
~ Computer Graphics, Volume 24, Number 4, August 1990 

Dynamic Simulation of Autonomous Legged Locomotion 

Michael McKenna and David Zeltzer 

Computer Graphics and Animation Group 
The Media Laboratory 

Massachusetts Institute of Technology 
Cambridge, MA 

ABSTRACT 

Accurate simulation of  Newtonian mechanics is essential for 
simulating realistic motion of jointed figures. Dynamic 
simulation requires, however, a large amount of  computation 
when compared to kinematic methods, and the control of  
dynamic figures can be quite complex. We have implemented 
an efficient forward dynamic simulation algorithm for 
articulated figures which has a computational complexity linear 
in the number of joints. In addition, we present a strategy for 
the coordination of the locomotion of a six-legged figure - a 
simulated insect - which has two main components: a gait 
controller which sequences stepping, and motor programs 
which control motions of  the figure by the application of 
forces. The simulation is capable of  generating gait patterns 
and walking phenomena observed in nature, and our simulated 
insect can negotiate planar and uneven terrain in a realistic 
manner. The motor program techniques should be generally 
applicable to other control problems. 

1. COORDINATING AND CONTROLLING JOINTED 
FIGURE MOTION 

Realistic modeling and animation of  human and animal figures 
has long been a goal of  researchers in computer graphics. 
There are two aspects to the synthesis of  motor behavior [1]: 

• The Coordinat ion  problem. How do we organize the 
movements of  a complicated figure into coherent, useful 
motions? In other words, given a jointed figure with many 
degrees of  freedom (DOFs), how do we decide which DOFs 
are needed to perform a given motion, and how do these 
movements vary with respect to each other? 

• The Control  problem. Given a set of DOFs, Emd appropriate 
time-varying parameters for each DOF necessary to effect a 
given motion. 

In this paper we will describe approaches to both problems. 
We use physically-based methods with dynamic motor control 
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to generate realistic movements, and we use biologically-based 
mechanisms to coordinate complex patterns of movement. In 
particular, we have implemented a dynamics simulation 
algorithm based on the work of  Featherstone [2; 3], which is 
more efficient than dynamic simulation algorithms previously 
reported in the computer graphics literature. We use this 
algorithm to compute the movements of a six-legged virtual 
insect. Based on results from ethology and physiology, we 
coordinate its adaptive gait over planar and uneven  terrain 
using coupled-oscillators, reflexes and a set of motor programs 
which apply controlling forces. 

In the next section, we discuss related work. In Section 3 we 
describe the major components of  our dynamic locomotion 
simulator. We conclude with a discussion of results we have 
obtained so far. 

2. RELATED WORK 

2.1. Dynamics, Forward and Key-Event Simulation 

Rigid-body simulators compute the motion of articulated 
figures comprised of rigid links connected by joints, which can 
move relative to each other with one or more DOFs. 
Constraint-based approaches define the relationships among the 
links, and then solve for the forces required to maintain the 
prescribed connections. These methods are typically 
computationally more expensive and numerically less stable 
than non-constraint-based techniques [4; 5]. 

Isaacs and Cohen describe a straightforward method of 
constraint simulation based on a matrix forrnulation[6]. Joints 
are configured as kinematic constraints, and either 
accelerations or forces cart be specified for the links. An 
equation is established for each DOF, yielding n simultaneous 
equations to solve, giving O(n J) complexity. Interdependencies 
among the constraints typically make the matrix non-sparse, so 
that sparse matrix solutions cannot be employed to reduce the 
complexity. Control is applied through the kinematic 
constraints and user-defined "behavior functions," which 
specify accelerations or forces over time. Arbitrary motions 
can be specified, however, which have no physical basis. 

Barzel and Barr describe constraint-based simulators which 
allow for the "self-assembly" of  linkage structures by satisfying 
constraint equations using a critically damped function [71. 
Their mcthod is of  order O(n -~) computational complexity, 
where n is the number of  constraints. This can be reduced to 
approximately O(n 2) ushag a sparse matrix solution [s]. 
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Witkin and Kass describe spacetime constraints in which the 
constraint equations are solved not ordy for the joint/link 
geometry, but also for the applied control forces [91. Since the 
copAtraint equations are solved simultaneously for the entire 
time span of the simulation, energy (or some other function) 
can be minimized over all of  time, though at a large 
computational cost. Like other constraint methods, forces that 
are not physically realizable may be produced to satisfy the 
constraints. Optimization techniques, such as spacetime con- 
straints, con~ast sharply with forward dynamic simulators, 
which require active force control to produce motion, thus 
encouraging the development of  coordination strategies. 

The non-constraint methods fall into two main categories: ones 
that form and solve a set of simultaneous equations for the 
ac~lerations, and ones that form a re.cursive relationship 
propagating force and movement information through the 
linkage, solving directly for accelerations. The first type of 
formulation typically yields O(n ~) complexity, because solving 
the n sirnukaneous equations requires a matrix inversion. The 
recursive formulations, however, can reach O(n) complexity, 
although they can be more difficult to develop, and the cost of  
the computations per link is higher than the simultaneous 
equation methods. Articulated figures with few joints are less 
expensive to compute using simultaneous equations; figures 
with many joints are more efficiently computed using the 
reeursive methods. The Walker-Orin method is the most 
efficient of  the simultaneous methods [10], and Featherstone's 
Articulated Body Method (ABM) is the most efficient of the 
recursive methods [31. When n > = 9, Featherstone's method is 
more efficient than the Walker-Orin algorithm. 

Wilhelms describes a dynamics simulator based on the Gibbs- 
Appell formulation [11]. She and her co-workers note that while 
dynamic simulation can produce realistic motion, it does not 
simplify coordination and control since it requires the 
specification of  joint torques, rather than joint angles, without 
providing a means for determining the proper torques to apply. 
Because of  this, they have devdoped an interactive., graphical 
editor, Virya, to allow the user to iteratively develop functions 
for useful force control. 

Armstrong has developed a recursive dynamic formulation, 
which has approximately the same computational efficiency as 
the ABM [12]. Armstrong, et al, have experimented with this 
method to simulate a moving human figure in near-real time 
[13]. However, the Armstrong method is only capable of  
efficiently simulating spherical joints, unlike the ABM which 
allows fully general joint types. 

Another efficient recurslve method has been formulated by 
Lathrop [14]. The advantage of  Lathrop's method over 
Featherstone's is that it allows for kinematic constraints at the 
end-effectors. Lathrop's method can also be extended to handle 
kinematic loops [s]. 

Here we would like to distinguish between two simulation 
paradigms. Optimization and constraint techniques can be 
termed key-event simulation, because specific events must be 
satisfied. This is in contrast to forward simulation in which a 
system is established, and then simulated forward in time [15]. 
Controlling techniques for key-event simulation require global 
knowledge about the system, sometimes over the entire time 
span of the simulation. Forward simulation controllers, 
however, need only partial knowledge of  the world, perhaps 
derived from a simulated sensor. The more sophisticated the 
controller, the more knowledge of the world it will require. 

External influences, such as interactive input, can be easily 
incorporated into a forward simulation at any point in time, 
unlike methods such as spacetime constraints, which must be 
solved over the entire span of time. 

In general, when it has been addressed at all, the coordination 
problem has been approached in two ways. Either interactive 
means are provided for the user to iteratively devdop functions 
of  time-varying forces, or mechanisms have been developed for 
defining and satisfying motion constraints. Interactive 
coordination methods are inadequate for all but the simplest 
motions, because complex, adaptive behavior is simply not 
amenable to "hands-on" control [16]. 

2.2. Human and Animal Motor Behavior 

Natural gait has been the focus of  much research for many 
years. Muybridge [17;15], Hildebrand [19], and others have 
cataloged and analyzed the stepping patterns of  the legs during 
different mammalian gaits, such as galloping, cantering, 
trotting, etc. An analysis of  insect and vertebrate locomotion 
indicates a hierarchical arrangement of simple control 
mechanisms which control stepping and stance [2o] 121] [22] [23]. 
Our computational model of  gait is based on these 
hypothesized biological mechanisms. 

Bizzi, et al, analyze the mechanical properties of the musculo- 
skeletal system and argue that motion is controlled by tuning 
the spring-like properties of muscles during movement [24]. 
Theoretical and clinical studies by Kugler, et al, and by 
Robertson and Halverson, including studies of  human 
locomotion, have examined the notion that coordinated motion 
arises more from the mechanical constraints on the physical 
system than from central motor programs [1; 25]. We use the 
notion of tuned springs as a mechanism for controlling joint 
motion, as we describe in Section 3.3. 

Beer, et al, employ a heterogeneous neural network to simulate 
the stepping patterns exhibited by the cockroach [26; 27]. Their 
work is intended primarily for the detailed study of the neural 
mechanisms of  motor control, and provides ordy limited, 2D 
graphical output. 

2.3. Walking Machines 

Robeties research has resulted in fundamental algorithms for 
dynamic simulation and ccontrol, though in general, simulated 
articulated models in computer graphics have more kinematic 
DOFs than robot devices. MeGhee developed an autonomous 
6-legged robot vehicle which could employ a number of gaits 
to negotiate rough terrain with areas marked as forbidden [28]. 
Another hexapod vehicle was later developed by Sutherland; its 
gait control system is similar to the one presented here [29; 30]. 
Legged robots designed by Raibert employ dynamic balance - 
i.e., they can run and hop without enough legs always on the 
ground to statically support the body [31]. McGhee and his tee- 
workers have developed mathematical tools for analyzing 
multi-legged gait, and they use these tools for designing gait 
control algorithms for a very large six-legged vehicle [32]. 

2.4. Graphical Simulation of Gait 

Computer animation and simulation of animal locomotion has 
involved primarily kinematic ceontrol. Zeltzer describes the use 
of  finite state control to simulate adaptive human walking over 
planar and uneven terrain [331. Girard reports the use of  inverse- 
kinematics to interactively define gaits for legged animals [34]. 
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Girard's gait sequencer is based on McGhee's analytical gait 
descriptions, so that gait changes are induced by explicitly 
varying the gait parameters - unlike our model, as we will 
show, in which smooth gait changes result naturally from 
variations in the overall gait frequency. Girard's model also 
incorporates some dynamic elements for added realism. 
However, the overall motion does not have a dynamic basis. 
Sims also employs inverse kinematics and dynamic elements, 
to simulate various adaptive gaits over uneven terrain [35]. 
Sims' gait sequencer is also based on McGhec's analytical gait 
description. Recently, Bruderlin has implemented a hybrid 
system in which limited dynamics and specialized knowledge 
about the kinematics of biped gait are applied to simulate 
human walking [3~]. Our system, unlike any of these, makes use 
of a general-purpose rigid-body dynamics module, as well as a 
gait controller based on biological mechanisms. 

3. A DYNAMIC LOCOMOTION SIMULATOR: CORPUS 

Corpus is a system for simulating the forward dynamics of 
articulated figures, with gait control mechanisms, force- 
producing motor programs and rendering support 1. Corpus is 
implemented in C, and uses several support libraries, also 
implemented in C. There are three main procedural 
components (see Figure 1): a dynamic simulator, a gait 
controller and motor programs. In addition, a structural 
description specifies the mechanical and geomelrical 
parameters of the hexapod. A scripting language is provided 
for defining jointed figures, and for controlling each of these 
components. 

Dynamic simulation using Featherstene's Articulated Body 
Method, forms the foundation of the system. The gait 
contrdler, based on the coupled oscillator model with reflexive 
feedback, coordinates the sequences of stepping and stance for 
the hexapod. The motor programs, based on exponential spring 
and damper combinations, generate the forces required for 
stepping and stance. The structural component contains 
descriptions of the kinematic structure of the links and joints, 
the mass and inertia of the links, the gait and motor program 
parameters, and finally, the graphic parameters necessary for 
rendering the component objects. The graphics system is not 
directly involved in the creation of locomotion, but is required 
for display and animation of the simulation. 

3.1. The Dynamics Simulator 

Our implementation of the Featherstone ABM algorithm is 
generalized and can compute the dynamics of any articulated 
figure with rigid links arranged in a branching structure, 
without intemal closed loops (loops may be approximated 
using spring closure forces). Joints may be rotary, prismatic, or 
screw, and multiple-DOF joints, combining these types, may be 
represented. 

We chose the Featherstone algorithm because it is an accurate 
and efficient recursive formulation for forward simulation, and 
because it can accommodate a variety of joint types. The 
algorithm is formulated in spatial notation - developed by 
Featherstone and based on screw calculus [37] - which 
essentially unites the rotational and translational aspects of 
motion into a single vector quantity. A complete treatment of 
spatial notation and the ABM algorithm is beyond the scope of 
this paper. The interested reader is directed to the work of 

1. A "corpus" is the body of a man or animal (Webster's 7th), 
and thus the articulated-figure simulator, corpus is so- 
named. 
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Figure 1: Block diagram showing the procedural and structural 
components of the corpus system. 

Featherstone, and for discussions of spatial algebra, the ABM 
algorithm, as well as a more detailed discussion of 
implementation and numerical issues, the reader is referred to 
McKenna [38]. 

The key feature of the Articulated Body Method is the concept 
of the articulated body inertia. Just as the inertia tensor of a 
rigid body determines its acceleration when the applied force is 
known, the articulated body inertia tensor of a rigid body, 
within an articulated figure, determines the acceleration when 
the applied force is known. Formally, the equation of motion 
for an unconstrained rigid body is: 

= p Eq.l 

where f is the applied force, I is the inertia tensor, ~ is the 
acceleration and ~v is the bias force (centripetal and Coriolis) 
produced by the body's velocity. The "hat" (A) denotes 
quantities expressed in spatial notation. The equation of 
motion for a rigid body in an articulated figure reads: 

~= ~A ~ + ~  Eq. 2 

where ~A is the articulated body inertia tensor, andp is the bias 
force which incorporates the ~v from above, as well as joint 
reaction forces. The articulated body inertia ~A gives 
directional properties to the apparent mass of a body. 

Briefly, the algorithm progresses as follows: first the algorithm 
passes from the leaf bodies of the figure tree inward to the root 
body, accumulating the articulated body inertias ~A and bias 
forces p. Then Eq. 2 is used to compute the acceleration of the 
root body as in: 

~= ( p ) - l ( ~ .  ~ )  Eq. 3 

Finally, the algorithm passes from the root out to the leaves 
computing the accelerations of the joints. 

External forces and joint forces are specified before the 
dynamics algorithm begins; force generators include gravity, 
collisions, motor program springs, joint dampers, and spring 
connections to other fixed and moving bodies. 
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Once the accelerations have been computed by the dynamics 
algorithms, they must be numerically integrated to compute 
velocities and positions; corpus uses fifth order, adaptive 
Runge-Kutta [39]. Because zhe integrator must be able to back 
up in time in order to adapt to less stable conditions, the 
integrator structure was modified to support the storage of 
certain time-varying state information which must be passed to 
the dynamics algorithm. 

The dynamics code in corpus is a straightforward 
implementation of the ABM, computed in body-local rather 
than world coordinates. This allows for some optimizations, 
provides more intuitive values for certain spatial quantities, and 
improves the accuracy of  the integration. 

Collision and contact in corpus is handled through spring forc- 
es. When a collision is detected between two bodies, forces are 
applied to each body as a function of penetration depth in the 
direction of  the collision normal. Linear or exponential spring 
functions can be used to create the forces; exponential springs 
are typically employed because deep penetration is strongly re- 
sisted by the exponential rise in force. Damping, a force pro- 
portional to the penetration velocity in the direction to oppose 
that velocity, earl be specified to create energy loss during col- 
lisions. However, energy loss is more directly modeled in 
corpus using the coefficient o f  restitution, 8, as in [40]. The co- 
efficient describes the.elastic properties of the collision and 
normally ranges from 0 (complete energy loss) to 1 (complete- 
ly elastic collision). The calculated collision force is sealed by 
the coefficient when the colliding bodies are moving away 
from each other, yet are still interpenetrating. Friction is 
modeled in corpus by applying a force equal to the collision 
normal force, scaled by the coefficient of friction, in the 
direction opposed to the tangential sliding motion. 

Collision detection is handled in several ways in corpus. The 
most basic method detects interpenetration of body bounding 
boxes. The simple geometry allows for rapid execution when 
only rectangular solids are employed (as with level terrain and 
the roach model). Another rapid method detects bounding box 
penetration against a height field, suitable for detection of 
colIisions of  the roach model with uneven terrains. Finally, a 
generai algorithm is available for detection of  interpenetration 
of arbitrarily shaped objects. 

3.2. The Gait Controller 

In order to move from place to place, an animal must 
coordinate its limbs to bring about coherent motion. Legs are 
alternately controlled between step and stance. Stepping brings 
the leg up and forward, while stance supports the body and 
drives it forward. The overall sequence of the various legs 
stepping and standing is termed the gait. 

Wilson analyzed the stepping patterns cockroaches exhibited 
under a variety of  conditions, and proposed five rules which 
describe the gait behavior of  many insects [41l: 

1) A wave of  steps runs from rear to head (and no leg steps 
until the one behind is placed in a supporting position). 

2) Adjacent legs across the body alternate in phase. 
3) Stepping time is constant. 
4) The frequency with which each legs steps varies. 
5) The interval between steps of  adjacent legs on the same 

side of  the body is constant, and the interval between the 
stepping of the foreleg and hindleg varies inversely with 
the stepping frequency. 

Wilson made hypotheses about the neurological mechanisms 
which could generate these rules, and his ideas were conflrrned 
by the experimental work of  Pearson [23]. Each leg in the 
cockroach has a pacemaker or oscillator, which rhythmically 
triggers the leg to step. The oscillators are coupled together, 
and their interaction generates the various gaits. 

In addition to the coupled oscillators, reflexes also play an 
important role in gait generation. Reflexes can both trigger or 
retard the stepping of  limbs. In nature, the cockroach step 
reflex causes a leg to step when hair receptors detect that the 
leg has nearly reached its maximum rearward extension. An- 
other cockroach reflex employs cuticle stress-receptors, which 
measure the load that a leg is bearing, and prevents a leg from 
stepping if it is supporting the insect. In general, reflexes 
reinforce the stepping pattern generated by the coupled 
oscillators, while increasing the adaptability of  the creature 
under changing environmental conditions. Reflexes seem to 
play an even more important role during locomotion over 
uneven terrain. A study by Pearson of locusts walking over 
uneven terrain shows that a fixed stepping pattern is not 
employed over rough terrain [42]. To find suitable footholds, the 
legs employ searching tactics, and an elevator reflex causes the 
leg to lift higher if it encounters an obstacle during a stepping 
movement. 

In corpus, each leg is assigned an oscillator, which periodically 
triggers stepping activity (see Figure 2a). The coupling 
between oscillators is modeled as phase and time rdationships 
which the oscillators maintain among each other. These 
relationships are mathematical translations of the stepping rules 
observed in/.he cockroach by Wilson [411. The oscillators are 
constrained to match a master frequency, such that the coupling 
rules generate differing gaits and walking speeds as the master 
oscillator frequency is varied. At slow oscillator frequencies, 
slow wave gaits are generated. As the oscillator frequencies 
increase, faster wave gaits result until finally the tripod gait is 
generated. As the oscillator frequencies smoothly change, a 
smooth gait change is effected. 

Reflexes are modeled as conditional units (see Figure 2b). 
When a certain condition is met, the reflex can inhibit or trigger 
different actions. For example, the step reflex triggers stepping 
when a leg is extended beyond a specified angle, which 
prevents over-extension of the legs. A load bearing reflex 
inhibits stepping if a leg is currently bearing too much weight. 
This prevents the hexapod from lifting a leg while it is 
supporting the body. 

The oscillators and reflexes trigger the stepping motor 
programs for the legs. Once stepping is initiated, it continues to 
completion and stance begins again. The gait controller only 
generates the pattern of  stepping, and is not directly responsible 
for the movements of the legs or body. However, the 
movements of  the legs, due to the motor programs and dynamic 
simulation, provide feedback into the gait controller through 
the reflexes. 

3.3. Motor Programs 

The dynamic motor programs are responsible for delivering 
forces, through the joints of the hexapod, to create the 
movements required for locomotion. There are two motor 
programs: step and stance. The stepping program must 
compute the forces necessary to lift the leg up and forward, and 
place it in a position to take up the load of  the body when 
stance begins. The stance program supplies the forces needed 
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Figure 2a: The coupled oscillator configuration 

to support the body via the legs, and propel it forward. 
Stepping programs are triggered by the gait controller, as 
described above. Stance programs automatically begin when 
stepping has completed. 

In biological systems, the basic producer of bio-mechanical 
forces is the muscle. McMahon [43] contains an excellent 
review of the force-producing properties of muscle, under 
varying types of  stimulation and external influences. Starting 
with the assumption that muscles are tunable, spring-like force 
generators, motor control researchers have come up with an 
equilibrium-point hypothesis to explain how controlled 
movements are produced [24; ,14]. This model treats the muscle, 
along with its feedback system, as a single, tunable unit, with 
measurable, spring-like properties. Postures are controlled by 
establishing an equilibrium between agonist and antagonist 
muscle groups. This equilibrium configuration forms a point 
(in a controlling space) which can be specified by the 
neuromuscular system. The equilibrium-point hypothesis states 
that movements are produced by changing the equilibrium 
point from one posture to another. Hogan describes a virtual 
trajectory of equilibrium points which control movements [45l. 

The dynamic motor programs in corpus create forces by using 
exponential springs. As their name implies, these springs have 
an exponential relationship between the displacement, x, of the 
spring from its rest position (or angle) and the force generated, 
f, such that: 

f = ( x ( e l 3  I X l _ l )  
where a controls linear strength, and fl controls exponential 
rise. The exponential response creates a steep potential well; 
with a large displacement, the force becomes extremely high. 
The fl parameter controls the width of the well, and the a pa- 
rameter controls how fast a well of a given width will linearly 
rise. When an exponential spring is used for position control, 
the DOF it controls will very likely stay within the lower parts 
of the well, since the forces grow so large outside of the lower 
region. 

A motor program controls the rest position (or angle) of an 
exponential spring over time, which causes the force potential- 
well to travel along the DOF, "dragging" the controlled limb 
along with it. The rest position is modified using a linear 
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Figure 2b: reflex feedback to the oscillators 

interpolation from the current position to the target position. In 
more physical terms, the rest position travels with a constant 
velocity to the target. This is basically open-loop control, 
which is appropriate for so-called patterned gaits, but 
inappropriate for free gaits - in which safe footholds must be 
found - or other movements which require positional accuracy, 
such as reaching and grasping. 

The potential wells created by the springs lead to a compliant 
system, which allows the final motion to fall within a range of 
possible motions. For example, to negotiate uneven terrain, a 
kinematic system would need to compute the leg joint angles 
required to place the feet on the varying heights of the terrain 
surface. Using a dynamic, compliant system however, the legs 
of our simulated insect can automatically conform to the terrain 
(see Figures 6 and 8). 

A disadvantage of using exponential springs is that they can 
create a stiff system. As the force response of the springs is 
pushed further and further up the steep walls of the potential 
well, the numerical sampling of the integrator must take 
smaller and smaller time steps to get an accurate result. Linear 
springs would not create such a stiff system for a given force 
output, but exponential springs have the advantage that at small 
displacements, they are less stiff than linear springs. In 
addition, linear springs need to be very strong to create similar 
forces to the exponential springs at large displacements. 

3.4. Structural Description 

The kinematic structure of the hexapod was derived from insect 
physiology references [46]. Diagrams of the insect Blatta were 
used to parametrize the sizes of the limb parts of the 
hexapod[47]. A reproduction of one of the diagrams, along with 
a view of the resulting articulated, solid model is shown in 
Figure 3. The lengths and widths of the limb parts were 
measured, and a rectangular solid was constructed to represent 
each part. No further refinement in the shape of the limb and 
body parts beyond the rectangular solid was attempted; our 
study focuses instead on the basic motions and physical 
parameters involved in locomotion. 
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Figure 3: (upper left) Diagrams 
of the insect Blatta were used to 
parametrize the hexapod model. 
An example diagram is shown 
with the resulting figure. 
Figure 6: (upper right) The 
hexapod reclines within the 
curved surface of  its "Pod". 
(still from the animation 
Grinning Evil Death). 
Figure 7: (middle left) The 
hexapod is shown employing 
the tripod gait over level telrain. 
Figure 8: (middle right) The 
hexapod is depicted using the 
wave gait over uneven terrain. 
Mechanical compliance in the 
limb joints allows the hexapod 
to adapt to the different heights 
of  the terrain. 
Figure 9: (lower left) A still 
from the animation Grinning 
Evil Death shows the hexapod 
interacting with other dynamic 
elements. The wires are dynam- 
ic linkages, which are allowed 
to break when loop closure forc- 
es exceed a given limit. Colli- 
sion forces are generated at 
points of contact between the 
roach and the wires. 
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Figure 4: The coupled oscillators produce a wave gait at low 
oscillator frequencies. The activity of the oscillator model is 
shown to the left. When an oscillator reaches its peak, its leg 
is triggered to step, indicated by a dotted box. The stepping 
pattern of both the computer model and the biological cock- 
roach are shown to the right. White indicates step, and black 
stance. The cockroach stepping pattern, adapted from 
Pearson [23], depicts a slightly faster walking speed than the 
computer model stepping pattern. 

The overall scaling of  the roach gives it a total length of  
approximately 2.9 era. The density of  the body and llmb parts 
was set to the density of  water, 1 grn/cm 3, since animal tissues 
in general are composed mostly of  water. The total mass of the 
hexapod is 2.1 gin. 

A set of control parameters determine the basic gait features 
and the motor program parameters. Constant gait features are 
the stepping speed, the time between stepping of adjacent legs 
on the same side of  the body, the number of  legs and default 
values for other parameters such as oscillator frequency. The 
motor programs for step and stance clef'me what joint angles are 
traversed by the exponential springs during those actions. 
These programs are tuned via a trial-and-error method to 
determine appropriate spring strengths and joint angle values. 
In general, this trial-and-error approach is not the appropriate 
method to determine the operating dynamic parameters, since it 
requires an "expert" tuner to make "educated" guesses as to the 
parameters, based on the experience gained from previous 
experiments. In some sense, the expert tuner acts as natural 
selection in an "evolutionary" process which increases the 
robustness of the locomotion. An alternative to the manual 
tuning process would be to employ automatic calibration. The 
operating parameters for the motor programs could be deter- 
mined by an inverse dynamics or constrained optimization 
technique in a calibration phase before the primary simulation. 
Alternately, an automatic evolutionary process could be em- 
ployed in which successive, random changes are made to the 
motor program parameters (as well as other structural descrip- 
lions). The resulting simulations would be evaluated using 
measurement criteria, such as waiking speed, distance covered, 
and energy expended. 

4. RESULTS AND ANALYSIS 

4.1. The Gait Controller 

The computational model of  the coupled oscillators produce 
stepping patterns which appear very similar to the recorded 
patterns of  insect stepping [41;23]. For slow oscillator 
frequencies, the wave gait results (see Figure 4). The fastest 
allowed oscillator frequency produces the tripod gait (see 
Figure 5). Smooth changes in oscillator frequency result in 
smooth changes in gait. 
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Figure $: The coupled oscillators produce the tripod gait at 
the maximum oscillator frequency. The cockroach and corn- 
putter model stepping patterns are essentially identical, except 
that the cockroach has a longer stance time than step time. In 
the computer model, the step and stance time were set to be 
identical during the tripod gait in order to drive a standing 
leg backwards at the highest velocity. However, stability 
might be increased by allowing the standing leg to take up 
more of  the body weight before its neighbors step, which 
would result in a stepping pattern more like the biological 
cockroach's. (cockroach stepping pattern adapted from 
Pearson [23]0 

The step reflex and load bearing reflexes function correctly, but 
require calibration. They should not function during 
undisturbed walking, but should instead reinforce stable 
stepping patterns under disturbances. The calibration procedure 
is to observe and analyze undisturbed walking, and then set 
reflex trigger values beyond the norm. Different leg pairs 
(front, middle, and back) wiR require different values, since 
their ranges of motion are different, and they support different 
loads. This calibration has not yet been performed for the 
hexapod model. However, these two reflexes have been studied 
for a simple kinematic hexapod [ng]. The step reflex increases 
the robustness of  the gait, especiaRy during turning and speed 
changes. The load-bearing reflex (implemented in the 
kinematic model as a table lookup of  stable stepping patterns) 
increases stability when limbs are missing, and prevents the 
step reflex from triggering a supporting leg to step. To date, we 
have studied adaptive locomotion not through active control, 
but rather through the mechanical compliance of the physical 
simulation. 

4.2. Walking Experiments 

Using the initial joint and spring angles established from the 
Blatta diagrams, the hexapod was "dropped" onto level ground 
in several dynamic simulations. The first attempts employed 
linear springs at the joints, and on every attempt the hexapod 
would collapse, as the supporting forces generated at the joints 
were not strong enough. Increasing the spring constants only 
resulted in a very stiff system, without providing enough 
support for the figure to stand. When exponential springs were 
introduced at the joints in place of the linear springs, they 
created forces sufficient to support the hexapod as it was 
dropped on the ground. In addition, while the hexapod was 
failing through the air, the integrator only slightly subdivided 
the frame rate - far less than with the strong linear springs - 
since the exponential springs generate less force at low 
displacements. 

During the first walking experiment, the initial posture was 
found to be too low, and the hexapod dragged its abdomen 
along the ground behind it. Although in nature the cockroach 
frequently drags its abdomen along the ground I47], we desired 
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a model of locomotion in which the body was fully supported 
as in many other insects. Therefore the posture was raised by 
using joint motor programs to move the exponential spring rest 
angles to values which further extended the limbs. These spring 
angles were used as the new initial configuration for further 
walking experiments. 

Dozens of  walking simulations have been executed, often 
successively "tuning" the action of the motor programs or other 
parameters. For example, the step program originally did not 
lift the foot fast enough or high enough to avoid dragging it 
aiong the ground for much of the stepping time, so the motor 
program was modified to lift the leg up higher, and more 
rapidly at the beginning of  the step. Typical motor program pa- 
rarneters for the hexapod are available in [38]. 

Figure 7 shows the hexapod employing the tripod gait over 
level terrain. The interval between steps of  successive legs 
employed was 50 rnsec, compared to approximately 120 msec 
for the beetle Chrysomela which has a "relatively long" 
stepping interval [47]. The walking speed exhibited by the 
hexapod was approximately 5.5 era/see. Insects show a wide 
variety of walking speed, varying from 2.0-9.8 crn/sec in the 
Earwig, 3.2-17.5 enffsec for Blatta, and 1.0-20.0 cm/sec for the 
cockroach, Periplaneta. The walking speed of our simulated 
roach falls well within these ranges, but is considerably slower 
than real insects walking at their top speeds. This experiment 
employed a sliding model of  friction with a fairly low 
coefficient of  friction (0.7). 

A different walking experiment, also employing the tripod gait, 
used a ground contact model in which the "feet" were modeled 
as having sticky pads, under active control of the hexapod, as 
in the honey-bee and many other insects[46]. During stance, the 
feet would stick to the ground using exponential springs. The 
springs were allowed to break, if the force rose above a 
specified limit, allowing the feet to slide slightly and stick 
again. The walking speed of  the hexapod increased to 
approximately 8.0 era/see, using the sticky foot model. 
Constraint-based methods, especially Lathrop's, would be 
appropriate to simulate these constrained kinematic foot 
placements. 

An interesting observation is that our hexapod exhibits a side- 
to-side "wiggle" as it progresses forward, using the tripod gait. 
In fact, the same sort of zig-zag path is seen in real insects [46]. 
The phenomenon can be explained when the propulsive forces 
are analyzed. The front supporting leg acts as a tractor, pulling 
the center of  mass forward, and towards the point of support. 
The rear supporting leg (on the same side of the body as the 
front support) pushes the body forward, and produces either 
clockwise or counterclockwise turning forces, depending on 
whether the line of force produced by the limb passes in front 
of or behind the body's center of  mass. At the beginning of 
stance, the rear leg will tend to rotate the body in the same 
direction as the front leg. As stance continues and the rear foot 
moves back relative to the body, the line of  force produced by 
the leg will shift further and further forward, and its turning 
forces will tend toward the opposite direction. The middle 
supporting leg, on the opposite side of  the body, serves to 
support that side, propel the body forward, and to counteract 
part of  the rotary forces produced by the other two supporting 
limbs. 

Locomotion over uneven terrain is shown in Figure 8. The 
"stlcky-foot" model of contact was used for this simulation, to 
prevent the hexapod from sliding down the hill. The hexapod 
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adapts to the terrain purely by the mechanical compliance 
provided by the springs and dampers in the legs. The stepping 
and stance motor programs were not modified for the terrain; a 
more complete system should adapt its motor control for 
different environmental conditions. However, it is interesting 
to note how dynamic simulation and mechanical compliance 
can lead to adaptive behavior, without special planning. 

The computation time involved in simulating the walking 
motion of the hexapod is relatively high, especially compared 
to kinematic models. On a Hewlett-Packard Series 9000 Model 
835 (a RISC based workstation, rated at 12 MIPS) one 
videofrarne at 1/40 real time (1/1200 see simulation time) takes 
approximately 4 minutes of  computation time. The dynamics 
algorithm is called approximately 600 times in that interval by 
the adaptive step-size integrator. A simple kinematic model of 
the hexapod operates in real time, but has fewer degrees of 
freedom (20 DOF vs. 38 DOF) and does not display complex, 
realistic motion. The dynamics code does not currently take 
advantage of  several numerical optimizations, which could 
increase speed by an order of  magnitude. In addition, a stiff- 
system integrator could increase speed greatly by saving many 
calls to the dynamics algorithm. 

5. FUTURE WORK 

The number of  legs can simply become a parameter to the gait 
controller. We have used the same coupled oscillator paradigm 
to generate realistic biped and quadruped gaits, though only in 
kinematic simulations. Insects can employ wave and tripod 
gaits which always provide at least three support points at all 
times during the gait cycle, i.e., they rely on static balance. Bi- 
peds and quadrupeds, however, use mostly dynamic balance, in 
which the figure is falling from support point to support point. 
We intend to study the interaction of  the mechanics of the 
figure with the coordination strategy in order to develop a 
dynamic biped locomotion system. 

6. SUMMARY 

The realistic simulation and animation of  the motions of human 
and animal figures has long been a goal of researchers in 
computer graphics. We have presented a dynamic locomotion 
simulator in which the coordination of  a kinematically complex 
visual insect is automatically generated by a gait controller, 
and realistic motions of  the limbs are produced by stepping and 
stance motor programs which apply appropriate forces to the 
limbs. Motion is accurately and efficiently computed by our 
implementation of  the Featherstone Articulated Body Method. 
The simulation agrees well with the observed behavior of 
insects. The coupled oscillator model of  gait coordination is 
general, and can be used to control biped and quadruped gaits. 
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