopy as a continuous

family of smoothly shaded opaque surfaces. This

machine takes as its input a sequence of polygon



edges on the surface, and sends them through a

pipeline where they are translated and rotated in

a matrix multiplier, clipped on the screen edges,

put into perspective, and stored in a sorted list.

Then, a 'Watkins box' [8] computes those segments

of these polygons which are visible on each scan

line, and a shader outputs the appropriate inten-

sity signal at video rates.

The shader computes the intensity by linearly

interpolating the z component of the unit normal

vectors at the vertices of the polygons. This

piecewise linear intensity function approximates a

cosine law of reflection as suggested by Gouraud

[5 ] .

If the subdivision into polygons is suffici-

ently fine, an apparently smoothly shaded surface

results. However if two polygons meet at an edge

with too sharp an angle, the eye,using contrast en-

hancement edge detection circuits in the retina,

detects the discontinuity of the derivative of the

piecewise linear shading and the edge shows as a

bright 'Mach band', some of which are visible in

Figure 7. There is also an anti-rastering device

on the pipeline, to eliminate the staircase effect

produced on sharp edges by the finite resolution

of the raster scan.

The inside and outside surfaces of the sphere

are colored in two contrasting colors, depending

on whether the normal to the  'outside' surface

points toward or away from the viewer. To produce

a segment of the movie, two key frame descriptions

are stored in the PDP-11 computer which works with

the LDS-2. These descriptions contain the posi-

tions and normals for corresponding vertices on

the two surfaces, and a list of polygons which con-

nect them. For each intermediate frame, the PDP-11

interpolates the data  between the key frames, and

sends it through the LDS-2.

Figure 7.

The only problem is with polygons which-cross

the profile curve, and thus have some vertex nor-

mals pointing cowards the viewer, and some pointing

away, making the decision as to color impossible.

For each vertex the dot product of the vertex nor-

mal times the vector pointing from the vertex to

the point of view is taken. These dot products are

positive if the vertex is visible in the outside

surface, and negative otherwise. An edge like AB

connecting two points whose dot products have op-

posite signs is assumed to cross the profile curve

at a point E. To find it, a weight is computed

which would make the weighted average of the dot

products for A and B come out zero. A cubic ap-

proximation to the curved side AEB of the patch is

then formed using the normals of A and B to specify

the curvature, and evaluated at the weight to find

E. The point F is found similarly. The profile

curve EGF is then also approximated by a cubic,

and intermediate points G, H, . . . calculated, so

that the polygon EFGH approximates the smooth
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profile curve, and the polygon ABCD is  replaced  by': :_ f,

the two polygons AEGHFD and BEGHFC which can  then be.- ._
colored appropriately. The resulting smoothed pro-

file is particularly beneficial when the surface is

rotating or deforming, since otherwise vertices

moving past the profile would cause temporary bumps

t o  appear and disappear.

Figure 8.

The LDS-2 is capable of continuously refresh-

ing a fixed position of the surface for viewing

with a 512 line raster, and is even capable of ro-

tating it in real time if the dot product and pro-

file smoothing computations are omitted. For high

quality filming in color, three color filters are

moved into place in turn under computer control,

and a slower 1024 line high resolution scan is

used. The computer also controls the advance of

the film in the animation camera. We wish to

thank Ted Glaser at Case Western Reserve Univer-

sity for  making the LDS-2 available during the

preparation of this paper.

Once the key frame.8 have been defined, the

surfaces may be rotated, magnified, and filmed from

any point of view, as in Figure 9. They can also

be sliced by a clipping plane, to show the interior

structure which would otherwise be obscured. As

shown in Figure 10, this can be done on the LDS-2
.

hardware, which can clip with respect to a front

and back plane, as well as on the screen boundaries.

It can also be done in software, giving the smooth-

er clipping edge shown in Figure 11, using methods

analogous to those which produce a smooth profile

edne.

Figure 9.

Figure 10.

Another way to show the interior structure is

to shrink the polygons on the surface, so that gaps

appear between them, as shown in Figure 12, reveal-

ing the surfaces behind. A final way is to use a

wire frame representation, as described below,

which can be drawn on a vector scope.
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Figure 11.

Figure 12.

Wire Frame Representation

The wire frame sequences in the film were

made on a Graphics Display Processor (GDP), a high-

speed digital vector scope, developed at Carnegie-

Mellon University. Like the LDS-2, the GDP works

in conjunction with a PDP-11, which can perform

the interpolation between key frames, and in this

case also does the matrix multiplication for the

rotation. The screen has sixteen logarithmically

spaced intensity levels, which are used to make

the distant parts of the surface dimmer.

For the animation, the two key frames are de-

scribed in display lists, containing visible and

invisible vectors in three dimensions. These are

interpolated to form intermediate frames, and the

vectors are rotated and transformed into a display

list suitable for the GDP. Only half the vectors

need be kept in core, since the others can be ob-

tained by rotation about the axis -of two-fold sym-

metry of the surface.

Iwo sorts of wire frame approximations were

used: a cross hatching, suitable for the patch

representation shown in Figures 2, 6, and 13 and a

'chicken wire' array of hexagons, derived from the

'geodesic' subdivision on the global representa-

tion,shown in Figures 5, 14 and 15. No attempt

was made to provide a consistent representation

throughout the deformation, since any pleasant

looking wire frame approximation to the round

sphere would inevitably become unpleasantly dis-

torted when the sphere was turned completely inside

out. Instead, 'live' film of the real chicken

wire model M1 in Figure 4 was used to cover the

transition.

Figure 13.
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