
~ Computer Graphics, Volume 24, Number 4, August 1990

Dynamic Simulation of Autonomous Legged Locomotion

Michael McKenna and David Zeltzer

Computer Graphics and Animation Group
The Media Laboratory

Massachusetts Institute of Technology
Cambridge, MA

ABSTRACT

Accurate simulation of Newtonian mechanics is essential for
simulating realistic motion of jointed figures. Dynamic
simulation requires, however, a large amount of computation
when compared to kinematic methods, and the control of
dynamic figures can be quite complex. We have implemented
an efficient forward dynamic simulation algorithm for
articulated figures which has a computational complexity linear
in the number of joints. In addition, we present a strategy for
the coordination of the locomotion of a six-legged figure - a
simulated insect - which has two main components: a gait
controller which sequences stepping, and motor programs
which control motions of the figure by the application of
forces. The simulation is capable of generating gait patterns
and walking phenomena observed in nature, and our simulated
insect can negotiate planar and uneven terrain in a realistic
manner. The motor program techniques should be generally
applicable to other control problems.

1. COORDINATING AND CONTROLLING JOINTED
FIGURE MOTION

Realistic modeling and animation of human and animal figures
has long been a goal of researchers in computer graphics.
There are two aspects to the synthesis of motor behavior [1]:

• The Coordinat ion problem. How do we organize the
movements of a complicated figure into coherent, useful
motions? In other words, given a jointed figure with many
degrees of freedom (DOFs), how do we decide which DOFs
are needed to perform a given motion, and how do these
movements vary with respect to each other?

• The Control problem. Given a set of DOFs, Emd appropriate
time-varying parameters for each DOF necessary to effect a
given motion.

In this paper we will describe approaches to both problems.
We use physically-based methods with dynamic motor control

This work was" supported in part by National Science
Foundation Grant IRI-8712772, and equipment grants
from Hewlettopackard Co., Gould Electronics, Inc., and
Apple Computer, Inc.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

to generate realistic movements, and we use biologically-based
mechanisms to coordinate complex patterns of movement. In
particular, we have implemented a dynamics simulation
algorithm based on the work of Featherstone [2; 3], which is
more efficient than dynamic simulation algorithms previously
reported in the computer graphics literature. We use this
algorithm to compute the movements of a six-legged virtual
insect. Based on results from ethology and physiology, we
coordinate its adaptive gait over planar and uneven terrain
using coupled-oscillators, reflexes and a set of motor programs
which apply controlling forces.

In the next section, we discuss related work. In Section 3 we
describe the major components of our dynamic locomotion
simulator. We conclude with a discussion of results we have
obtained so far.

2. RELATED WORK

2.1. Dynamics, Forward and Key-Event Simulation

Rigid-body simulators compute the motion of articulated
figures comprised of rigid links connected by joints, which can
move relative to each other with one or more DOFs.
Constraint-based approaches define the relationships among the
links, and then solve for the forces required to maintain the
prescribed connections. These methods are typically
computationally more expensive and numerically less stable
than non-constraint-based techniques [4; 5].

Isaacs and Cohen describe a straightforward method of
constraint simulation based on a matrix forrnulation[6]. Joints
are configured as kinematic constraints, and either
accelerations or forces cart be specified for the links. An
equation is established for each DOF, yielding n simultaneous
equations to solve, giving O(n J) complexity. Interdependencies
among the constraints typically make the matrix non-sparse, so
that sparse matrix solutions cannot be employed to reduce the
complexity. Control is applied through the kinematic
constraints and user-defined "behavior functions," which
specify accelerations or forces over time. Arbitrary motions
can be specified, however, which have no physical basis.

Barzel and Barr describe constraint-based simulators which
allow for the "self-assembly" of linkage structures by satisfying
constraint equations using a critically damped function [71.
Their mcthod is of order O(n -~) computational complexity,
where n is the number of constraints. This can be reduced to
approximately O(n 2) ushag a sparse matrix solution [s].

@1990 ACM-0.-89791 - 344-2/90/008/0029 $00.75 29

O SIGGRAPH '90, Dallas, August 6-10, 1990

Witkin and Kass describe spacetime constraints in which the
constraint equations are solved not ordy for the joint/link
geometry, but also for the applied control forces [91. Since the
copAtraint equations are solved simultaneously for the entire
time span of the simulation, energy (or some other function)
can be minimized over all of time, though at a large
computational cost. Like other constraint methods, forces that
are not physically realizable may be produced to satisfy the
constraints. Optimization techniques, such as spacetime con-
straints, con~ast sharply with forward dynamic simulators,
which require active force control to produce motion, thus
encouraging the development of coordination strategies.

The non-constraint methods fall into two main categories: ones
that form and solve a set of simultaneous equations for the
ac~lerations, and ones that form a re.cursive relationship
propagating force and movement information through the
linkage, solving directly for accelerations. The first type of
formulation typically yields O(n ~) complexity, because solving
the n sirnukaneous equations requires a matrix inversion. The
recursive formulations, however, can reach O(n) complexity,
although they can be more difficult to develop, and the cost of
the computations per link is higher than the simultaneous
equation methods. Articulated figures with few joints are less
expensive to compute using simultaneous equations; figures
with many joints are more efficiently computed using the
reeursive methods. The Walker-Orin method is the most
efficient of the simultaneous methods [10], and Featherstone's
Articulated Body Method (ABM) is the most efficient of the
recursive methods [31. When n > = 9, Featherstone's method is
more efficient than the Walker-Orin algorithm.

Wilhelms describes a dynamics simulator based on the Gibbs-
Appell formulation [11]. She and her co-workers note that while
dynamic simulation can produce realistic motion, it does not
simplify coordination and control since it requires the
specification of joint torques, rather than joint angles, without
providing a means for determining the proper torques to apply.
Because of this, they have devdoped an interactive., graphical
editor, Virya, to allow the user to iteratively develop functions
for useful force control.

Armstrong has developed a recursive dynamic formulation,
which has approximately the same computational efficiency as
the ABM [12]. Armstrong, et al, have experimented with this
method to simulate a moving human figure in near-real time
[13]. However, the Armstrong method is only capable of
efficiently simulating spherical joints, unlike the ABM which
allows fully general joint types.

Another efficient recurslve method has been formulated by
Lathrop [14]. The advantage of Lathrop's method over
Featherstone's is that it allows for kinematic constraints at the
end-effectors. Lathrop's method can also be extended to handle
kinematic loops [s].

Here we would like to distinguish between two simulation
paradigms. Optimization and constraint techniques can be
termed key-event simulation, because specific events must be
satisfied. This is in contrast to forward simulation in which a
system is established, and then simulated forward in time [15].
Controlling techniques for key-event simulation require global
knowledge about the system, sometimes over the entire time
span of the simulation. Forward simulation controllers,
however, need only partial knowledge of the world, perhaps
derived from a simulated sensor. The more sophisticated the
controller, the more knowledge of the world it will require.

External influences, such as interactive input, can be easily
incorporated into a forward simulation at any point in time,
unlike methods such as spacetime constraints, which must be
solved over the entire span of time.

In general, when it has been addressed at all, the coordination
problem has been approached in two ways. Either interactive
means are provided for the user to iteratively devdop functions
of time-varying forces, or mechanisms have been developed for
defining and satisfying motion constraints. Interactive
coordination methods are inadequate for all but the simplest
motions, because complex, adaptive behavior is simply not
amenable to "hands-on" control [16].

2.2. Human and Animal Motor Behavior

Natural gait has been the focus of much research for many
years. Muybridge [17;15], Hildebrand [19], and others have
cataloged and analyzed the stepping patterns of the legs during
different mammalian gaits, such as galloping, cantering,
trotting, etc. An analysis of insect and vertebrate locomotion
indicates a hierarchical arrangement of simple control
mechanisms which control stepping and stance [2o] 121] [22] [23].
Our computational model of gait is based on these
hypothesized biological mechanisms.

Bizzi, et al, analyze the mechanical properties of the musculo-
skeletal system and argue that motion is controlled by tuning
the spring-like properties of muscles during movement [24].
Theoretical and clinical studies by Kugler, et al, and by
Robertson and Halverson, including studies of human
locomotion, have examined the notion that coordinated motion
arises more from the mechanical constraints on the physical
system than from central motor programs [1; 25]. We use the
notion of tuned springs as a mechanism for controlling joint
motion, as we describe in Section 3.3.

Beer, et al, employ a heterogeneous neural network to simulate
the stepping patterns exhibited by the cockroach [26; 27]. Their
work is intended primarily for the detailed study of the neural
mechanisms of motor control, and provides ordy limited, 2D
graphical output.

2.3. Walking Machines

Robeties research has resulted in fundamental algorithms for
dynamic simulation and ccontrol, though in general, simulated
articulated models in computer graphics have more kinematic
DOFs than robot devices. MeGhee developed an autonomous
6-legged robot vehicle which could employ a number of gaits
to negotiate rough terrain with areas marked as forbidden [28].
Another hexapod vehicle was later developed by Sutherland; its
gait control system is similar to the one presented here [29; 30].
Legged robots designed by Raibert employ dynamic balance -
i.e., they can run and hop without enough legs always on the
ground to statically support the body [31]. McGhee and his tee-
workers have developed mathematical tools for analyzing
multi-legged gait, and they use these tools for designing gait
control algorithms for a very large six-legged vehicle [32].

2.4. Graphical Simulation of Gait

Computer animation and simulation of animal locomotion has
involved primarily kinematic ceontrol. Zeltzer describes the use
of finite state control to simulate adaptive human walking over
planar and uneven terrain [331. Girard reports the use of inverse-
kinematics to interactively define gaits for legged animals [34].

30

~ Compute r Graphics, Volume 24, Number 4, August 1990

Girard's gait sequencer is based on McGhee's analytical gait
descriptions, so that gait changes are induced by explicitly
varying the gait parameters - unlike our model, as we will
show, in which smooth gait changes result naturally from
variations in the overall gait frequency. Girard's model also
incorporates some dynamic elements for added realism.
However, the overall motion does not have a dynamic basis.
Sims also employs inverse kinematics and dynamic elements,
to simulate various adaptive gaits over uneven terrain [35].
Sims' gait sequencer is also based on McGhec's analytical gait
description. Recently, Bruderlin has implemented a hybrid
system in which limited dynamics and specialized knowledge
about the kinematics of biped gait are applied to simulate
human walking [3~]. Our system, unlike any of these, makes use
of a general-purpose rigid-body dynamics module, as well as a
gait controller based on biological mechanisms.

3. A DYNAMIC LOCOMOTION SIMULATOR: CORPUS

Corpus is a system for simulating the forward dynamics of
articulated figures, with gait control mechanisms, force-
producing motor programs and rendering support 1. Corpus is
implemented in C, and uses several support libraries, also
implemented in C. There are three main procedural
components (see Figure 1): a dynamic simulator, a gait
controller and motor programs. In addition, a structural
description specifies the mechanical and geomelrical
parameters of the hexapod. A scripting language is provided
for defining jointed figures, and for controlling each of these
components.

Dynamic simulation using Featherstene's Articulated Body
Method, forms the foundation of the system. The gait
contrdler, based on the coupled oscillator model with reflexive
feedback, coordinates the sequences of stepping and stance for
the hexapod. The motor programs, based on exponential spring
and damper combinations, generate the forces required for
stepping and stance. The structural component contains
descriptions of the kinematic structure of the links and joints,
the mass and inertia of the links, the gait and motor program
parameters, and finally, the graphic parameters necessary for
rendering the component objects. The graphics system is not
directly involved in the creation of locomotion, but is required
for display and animation of the simulation.

3.1. The Dynamics Simulator

Our implementation of the Featherstone ABM algorithm is
generalized and can compute the dynamics of any articulated
figure with rigid links arranged in a branching structure,
without intemal closed loops (loops may be approximated
using spring closure forces). Joints may be rotary, prismatic, or
screw, and multiple-DOF joints, combining these types, may be
represented.

We chose the Featherstone algorithm because it is an accurate
and efficient recursive formulation for forward simulation, and
because it can accommodate a variety of joint types. The
algorithm is formulated in spatial notation - developed by
Featherstone and based on screw calculus [37] - which
essentially unites the rotational and translational aspects of
motion into a single vector quantity. A complete treatment of
spatial notation and the ABM algorithm is beyond the scope of
this paper. The interested reader is directed to the work of

1. A "corpus" is the body of a man or animal (Webster's 7th),
and thus the articulated-figure simulator, corpus is so-
named.

]
High level control: setsl
speed, gait parameters I

Controller Programs Simulator

~ Roach Description: ? ~ "TffFositions ~ /
• gait parameters A J J
• motor parameters' ~ / / Graphics
: kinematic s t r u e . ~ e ~ ~ System

llnk mass, i n e r t i a - ~
• graphical objects f I

Figure 1: Block diagram showing the procedural and structural
components of the corpus system.

Featherstone, and for discussions of spatial algebra, the ABM
algorithm, as well as a more detailed discussion of
implementation and numerical issues, the reader is referred to
McKenna [38].

The key feature of the Articulated Body Method is the concept
of the articulated body inertia. Just as the inertia tensor of a
rigid body determines its acceleration when the applied force is
known, the articulated body inertia tensor of a rigid body,
within an articulated figure, determines the acceleration when
the applied force is known. Formally, the equation of motion
for an unconstrained rigid body is:

= p Eq.l

where f is the applied force, I is the inertia tensor, ~ is the
acceleration and ~v is the bias force (centripetal and Coriolis)
produced by the body's velocity. The "hat" (A) denotes
quantities expressed in spatial notation. The equation of
motion for a rigid body in an articulated figure reads:

~= ~A ~ + ~ Eq. 2

where ~A is the articulated body inertia tensor, andp is the bias
force which incorporates the ~v from above, as well as joint
reaction forces. The articulated body inertia ~A gives
directional properties to the apparent mass of a body.

Briefly, the algorithm progresses as follows: first the algorithm
passes from the leaf bodies of the figure tree inward to the root
body, accumulating the articulated body inertias ~A and bias
forces p. Then Eq. 2 is used to compute the acceleration of the
root body as in:

~= (p) - l (~ . ~) Eq. 3

Finally, the algorithm passes from the root out to the leaves
computing the accelerations of the joints.

External forces and joint forces are specified before the
dynamics algorithm begins; force generators include gravity,
collisions, motor program springs, joint dampers, and spring
connections to other fixed and moving bodies.

31

Q SIGGRAPH '90, Dallas, August 6-10, 1990

32

Once the accelerations have been computed by the dynamics
algorithms, they must be numerically integrated to compute
velocities and positions; corpus uses fifth order, adaptive
Runge-Kutta [39]. Because zhe integrator must be able to back
up in time in order to adapt to less stable conditions, the
integrator structure was modified to support the storage of
certain time-varying state information which must be passed to
the dynamics algorithm.

The dynamics code in corpus is a straightforward
implementation of the ABM, computed in body-local rather
than world coordinates. This allows for some optimizations,
provides more intuitive values for certain spatial quantities, and
improves the accuracy of the integration.

Collision and contact in corpus is handled through spring forc-
es. When a collision is detected between two bodies, forces are
applied to each body as a function of penetration depth in the
direction of the collision normal. Linear or exponential spring
functions can be used to create the forces; exponential springs
are typically employed because deep penetration is strongly re-
sisted by the exponential rise in force. Damping, a force pro-
portional to the penetration velocity in the direction to oppose
that velocity, earl be specified to create energy loss during col-
lisions. However, energy loss is more directly modeled in
corpus using the coefficient o f restitution, 8, as in [40]. The co-
efficient describes the.elastic properties of the collision and
normally ranges from 0 (complete energy loss) to 1 (complete-
ly elastic collision). The calculated collision force is sealed by
the coefficient when the colliding bodies are moving away
from each other, yet are still interpenetrating. Friction is
modeled in corpus by applying a force equal to the collision
normal force, scaled by the coefficient of friction, in the
direction opposed to the tangential sliding motion.

Collision detection is handled in several ways in corpus. The
most basic method detects interpenetration of body bounding
boxes. The simple geometry allows for rapid execution when
only rectangular solids are employed (as with level terrain and
the roach model). Another rapid method detects bounding box
penetration against a height field, suitable for detection of
colIisions of the roach model with uneven terrains. Finally, a
generai algorithm is available for detection of interpenetration
of arbitrarily shaped objects.

3.2. The Gait Controller

In order to move from place to place, an animal must
coordinate its limbs to bring about coherent motion. Legs are
alternately controlled between step and stance. Stepping brings
the leg up and forward, while stance supports the body and
drives it forward. The overall sequence of the various legs
stepping and standing is termed the gait.

Wilson analyzed the stepping patterns cockroaches exhibited
under a variety of conditions, and proposed five rules which
describe the gait behavior of many insects [41l:

1) A wave of steps runs from rear to head (and no leg steps
until the one behind is placed in a supporting position).

2) Adjacent legs across the body alternate in phase.
3) Stepping time is constant.
4) The frequency with which each legs steps varies.
5) The interval between steps of adjacent legs on the same

side of the body is constant, and the interval between the
stepping of the foreleg and hindleg varies inversely with
the stepping frequency.

Wilson made hypotheses about the neurological mechanisms
which could generate these rules, and his ideas were conflrrned
by the experimental work of Pearson [23]. Each leg in the
cockroach has a pacemaker or oscillator, which rhythmically
triggers the leg to step. The oscillators are coupled together,
and their interaction generates the various gaits.

In addition to the coupled oscillators, reflexes also play an
important role in gait generation. Reflexes can both trigger or
retard the stepping of limbs. In nature, the cockroach step
reflex causes a leg to step when hair receptors detect that the
leg has nearly reached its maximum rearward extension. An-
other cockroach reflex employs cuticle stress-receptors, which
measure the load that a leg is bearing, and prevents a leg from
stepping if it is supporting the insect. In general, reflexes
reinforce the stepping pattern generated by the coupled
oscillators, while increasing the adaptability of the creature
under changing environmental conditions. Reflexes seem to
play an even more important role during locomotion over
uneven terrain. A study by Pearson of locusts walking over
uneven terrain shows that a fixed stepping pattern is not
employed over rough terrain [42]. To find suitable footholds, the
legs employ searching tactics, and an elevator reflex causes the
leg to lift higher if it encounters an obstacle during a stepping
movement.

In corpus, each leg is assigned an oscillator, which periodically
triggers stepping activity (see Figure 2a). The coupling
between oscillators is modeled as phase and time rdationships
which the oscillators maintain among each other. These
relationships are mathematical translations of the stepping rules
observed in/.he cockroach by Wilson [411. The oscillators are
constrained to match a master frequency, such that the coupling
rules generate differing gaits and walking speeds as the master
oscillator frequency is varied. At slow oscillator frequencies,
slow wave gaits are generated. As the oscillator frequencies
increase, faster wave gaits result until finally the tripod gait is
generated. As the oscillator frequencies smoothly change, a
smooth gait change is effected.

Reflexes are modeled as conditional units (see Figure 2b).
When a certain condition is met, the reflex can inhibit or trigger
different actions. For example, the step reflex triggers stepping
when a leg is extended beyond a specified angle, which
prevents over-extension of the legs. A load bearing reflex
inhibits stepping if a leg is currently bearing too much weight.
This prevents the hexapod from lifting a leg while it is
supporting the body.

The oscillators and reflexes trigger the stepping motor
programs for the legs. Once stepping is initiated, it continues to
completion and stance begins again. The gait controller only
generates the pattern of stepping, and is not directly responsible
for the movements of the legs or body. However, the
movements of the legs, due to the motor programs and dynamic
simulation, provide feedback into the gait controller through
the reflexes.

3.3. Motor Programs

The dynamic motor programs are responsible for delivering
forces, through the joints of the hexapod, to create the
movements required for locomotion. There are two motor
programs: step and stance. The stepping program must
compute the forces necessary to lift the leg up and forward, and
place it in a position to take up the load of the body when
stance begins. The stance program supplies the forces needed

~ Computer Graphics, Volume 24, Number 4, August 1990

oscillators

m a s t e r ~ ~ _____~upling
oseilla rules

thorax

abdomen

Figure 2a: The coupled oscillator configuration

to support the body via the legs, and propel it forward.
Stepping programs are triggered by the gait controller, as
described above. Stance programs automatically begin when
stepping has completed.

In biological systems, the basic producer of bio-mechanical
forces is the muscle. McMahon [43] contains an excellent
review of the force-producing properties of muscle, under
varying types of stimulation and external influences. Starting
with the assumption that muscles are tunable, spring-like force
generators, motor control researchers have come up with an
equilibrium-point hypothesis to explain how controlled
movements are produced [24; ,14]. This model treats the muscle,
along with its feedback system, as a single, tunable unit, with
measurable, spring-like properties. Postures are controlled by
establishing an equilibrium between agonist and antagonist
muscle groups. This equilibrium configuration forms a point
(in a controlling space) which can be specified by the
neuromuscular system. The equilibrium-point hypothesis states
that movements are produced by changing the equilibrium
point from one posture to another. Hogan describes a virtual
trajectory of equilibrium points which control movements [45l.

The dynamic motor programs in corpus create forces by using
exponential springs. As their name implies, these springs have
an exponential relationship between the displacement, x, of the
spring from its rest position (or angle) and the force generated,
f, such that:

f = (x (e l 3 I X l _ l)
where a controls linear strength, and fl controls exponential
rise. The exponential response creates a steep potential well;
with a large displacement, the force becomes extremely high.
The fl parameter controls the width of the well, and the a pa-
rameter controls how fast a well of a given width will linearly
rise. When an exponential spring is used for position control,
the DOF it controls will very likely stay within the lower parts
of the well, since the forces grow so large outside of the lower
region.

A motor program controls the rest position (or angle) of an
exponential spring over time, which causes the force potential-
well to travel along the DOF, "dragging" the controlled limb
along with it. The rest position is modified using a linear

coupling to
other oscillators

' \

\

coupling to
other o s c i l l a t o r y

• tep
gger

leg angle sensor,
i step reflex:
i activates step

I load bearing sensor

. . . . ib .~teP
"~trigger

leg angle sensor]

load bearing sensor,
I load reflex:
i : inhibits stepping

Figure 2b: reflex feedback to the oscillators

interpolation from the current position to the target position. In
more physical terms, the rest position travels with a constant
velocity to the target. This is basically open-loop control,
which is appropriate for so-called patterned gaits, but
inappropriate for free gaits - in which safe footholds must be
found - or other movements which require positional accuracy,
such as reaching and grasping.

The potential wells created by the springs lead to a compliant
system, which allows the final motion to fall within a range of
possible motions. For example, to negotiate uneven terrain, a
kinematic system would need to compute the leg joint angles
required to place the feet on the varying heights of the terrain
surface. Using a dynamic, compliant system however, the legs
of our simulated insect can automatically conform to the terrain
(see Figures 6 and 8).

A disadvantage of using exponential springs is that they can
create a stiff system. As the force response of the springs is
pushed further and further up the steep walls of the potential
well, the numerical sampling of the integrator must take
smaller and smaller time steps to get an accurate result. Linear
springs would not create such a stiff system for a given force
output, but exponential springs have the advantage that at small
displacements, they are less stiff than linear springs. In
addition, linear springs need to be very strong to create similar
forces to the exponential springs at large displacements.

3.4. Structural Description

The kinematic structure of the hexapod was derived from insect
physiology references [46]. Diagrams of the insect Blatta were
used to parametrize the sizes of the limb parts of the
hexapod[47]. A reproduction of one of the diagrams, along with
a view of the resulting articulated, solid model is shown in
Figure 3. The lengths and widths of the limb parts were
measured, and a rectangular solid was constructed to represent
each part. No further refinement in the shape of the limb and
body parts beyond the rectangular solid was attempted; our
study focuses instead on the basic motions and physical
parameters involved in locomotion.

33

O SIGGRAPH '90, Dallas, August 6-10, 1990

Figure 3: (upper left) Diagrams
of the insect Blatta were used to
parametrize the hexapod model.
An example diagram is shown
with the resulting figure.
Figure 6: (upper right) The
hexapod reclines within the
curved surface of its "Pod".
(still from the animation
Grinning Evil Death).
Figure 7: (middle left) The
hexapod is shown employing
the tripod gait over level telrain.
Figure 8: (middle right) The
hexapod is depicted using the
wave gait over uneven terrain.
Mechanical compliance in the
limb joints allows the hexapod
to adapt to the different heights
of the terrain.
Figure 9: (lower left) A still
from the animation Grinning
Evil Death shows the hexapod
interacting with other dynamic
elements. The wires are dynam-
ic linkages, which are allowed
to break when loop closure forc-
es exceed a given limit. Colli-
sion forces are generated at
points of contact between the
roach and the wires.

34

~ Computer Graphics, Volume 24, Number 4, August 1990
i

~ F L ~ F R
FL
ML
BL

= F R
M R

~omputer model stepping pattern aa

BI..,
MR

BL SR cockroach stepping pattern

time >

Figure 4: The coupled oscillators produce a wave gait at low
oscillator frequencies. The activity of the oscillator model is
shown to the left. When an oscillator reaches its peak, its leg
is triggered to step, indicated by a dotted box. The stepping
pattern of both the computer model and the biological cock-
roach are shown to the right. White indicates step, and black
stance. The cockroach stepping pattern, adapted from
Pearson [23], depicts a slightly faster walking speed than the
computer model stepping pattern.

The overall scaling of the roach gives it a total length of
approximately 2.9 era. The density of the body and llmb parts
was set to the density of water, 1 grn/cm 3, since animal tissues
in general are composed mostly of water. The total mass of the
hexapod is 2.1 gin.

A set of control parameters determine the basic gait features
and the motor program parameters. Constant gait features are
the stepping speed, the time between stepping of adjacent legs
on the same side of the body, the number of legs and default
values for other parameters such as oscillator frequency. The
motor programs for step and stance clef'me what joint angles are
traversed by the exponential springs during those actions.
These programs are tuned via a trial-and-error method to
determine appropriate spring strengths and joint angle values.
In general, this trial-and-error approach is not the appropriate
method to determine the operating dynamic parameters, since it
requires an "expert" tuner to make "educated" guesses as to the
parameters, based on the experience gained from previous
experiments. In some sense, the expert tuner acts as natural
selection in an "evolutionary" process which increases the
robustness of the locomotion. An alternative to the manual
tuning process would be to employ automatic calibration. The
operating parameters for the motor programs could be deter-
mined by an inverse dynamics or constrained optimization
technique in a calibration phase before the primary simulation.
Alternately, an automatic evolutionary process could be em-
ployed in which successive, random changes are made to the
motor program parameters (as well as other structural descrip-
lions). The resulting simulations would be evaluated using
measurement criteria, such as waiking speed, distance covered,
and energy expended.

4. RESULTS AND ANALYSIS

4.1. The Gait Controller

The computational model of the coupled oscillators produce
stepping patterns which appear very similar to the recorded
patterns of insect stepping [41;23]. For slow oscillator
frequencies, the wave gait results (see Figure 4). The fastest
allowed oscillator frequency produces the tripod gait (see
Figure 5). Smooth changes in oscillator frequency result in
smooth changes in gait.

ML
FL FR BL

. ~Px
BR

:. : computer model stepping pattern

BL
MR

BL BR cockroach stepping pattem

.................. time >

Figure $: The coupled oscillators produce the tripod gait at
the maximum oscillator frequency. The cockroach and corn-
putter model stepping patterns are essentially identical, except
that the cockroach has a longer stance time than step time. In
the computer model, the step and stance time were set to be
identical during the tripod gait in order to drive a standing
leg backwards at the highest velocity. However, stability
might be increased by allowing the standing leg to take up
more of the body weight before its neighbors step, which
would result in a stepping pattern more like the biological
cockroach's. (cockroach stepping pattern adapted from
Pearson [23]0

The step reflex and load bearing reflexes function correctly, but
require calibration. They should not function during
undisturbed walking, but should instead reinforce stable
stepping patterns under disturbances. The calibration procedure
is to observe and analyze undisturbed walking, and then set
reflex trigger values beyond the norm. Different leg pairs
(front, middle, and back) wiR require different values, since
their ranges of motion are different, and they support different
loads. This calibration has not yet been performed for the
hexapod model. However, these two reflexes have been studied
for a simple kinematic hexapod [ng]. The step reflex increases
the robustness of the gait, especiaRy during turning and speed
changes. The load-bearing reflex (implemented in the
kinematic model as a table lookup of stable stepping patterns)
increases stability when limbs are missing, and prevents the
step reflex from triggering a supporting leg to step. To date, we
have studied adaptive locomotion not through active control,
but rather through the mechanical compliance of the physical
simulation.

4.2. Walking Experiments

Using the initial joint and spring angles established from the
Blatta diagrams, the hexapod was "dropped" onto level ground
in several dynamic simulations. The first attempts employed
linear springs at the joints, and on every attempt the hexapod
would collapse, as the supporting forces generated at the joints
were not strong enough. Increasing the spring constants only
resulted in a very stiff system, without providing enough
support for the figure to stand. When exponential springs were
introduced at the joints in place of the linear springs, they
created forces sufficient to support the hexapod as it was
dropped on the ground. In addition, while the hexapod was
failing through the air, the integrator only slightly subdivided
the frame rate - far less than with the strong linear springs -
since the exponential springs generate less force at low
displacements.

During the first walking experiment, the initial posture was
found to be too low, and the hexapod dragged its abdomen
along the ground behind it. Although in nature the cockroach
frequently drags its abdomen along the ground I47], we desired

35

O SIGGRAPH '90, Dallas, August 6-10, 1990

a model of locomotion in which the body was fully supported
as in many other insects. Therefore the posture was raised by
using joint motor programs to move the exponential spring rest
angles to values which further extended the limbs. These spring
angles were used as the new initial configuration for further
walking experiments.

Dozens of walking simulations have been executed, often
successively "tuning" the action of the motor programs or other
parameters. For example, the step program originally did not
lift the foot fast enough or high enough to avoid dragging it
aiong the ground for much of the stepping time, so the motor
program was modified to lift the leg up higher, and more
rapidly at the beginning of the step. Typical motor program pa-
rarneters for the hexapod are available in [38].

Figure 7 shows the hexapod employing the tripod gait over
level terrain. The interval between steps of successive legs
employed was 50 rnsec, compared to approximately 120 msec
for the beetle Chrysomela which has a "relatively long"
stepping interval [47]. The walking speed exhibited by the
hexapod was approximately 5.5 era/see. Insects show a wide
variety of walking speed, varying from 2.0-9.8 crn/sec in the
Earwig, 3.2-17.5 enffsec for Blatta, and 1.0-20.0 cm/sec for the
cockroach, Periplaneta. The walking speed of our simulated
roach falls well within these ranges, but is considerably slower
than real insects walking at their top speeds. This experiment
employed a sliding model of friction with a fairly low
coefficient of friction (0.7).

A different walking experiment, also employing the tripod gait,
used a ground contact model in which the "feet" were modeled
as having sticky pads, under active control of the hexapod, as
in the honey-bee and many other insects[46]. During stance, the
feet would stick to the ground using exponential springs. The
springs were allowed to break, if the force rose above a
specified limit, allowing the feet to slide slightly and stick
again. The walking speed of the hexapod increased to
approximately 8.0 era/see, using the sticky foot model.
Constraint-based methods, especially Lathrop's, would be
appropriate to simulate these constrained kinematic foot
placements.

An interesting observation is that our hexapod exhibits a side-
to-side "wiggle" as it progresses forward, using the tripod gait.
In fact, the same sort of zig-zag path is seen in real insects [46].
The phenomenon can be explained when the propulsive forces
are analyzed. The front supporting leg acts as a tractor, pulling
the center of mass forward, and towards the point of support.
The rear supporting leg (on the same side of the body as the
front support) pushes the body forward, and produces either
clockwise or counterclockwise turning forces, depending on
whether the line of force produced by the limb passes in front
of or behind the body's center of mass. At the beginning of
stance, the rear leg will tend to rotate the body in the same
direction as the front leg. As stance continues and the rear foot
moves back relative to the body, the line of force produced by
the leg will shift further and further forward, and its turning
forces will tend toward the opposite direction. The middle
supporting leg, on the opposite side of the body, serves to
support that side, propel the body forward, and to counteract
part of the rotary forces produced by the other two supporting
limbs.

Locomotion over uneven terrain is shown in Figure 8. The
"stlcky-foot" model of contact was used for this simulation, to
prevent the hexapod from sliding down the hill. The hexapod

36

adapts to the terrain purely by the mechanical compliance
provided by the springs and dampers in the legs. The stepping
and stance motor programs were not modified for the terrain; a
more complete system should adapt its motor control for
different environmental conditions. However, it is interesting
to note how dynamic simulation and mechanical compliance
can lead to adaptive behavior, without special planning.

The computation time involved in simulating the walking
motion of the hexapod is relatively high, especially compared
to kinematic models. On a Hewlett-Packard Series 9000 Model
835 (a RISC based workstation, rated at 12 MIPS) one
videofrarne at 1/40 real time (1/1200 see simulation time) takes
approximately 4 minutes of computation time. The dynamics
algorithm is called approximately 600 times in that interval by
the adaptive step-size integrator. A simple kinematic model of
the hexapod operates in real time, but has fewer degrees of
freedom (20 DOF vs. 38 DOF) and does not display complex,
realistic motion. The dynamics code does not currently take
advantage of several numerical optimizations, which could
increase speed by an order of magnitude. In addition, a stiff-
system integrator could increase speed greatly by saving many
calls to the dynamics algorithm.

5. FUTURE WORK

The number of legs can simply become a parameter to the gait
controller. We have used the same coupled oscillator paradigm
to generate realistic biped and quadruped gaits, though only in
kinematic simulations. Insects can employ wave and tripod
gaits which always provide at least three support points at all
times during the gait cycle, i.e., they rely on static balance. Bi-
peds and quadrupeds, however, use mostly dynamic balance, in
which the figure is falling from support point to support point.
We intend to study the interaction of the mechanics of the
figure with the coordination strategy in order to develop a
dynamic biped locomotion system.

6. SUMMARY

The realistic simulation and animation of the motions of human
and animal figures has long been a goal of researchers in
computer graphics. We have presented a dynamic locomotion
simulator in which the coordination of a kinematically complex
visual insect is automatically generated by a gait controller,
and realistic motions of the limbs are produced by stepping and
stance motor programs which apply appropriate forces to the
limbs. Motion is accurately and efficiently computed by our
implementation of the Featherstone Articulated Body Method.
The simulation agrees well with the observed behavior of
insects. The coupled oscillator model of gait coordination is
general, and can be used to control biped and quadruped gaits.

ACKNOWLEDGEMENTS

The corpus system makes use of several large support libraries
coded in C at the Computer Graphics and Animation Group,
including rendermatic, a rendering library with geometric
collision detection, by Brian Croll and David Chen; retepmatic,
a rendering package with additional functionality by Peter
Sehr0der, and robotlib an inverse kinematics and matrix
manipulation package, by David Chen.

In addition, Bob Sabiston must be given ample credit for co-
designing the stills from Grinning Evil Death.

' ~ ' Computer Graphics, Volume 24, Number 4, August 1990

BIBLIOGRAPHY

[1] Kugler, P, N., J. A. S. Kelso and M. T. Turvey. On the
Concept of Coordinative Structures as Dissipative
Structures: I. Theoretical Line. Tutorials in Motor
Behavior. Amsterdam, North-Holland (1980).

[2] Featherstone, R. The Calculation of Robot Dynamics
Using Articulated-Body Inertias. Robotics Research 2,1
(1983), 13-29.

[3] Featherstone, R. Robot Dynamics Algorithms. Kluwer
Academic Publishers (1987).

[4] Schr6der, P. The Virtual Erector Set, Master's Thesis,
Massachusetts Institute of Technology (1990).

[5] Barzel, R. and A. H. Barr. Controlling Rigid Bodies with
Dynamic Constraints. ACM SIGGRAPH '88 Course
Notes #27: Developments in Physically-Based Modeling,
Section E (1988).

[6] Isaacs, P. M. and M. F. Cohen. Controlling Dynamic
Simulation with Kinematic Constraints, Behavior
Functions and Inverse Dynamics. Computer Graphics
21,4 (July 1987), 215-224.

[7] Barzel, R. and A. H. Bart. A Modeling System Based on
Dynamic Constraints. Proceedings of SIGGRAPH '88
(Atlanta, Georgia, August 1988) In Computer Graphics
22,4 (August 1988), 179-188.

[8] Schr6der, P. and D. Zeltzer. The Virtual Erector Set:
Dynamic Simulation with Linear Recursive Constraint
Propagation. Proceedings of the 1990 Symposium on
Interactive 3D Graphics (Snowbird, Utah, March 1990).
In Computer Graphics 24, 2 (1990), 23-31.

[9] Witkin, A. and M. Kass. Spacetlme Constraints.
Proceedings of SIGGRAPH '88 (Atlanta, Georgia,
August 1988) In Computer Graphics 22,4 (August
1988), 159-168.

[10] Walker, M. W. and D. E. Orin. Efficient dynamic
computer simulation of robotic mechanisms. Proceedings
of Joint Automatic Contr. Conf. (Charlottesville, VA,
1981).

[11] Wilhelms, J. Using Dynamic Analysis for Realistic
Animation of Articulated Bodies. IEEE Computer
Graphics and Applications 7,6 (June 1987), 12-27.

[12] Arrnstrong, W. W. Reeursive solution to the equations of
motion of an n-link manipulator. Proceedings of 5th
World Congress Theory Maeh. Meehartissms (Montreal,
1979) Volume 2, 1343-1346.

[13] A.rms~ong, W. W., M. Green and R. Lake. Near-Real-
Time Control of Human Figure Models. IEEE Computer
Graphics and Applications 7,6 (June 1987), 52-61.

[14,] Lathrop, R. H. Constrained (Closed-Loop) Robot
Simulation By Local Corts~aint Propagation.
Proceedings of 1986 IEEE Int. Conf. on Robotics and
Automation (San Francisco, 1986) Volume 2, 689-694.

[151

[161

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[251

[26]

[27]

[281

[29]

[30]

[31]

Zeltzer, D., S. Pieper and D. Stunnan. An Integrated
Graphical Simulation Platform. Proceedings of Graphics
Interface 89 (London, Ontario, 1989), 266-274.

Zeltzer, D. Towards an Integrated View of 3-D
Computer Animation. The Visual Computer 1,4
(December 1985), 249-259.

Muybridge, E. The Human Figure in Motion. New York,
Dover (1955).

Muybridge, E. Animals in Motion. New York, Dover
(1957).

Hildebrand, M. Analysis of Tetrapod Gaits: General
Considerations and Symmetrical Gaits. Neural Control
of Locomotion. New York, Plenum Press (1976).

Gallistel, C. R. The Organization of Action: A New
Synthesis. Hillsdale, New Jersey, Lawrence Erlbaum
Associates (1980).

Gelfand, I. M., V. S. Gurfinkel, M. L. Tseflin and M. L.
Shlk. Models of the Structural-Functional Organization
of Certain Biological Systems. Carrtbridge, M1T Press
(1971).

Grillner, S. Locomotion in Vertebrates: Central
Mechanisms and Reflex Interaction. Physiological
Reviews 55,2 (April 1975),

Pearson, K. The Control of Walking. Scientific American
235,6 (December 1976), 72-86.

Bizzi, E. Central and peripheral mechanisms in motor
control. Tutorials in Motor Behavior. North-Holland
Publishing Co. (1980).

Robertson, M. A, and L. E. Halverson. The Development
of Locomotor Coordination: Longitudinal Change and
Invariance. Journal of Motor Behavior 20,3 (1988), 197-
241.

Beer, R. D., L. S. Sterling and H. J. Chiel. Periplaneta
Computatrix: The Artificial Insect Project. Case Western
Reserve University. Teetmieal Report, TR 89-102.
(January 1989).

Chiel, H. J. and R. D. Beer. A lesion study of a
heterogeneous artificial neural network for hexapod
locomotion. Case Western Reserve University. Technical
ReportTR-108. (February 1988).

McGhee, R. B. Robot LocemotiorL Neural Control of
Locomotion. New York, Plenum Press (1976).

Raibert, M. H. and I. E. Sutherland. Machines That
Walk. Scientific American 248,1 (January 1983), 44-53.

Dormer, M. D. Control of Walking: Local control and
real time systems. Phi) Thesis, Carnegie-Mellon
University. (1984).

Raibert, M. H. Legged Robots That Balance. Cambridge,
MA, M1T Press (1986).

37

@
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[411

[42]

[43]

[44]

[45]

[46]

[47]

[48]

38

SIGGRAPH '90, Dallas, August 6-10, 1990

Song, S. and K. J. Waldron. Machines That Walk: The
Adaptive Suspension Vehicle. Cambridge, MA, MIT
Press (1989).

Zeltzer, D. Motor Control Techniques for Figure
Animation. IEEE Computer Graphics and Applications
2,9 (November 1982), 53-59.

Girard, M. and A. A. Maciejewski. Computational
Modeling for the Computer Animation of Legged
Figures. Computer Graphics 19,3 (July 1985), 263-270.

Sims, K. Locomotion of Jointed Figures over Complex
Terrain, M.S.V.S Thesis, Massachusetts Institute of
Technology. (June 1987).

Bruderlin, A. and T. W. Calvert. Goal-Directed,
Dynamic Animation of Human Walking. Proceedings of
SIGGRAPH '89 (Boston, Massachusetts, July 1989) In
Computer Graphics 23,3 (July 1989), 233-242.

Ball, R. S. A treatise on the theory of screws. London,
Cambridge Univ. Press (1900).

McKenna, M. A. A Dynamic Model of Locomotion for
Computer Animation. Master's Thesis, Massachusetts
Institute of Technology. (1990).

Forsythe, G. E., M. A. Malcolm and C. B. Moler.
Computer Methods for Mathematical Computations.
New Jersey, Prentice-Hall, Inc. (1977).

Moore, M. and J. Wilhelms. Collision Detection and
Response for Computer Animation. Proceedings of
SIGGRAPH '88 (Atlanta, Georgia, August 1988) In
Computer Graphics 22,4 (August 1988), 289-288.

Wilson, D. M. Insect Walking. Annual Review of
Entomology 11 (1966), 162-169.

Pearson, K. G. and R. Franklin. Characteristics of Leg
Movements and Patterns of Coordination in Locusts
Walking on Rough Terrain. The International Journal of
Robotics Research 3,2 (1984), 101-112.

McMahort, T. A. Muscles, Reflexes, and Locomotion.
Princeton University Press (1984).

Bizzi, E., W. Chapple and N. Hogan. Mechanical
Properties of Muscle: Implications for Motor Control.
Trends in Neuroscience (November 1982).

Hogan, N. The Mechanics of Multi-Joint Posture and
Movement Control. Biological Cybernetics 52 (1985),
315-331.

Wigglesworth, V. B. The Principles of Insect Physiology.
London, Chapman and Hall.

Hughes, G. M. and P. J. Mill. Locomotion: Terrestrial.
The Physiology of lnsecta. New York and London,
Academic Press (1974).

McKenna, M. , S. Pieper and D. Zeltzer. Control of
Virtual Actor: The Roach. Proceedings of 1990
Symposium on Interactive 3D Graphics (Snowbird, Utah,

1990) In Computer Graphics 24,2 (1990), 165-174.

