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A good computer graphics and animation language is
not just a structured language with graphical procedure
calls; it must also provide a way to structure data. It has
already been shown that type-oriented languages offer a
good way to check data, and good data structures are
just as important as good control statements. Pascal! is
an excellent type-oriented language, and certainly a
popular one. New types can be defined on the basis of ex-
isting types. By introducing three-dimensional graphical
types into Pascal, and by providing the means to define
any drawing with them, we obtain a powerful, structured
computer graphics and animation language.

In recent years, the abstract data type? has emerged as
an excellent approach to the design of quality software.
The term ‘‘abstract data type’’ means the modularized
data type with formal semantics. In the abstract data
type approach, the design of an application program-
ming system begins with its specification as a set of com-
plex abstract data types. Then a refinement process is
repeated until basic graphical types are obtained.

Pascal is a good structured language, but it has no
abstraction capability. For this reason, we have defined
primitive abstract graphical data types’ called figures
that are similar to the classes in Simula. We have intro-
duced them as a graphical extension of Pascal called
Mira-2D.4 These concepts have been implemented with
positive results, and numerous applications have been
developed. Figure 1 shows a picture produced by Mira-
2D programs.

Then 3-D graphical types were added to Pascal to
create Mira-3D. This language allows the user to easily
build very complex three-dimensional objects. Drawings

Figure 1. Robots in a picture produced by Mira-2D programs.
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can be produced in a wireframe mode or in a hidden-
lines-removed and shaded mode. The next step was to in-
troduce abstract data types to describe motions of three-
dimensional objects (actor types) and of virtual cameras
(camera types). This article describes our three-dimen-
sional, high-level graphical data types and their impact
on computer animation methodology.

Mira-3D and the figure types

As a three-dimensional graphical extension of Pascal,
Mira-3D includes

three-dimensional vector arithmetic,

graphical statements,

image transformations,

viewing transformations (perspectives and parallel
projections), and

* standard procedures and functions,

The most important tool in this graphical extension is
the 3-D graphical type—the figure type. The syntax is
described in Figure 2. The word “‘figure’’ is a keyword.
The formal parameter section, the declaration, and the
body are similar to the corresponding elements in a pro-
cedure.

To define a figure type, we must (1) find the
characteristics of the figure, which become the
parameters, and (2) find the algorithm that allows the
user to build the figure with the help of the parameters.

To build the figures, new statements have been in-
troduced: moveabs, moverel, lineabs, and linerel to draw
vectors, and include to define an existing figure as part of
anew one. For example, a pyramid with four vertices can
be defined as '

type PYRAMID = figure (A,B,C.D: VECTOR);
begin
moveabs A; lineabs B,C,A,D,C;
moveabs B; lineabs D
end;

Attributes can be given to a figure; the most important
are line style, intensity, line width, and color. Graphical
variables are defined as variables of graphical type. Four
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Figure 2. Syntactic diagram of a graphical type.
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fundamental statements allow the user to manipulate
these variables: ;

(1) create <figure> (<actual parameter list>)
(2) delete < figure>
(3) draw  <figure>
(4) erase <figure>

The create operation dynamically creates the figure by
giving values to the corresponding type parameters; the
figure can then be drawn, erased, or deleted.

A certain number of standard and frequently used 3-D
figure types have been introduced. The most important
are

(1) the line type,

(2) the planar figure types: triangle, square, circle,
ellipse,. . . ,

(3) the plane type defined by three vectors,

(4) the box type defined by four vectors,

(5) the sphere type defined by a center C and radius R
(approximated by polygons),

(6) the five regular polyhedra types: tetrahedron,
cube, octahedron, dodecahedron, icosahedron,
and

(7) the surface types: cylinder, cone, parabolic cone,
parametric surface, revolution surface, Bezier sur-
face, Coons surface, and B-spline surface.

Hidden lines can be removed and images can be shaded.
The Mira-3D extension has been implemented by de-
veloping a preprocessor that consists of a 6000-source-
line program in Pascal developed on a CDC Cyber 173
and a DEC VAX-780. The output is a standard Pascal
program. The runtime library is a 10,000-Pascal-source-
line library that is almost device independent. However,
the dependent part can be easily rewritten and has
already been adapted for HP2648A, Tektronix 4027,
DEC GIGI, Norpak, and AED terminals, Hewlett-Pack-
ard plotters, and various printers. Only the viewing pro-
cedures have been taken from the GSPC Core system.’

Two case studies: giraffes and bridges

Here is an example of a giraffe that has been drawn
using the previously defined 3-D graphical types. The
giraffe type has been defined as

GIRAFFE = figure (AXIS, ORIGIN, NECKORIG,
TAIL:VECTOR; MOVEMENT: INTEGER; NECKORIEN-
TATION: ORIENTATION);
where

AXIS is a vector that defines the giraffe’s orientation,

ORIGIN is the origin of the new axis system,

NECKORIG is the origin of the giraffe’s neck,

TAIL is the vector that gives the tail direction,

MOVEMENT is an integer that defines specific

movements for the giraffe, and

NECKORIENTATION is an array of three vectors

defining the orientation of the neck, which is divided

into three parts.
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The giraffe is modeled as follows:

headises s box

DR e e vaniaehs series of circular cones

ALy (AL truncated elliptic cone
kneecap.......... sphere

foreleg: ... cylinder

OO oo ioias two bodies of revolution

T e a cylinder and a truncated cone

Figure 3 shows two views of a giraffe.
Bridges are difficult structures to define using
parameters because they are very dependent on such

Figure 3. Two views of a giraffe drawn using 3-D graphical
types.
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hard-to-describe factors as landscape, building
materials, building techniques, and the imagination of
architects and engineers. A procedure for drawing any
bridge would require more than 100 parameters. The
bridge® graphical type presented here allows the user to
reproduce almost any kind of bridge—generally with a
high degree of detail. The bridge type is defined as

type BRIDGE = figure (ROAD: ROADTYPE; PIER:
PIERTYPE; SUPER: SUPER-
TYPE; PARAPET:
PARATYPE; ORIENTA-
TION: REAL)

Road defines the characteristics of the road: height,
width, length, and number of joints. Piers are composed
using a complex system of basic figures such as cylinders,
cones, parallelepipeds, circles, parabolic arcs, and lines.
Super defines the bridge superstructure; simple bridge,
traditional lattice bridge, lattice bridge with two peaks,
cantilever bridge, steel-arch bridge, suspension bridge.
The characteristics of the parapet are the number of sup-
ports and the parapet height. Orientation defines the
orientation of the bridge by rotating it around the y-axis.

An example of a bridge drawing produced using the
bridge graphical type is given in Figure 4.

Abstract graphical types in computer
animation

Dream Flight' is a 3-D computer-animated fiction film
completely produced by computer. It is the story of a
creature living on another planet and dreaming that he
flies across space like a bird and arrives on Earth. Typical
scenes are set in Paris and, as in Figures 5 and 6, New
York. Others show natural scenes such as ocean, trees, or
birds. The film was developed using the Mira-3D pro-
gramming language to create objects and motions.

Figure 4. A bridge drawing produced using the bridge
graphical type.
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Figure 5. Arrival in New York (frame from Dream Flight).

Figure 6. The Verrazano-Narrows Bridge (frame from Dream Flight).

Figure 7. Sitting in a forest (frame from Dream Flight).
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We can use the first scene of the film to explain how
static and dynamic objects are constructed. In this scene
(Figure 7), Hipi is sitting in a forest at night and throws
stones into a small pond. He sees a bird and imagines that
he is flying like the bird. This scene involves dynamic ob-
jects like Hipi, the bird, and the waves on top of the
water. It also involves several static objects: stones, trees,
the pond, the horizon, and the spherical sky with stars.

A bird is represented by an abstract graphical type:

type BIRD = figure (FRAME:INTEGER; H:HALF-
BODY; W:WING; C,D:VECTOR);

where H is the right halfbody, W the right wing, C the
rotation center of the right wing, and D the direction of
rotation of this wing. Since the right wing always starts in
the maximal vertical position, it is necessary to determine
only the angle of rotation downward. This angle depends
on the frame. To determine the angle, we use a rotation
with the Catmull® acceleration/deceleration law.

Here is an excerpt of the code that is executed when a
variable of bird type is created.

type BIRD = figure (FRAME:INTEGER;
H:HALFBODY: W:WING:
C,D:VECTOR);
var
] RELATIVE:0..CYCLE;
FRACTION,
BETA :REAL;
w2 ‘WING;
RIGHTPART,
LEFTPART:FIG;
begin
RELATIVE: = FRAME mod CYCLE;
if RELATIVE > (CYCLE div 2) then
RELATIVE: =CYCLE-RELATIVE:
FRACTION: =(RELATIVE*2)/
CYCLE;
BETA:=LAW(ACCEDECE,
ANGLEMAX, FRACTION);
ROTATION(W,C,BETA,D,W2);
UNION (H,W2,RIGHTPART);
delete H,W2;
SYMYZ(RIGHTPART, LEFTPART);
include RIGHTPART, LEFTPART
end,

In this code, cycle is the number of frames required to
make one wing flap up and down, frame is the current
frame number, bera is the rotation angle of the wing,
anglemax is the maximum angle, and frac is the phase
fraction. For example, a bird is created and drawn
according to the following sequence:

procedure DRAWBIRD (FRAME:INTEGER);
var FIRSTBIRD:BIRD;
begin
create FIRSTBIRD (FRAME, RIGHTBODY,
RIGHTWING, C, D);
TRANSLATION (FIRSTBIRD, < <0, 0, FRAME *
BIRDSTEP > >, FIRSTBIRD);
draw FIRSTBIRD;
delete FIRSTBIRD;
end;

In this procedure, a variable firstbird is dynamically

created in memory; then, a translation is applied to this
variable. The
BIRDSTEP > > has a z-component, depending on the

translation vector < <0,0,FRAME*
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frame number. The draw statement means that the con-
tent of the variable is displayed. Finally, the variable is
deleted in memory.

The parameters in the create statement correspond to
the parameters in the definition of the bird type.

Trees are also described by 3-D graphical types:

type TREE =figure (var BRANCHES:TEXT;
NBRANCHES:INTEGER;
POSITION:VECTOR;
HEIGHT, LENGTH:REAL);

where branches is a file of kinds of branches, nbranches
is the number of branches, position is the position of the
trunk, height is the height of the trunk, and length is the
length of the branches.

A forest can be defined by the following declaration:

var FOREST: array {1 . . NBTREES] of TREE

Actor and camera data types

Abstract graphical types like figures are very useful,
but they do not have their own animation. For this
reason we have designed animated basic data types, actor
data types, and camera data types. The design of these
types has been influenced by the work on data abstrac-
tion2? and by research in actor systems. 1013 We could
say that a figure is an actor without animation.

The following example will introduce these concepts:

type STRANGESQUARE =
actor (A,B,C,D:VECTOR);
time T1 . .T2;
const V= .., (*speed*)
type :
TVEC =gnimated VECTOR (P1,P2:VECTOR);
val P1 . . P2; (*limits of the
animated vector*)
timeT1 .. T2;
law P1 + V*CLOCK
end;
var VERTEX:TVEC;
begin
init VERTEX (C, (A +C)/2);
moveabs A;
lineabs B, VERTEX, D, A
end;

This defines a square that is animated between the
times T1 and T2. One vertex moves in the direction of the
center with a constant speed V. This vertex is defined as
an animated vector, that is, an animated basic type. This
concept is an extension of the Newton concept defined in
the animation language ASAS.!2:13 An animated basic
type is a basic type defined in such a way that each
variable of this type (called an ‘‘animated basic
variable’’) is animated. Three basic types can be
animated: integer, real, and vector types. An animated
type is defined by giving the starting and ending values of
the number or the vector, the starting and ending times,
and a function or law that describes how the value varies
with time. During the specified time interval, variables of
animated basic types are automatically updated to the
next value according to the function.
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Initialization of the animated basic variables is per-
formed by the init statement. At this stage the initial
values of the parameters are given: e.g., init VERTEX
(C, (A+C)/2).

Animated basic variables can be used wherever a vari-
able of the same basic type would be used.

An actor type is an animated abstract graphical data
type. The syntax is very similar to the figure syntax, ex-
cept that the lifetime limits of the actor must be specified.

Animated basic types and variables can be defined within

an actor type, which is the best way of using parameters
that vary in time. An actor can reference another actor,
but the latter cannot be defined within the first actor.

An actor can be constructed using figures, and these
figures can be manipulated. The actor block can contain
any declaration except actor and camera types, and it can
contain any Mira-3D statement. However, the viewing
procedures cannot be invoked because it is not the role of
an actor to manipulate visual parameters. The time inter-
val exactly defines when the actor exists. Here is an ex-
cerpt of the bird actor type:

type
BIRD =acror (H:HALFBODY; W:WING; C,D:VECTOR;
T1,T2:REAL);
time Tl .. T2;
type .

ANG = gnimated REAL;
val 0.0 . . ANGLEMAX;

timeT1 .. T2;
law ACCDEC(. . .)
end;

POS =animated VECTOR,;
val ORIGIN . . UNLIMITED;

time T1 .. T2;
law BIRDSTEP*BIRDSPEED
end;
var
TRANS :POS;
BETA :ANG;
w2 :WING;
RIGHTPART,
LEFTPART :FIG;
begin
init TRANS;
init BETA;

ROTATION(W,C,BETA,D,W2);

UNION(H,W2,RIGHTPART);

DELETE H,W2;

SYMYZ(RIGHTPART,LEFTPART);

include RIGHTPART,LEFTPART
end;

A bird has only to be initialized by the statement
init FIRSTBIRD (H, W, C, D, 10, 16)

rather than by the procedure drawbird shown earlier.
The bird is started at time 10 and stopped at time 16.
Animation frames are produced automatically, and the

bird can be synchronized with other actors.
A camera type is also an animated abstract type. Its

syntax is exactly the same as the syntax of an actor type,
but the actor keyword is replaced by the camera key-
word. Time limits have the same meaning as for an actor.
Animated basic types and variables can be defined within
a camera type, but no actor types or other camera types
can be used. The statements cannot manipulate figures
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3-D DIGITIZING
PROGRAM

and actors because this is not the role of a camera. The
goal of a camera type is to define the values of the visual
parameters and how they vary with time. Typically,
statements in a camera type are viewing-procedure calls;
they can be those of the GSPC Core system, and their
parameters can of course be animated variables.

Animated basic types, actor types, and camera types
have been introduced in the Cinemira '# language, which
is a high-level computer animation language whose
graphical basis is Mira-3D. A Cinemira script is a sub-
program dedicated to computer animation, and it con-
sists of a sequence of scenes. Each scene has a name and
is made up of a sequence of statements that serve mainly
to initialize actors, cameras, and decor. The decor is a
collection of graphical objects that do not move or
change during the entire scene. In Cinemira, a decor is
defined by the statement decor< figure list >, where the
figure list is an enumeration of figure variables. The ad-
vantage of the decor statement is that it puts together all
the objects that have no animation. For example:

create HOUSE( . . . );
create SKY;

create SUN( . . . );

decor HOUSE, SKY, SUN;

The shoot statement performs the shooting phase, and
decor, actors, and cameras are automatically placed dur-
ing this phase. The shoot statement can therefore take a
very simple form: shoor until <expression>, where the
expression is the upper time limit of the scene in seconds.
The lower limit is the upper limit of the previous scene (0
at the beginning).

The Mira animation system

The production of three-dimensional computer-
animated films using a graphical programming language
is time consuming. For example, it took 14 months to
produce the 13-minute film Dream Flight. User-friendly
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3-D GRAPHICS
LANGUAGE
(MIRA-3D)

GRAPHICS ¢
DATABASE
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Figure 8. The Mira animation system.

interactive systems allow the user to develop 3-D com-
puter-animated film more rapidly. However, ‘they im-
pose limits on the creativity of artists who would like to
exploit all the possibilities of a computer. This is why we
designed the animation system shown in Figure 8. This
system comprises user-friendly interactive programs and
the programming languages Mira-3D and Cinemira.
Basic figures, stored as complex lists of descriptors, can
be created in three ways:

(1) by using the Horizon 3-D interactive graphics
editor,

(2) by programming with the Mira-3D graphical lan-
guage, and

(3) by usinga 3-D interactive reconstruction program.

Mutan, '3 a multiple-track animator system for mo-
tion synchronization, is an interactive system for inde-
pendently animating three-dimensional graphical ob-
jects. It is in fact a 3-D key-frame animation system with
in-betweens calculations.

Mutan is also a good tool for synchronizing motion
with sound, light, or speech. To make this possible,
Mutan handles several tracks at a time, with all anima-
tion constraints for a graphical object recorded on each
track. A program in Cinemira will be able to read and
write Mutan tracks that correspond to actors. This
means that a scene produced by Cinemira can be viewed
and modified by Mutan. An actor can even be added
with Mutan as a new track.

A new film called Nirvana is currently being developed
using the Mira animation system. Figure 9 shows frames
from this film. The Corvette was built by the 3-D
reconstruction program. Scenes are produced by pro-
gramming and using the Mutan system, and images can
be shaded, as shown in Figure 10.

We have shown with the Mira-3D language how high-
level 3-D types can be used in computer graphics and
computer animation. We have also described actor and
camera data types. The programmer is now able to use
high-level 3-D graphical types to build objects and to use
actor and camera data types to describe motions in
animation. With this approach, complex computer ani-
mation scenes and special effects can be produced in an
elegant, efficient, and reliable manner. ®
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Figure 9. Explosion of a Corvette (three frames from Nirvana).
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