A Solution to the Hidden Surface Problem

M.E. Newell, R.G. Newell, T.L. Sancha
The Computer-Aided Design Center

A method for producing half-tone pictures by
computer is presented, The basic method, which is

very simple, works well in most cases, but does
not handle all objects correctly., The extended
method, which copes with all cases, is also

described, The functions used for calculating the
intensity of parts of objects, and the method for
handling transparency, are discussed, Examples of
pictures produced by this method are included,
and the times taken to generate them are
tabulated, The extended algorithm compares
favourably in speed and storage requirements with
other published algorithms,

KEY WORDS AND PHRASES: graphics, computer-aided
design, computer art, curved surfaces,
hidden-line, hidden-surface, vigible-surface,
half-tone, greyscale, shading, raster scan,
video~-disc

CR CATEGORIES: 3.41, 4.9, 8.2

INTRODUCTION

The computer production of shaded images is
a further attempt to improve the realism of
computer-produced pictures, This subject has
received increasing attention in recent years and

it has become apparent that images can be
produced with an acceptable amount of
computation,

The solution to the hidden-surface problem

involves comparisons of chosen parts of the scene
with other parts to determine those which are
visible, Previous approaches have carried out
these comparisons on a point by point basis [1],
a scan-line basis [2,3,4,5], or on an area basis
[6]1.

The approach described in this paper tackles
the problem by identifying areas of complexity in
the image, then resolving the difficulty by
dividing the planar faces of the object until the

difficulty has disappeared, Although no direct
machine trials have been undertaken, it seems
that this method compares favourably with other

published methods, The cost of software methods
is coming down, but it is_probably true to say
that the time taken to produce an image precludes
the possibility of using shaded pictures in a
truly interactive way in the design process.

The method outlined in this

relatively fast as a software approach, and has

paper is

443

the advantage that a major part of the
computational load can be otffloaded onto a fairly
cheap hardware device.

THE BASIC METHOD

Input
series of
faces,

for the present implementation is a
conceptually opaque quadrilateral
Although the faces are nominally planar,
the algorithm will handle cases where the faces
are slightly twisted, thus allowing
approximations to curved surfaces to be handled.
Initially the object is transformed into the
viewer's coordinate system, this being x
horizontal and y vertical, the negative z axis
being the line of sight, The transformed object
is then clipped to remove any portion behind a

plane placed just in front of the viewing point.
After: the half-space clip the object is further
transformed into screen (or perspective) space,

by applying a single perspective divide to each
of the x,y and =z coordinate values, The reason
for working in 3D perspective space is to
simplify many of the 2D and 3D tests involving
pairs of faces,

At this stage, any face lying completely
outside the viewing area is discarded. For a
s0lid object, any face of the surface that faces
away from the eye can be discarded, This
simplification cannot be applied to surfaces that
do not represent solids or closed shells, In all
cases faces that are viewed edge-on can also be
rejected, The resulting object description is
processed by the main body of the hidden surface
procedure,

The approach to be described centres around
a screen map, which may be considered as a
software simulation of a digitel video disc, The
screen map holds sufficient information to
determine the intensity of every raster point in
the image., Portions of the object are written to

the screen map in an ordered manner such that
those faces furthest from the eye are written
first, the map being successively overwritten by

each succeeding face.

An advantage of this method over most others
is that if the correct relative ordering of
groups of faces is known, then only one group
need be handled at a time, The overwriting
capability of the screen map handles the
obscuring of one group by another, Using this
method, scenes can be produced containing many
more faces than can be held in core at once.

Figure 17 shows an example of the use of this
technique, There are 10,870 faces in the scene,
whereas the program considered only one pawn of
720 faces at any one time, The ordering of groups
of faces is at present done manually, though in
some cases it could be automated.

An early implementation of the algorithm
takes the planar faces of the object, orders them
according to the z coordinates of their centroids
and then writes them to the screen map in this
order, This approach is remarkably simple to
implement, but although the resulting algorithm
is fast it dis not able to solve all cases
correctly, The correct order for writing faces
does not necessarily depend on the position of
the centroids; in such cases a more elaborate
scheme is required to find the ordering, Worse
cases arise when no ordering exists to solve the
hidden~surface problem correctly. This happens
when faces intersect, or obscure one another
cyclically., However this approach has the
advantage of simplicity, and it has been found
that it caters for a large class of objects, It
works well when the object consists of a large
number of small quadrilateral faces. The basic
method has been extended to cater for the failing
cases,

THE EXTENDED ALGORITHM

The simple algorithm described above was
augmented by providing a control section to order
the faces correctly and split those faces that
cause problems in the ordering., The flowchart in
Figure 1 gives a broad outline of the augmented
procedure, Prior to entering the procedure
certain frequently-~used data items are computed
and stored in linear arrays., These data items
consigst of such things as plane equations in
screen space, and extremum values of x and y on
the screen. In addition to these, an ordered list
is initialised to contain references to faces in
decreasing order of their minimum z values, The
minimum 2z value of the face corresponds to the
point furthest from the eye, The face at the top
of the list has a good chance of not obscuring
any other, and so it is potentially the first
face to be written to the screen map. Whenever a
face is written to the screen map it is removed
from the top of the 1list and is no longer
considered, However the current top face in the
list, P, must first be checked against each face,
Q, that could possibly be obscured by P. Such
faces are those whose furthest point is further
from the eye than the nearest point of P. This
usually involves only a small proportion of the
total number of faces in the scene, and since the
list 1is ordered on minimum z value these always
appear at the top of the list,

The comprehensive routine that tests whether
P can definitely be written to the screen map
before Q answers the question 'does P obscure
Q*'. This consists of a sequence of tests of
increasing severity, the result of which is
either a definite negative answer Or an
indication of failure to prove a negative answer,
in which case there is a possibility that a part
of P obscures Q.

In the event of failure the program
investigates the possibility of writing Q to the

-4
-)

GET TOP FACE | NO MORE
INUST.P [> EXIT

I

GETNEXT FACE | NO MORE
INLUST.QG [

WRITE P TO
SCREEN MAP & —1

REMOVE FROM
LIST

SPLIT POR Q

| AND INSERT -?4

PIECES IN LIST

MGVE 0 TO TOP OF
LIST AND MARKIT

Fig.1 Outline Flowchart of Method

screen map before P, thereby forcing Q out of the

previous ordering to the top of the list, This
attempt 1is only permissible if Q@ has not been
forced out of order previously, otherwise the
program could loop interminably, The test for

writing Q before P is very similar to the test
for writing P before Q and can utilise some of
the intermediate results of the former test, If
it can be proved that Q does not obscure P, then
Q is moved to the top of the list and marked, The
list is collapsed to fill the gap created,
Should the attempt to reorder Q fail,
program enters

the
& face-splitting procedure that
slices P or Q into two pieces and then inserts
the resulting fragments in their correct
positions in the list, according to their minimum
z values,

An earlier implementation of the extended
algorithm entered the face-splitting routine
without any attempt to reorder faces, This worked
well for many cases, but occasionally the program
would split faces into smaller and smaller pieces

without sorting out the difficulty wuntil
fragments the size of raster points resulted,
Such cases were considerably improved by the
reordering enhancement, and in all examples
tested it 1led to an improvement in computation
time,

THE ORDERING TEST IN DETAIL

The routine that tests whether it is
permissible to write face P to the screen map
before Q must be made as efficient as possible,
since it will be entered frequently for all faces
in the object, In the current implementation the
following sequence of tests is made., Although
they are not the only set of tests that could be
devised, they have been designed so that the
program can exit after a minimal amount of
computation, As mentioned previously, the routine
answers the question 'does P obscure Q?', and
exits with a negative answer should any of the
following tests be satisfied:

1. Extreme screen values of x of two faces do
not overlap
‘

2. Extreme screen values of y of two faces do
not overlap

3. P is contained wholly in the back half-space

of Q

4. Q is contained wholly in the front
half-space of P

5. Faces do not overlap on the screen
(Any face divides space into two
half-spaces, and the front half-space is

defined to contain the eye,)

Should all five tests fail then it is still
possible that the ordering is satisfactory, but
the further computation needed to prove this
conclusively is considered unjustified, Hence in
these circumstances the program assumes that P
obscures Q. In the event of failure then only the
equivalent of tests 3 and 4 need be repeated for

445

the converse test for writing Q before face P, If
it is shown that Q does not obscure P, and Q has
not been previously displaced, then it is moved
to the top of the 1list and marked., This new top
member of the list is now treated as the new P,

THE FACE-SPLITTING ROUTINE

If all attempts to find a correct ordering
of a pair of faces fail, then either face P or Q
(not both) is sliced in two in the hope that
reducing the face size will enable an ordering of
the resulting fragments to be found, The
procedure is as follows:

1. If parts of P lie in both half-spaces of Q
then slice P in two with the plane of Q and
exit

2, If parts of Q lie in both half-spaces of P
then slice Q@ in two with the plane of P and
exit

3. Slice P in half through the mid-points of
the longest pair of opposite sides,

After one face has been split, the resulting
fragments and the other unsplit face are inserted
in their correct positions in the list, this
being below any marked faces which have been
previously forced out of order to the top of the
list. Again, as in the case of the ordering
tests, this splitting strategy is not the only
one possible,

THE REPRESENTATION OF THE SCREEN MAP

The basis of this whole method of solving
the hidden-surface problem is the screen map with
its overwrite capability, This occupies most of
the time used in producing an image, As mentioned

earlier, only very simple logic is required to
implement e restricted hidden-surface routine
that will work for a large class of cases; the

very nature of the solves the
hidden-surface problem,

In the first implementation of the screen
map, 3 bits are held for each raster point on a
grid of 256 by 256, Hence pictures are limited to
8 intensity levels, and the resolution is poor,
If one tries to improve the situation by
increasing the resolution and using more
intensities, then the escalation in storage
requirements becomes excessive, For example the
original screen map occupies 4k of 48 bit words
on the. ATLAS 2, Doubling the resolution and
allowing 16 intensities would increase this to
about 21k, Thus an alternative approach has been
used that does not require such a large amount of
store,

The second implementation consists of a
buffer area that holds a string of data 'beads’'.
Each bead holds the list of line segments for a
particular raster line, and the beads are
accessed via a directory based on the y values of
the raster lines, When a new face of the object
is to be written to the screen map, it is first

screen map

processed into horizontal 1ine segments at the
required intensity, When one of these 1line
segments is added to the screen map, its

corresponding raster line bead is copied to the
top of the buffer area, simultaneously merging
the new 1line with line segments already there,
Thus the raster line pointer has to be updated
and the original bead nullified, When the buffer
area gots filled, which in some cases can be
frequontly, the program enters a simple 'garbage
collection' procedure to remove the nullified
beads, Investigations were made into methods of
reducing the amount of garbage collection
required, and although large reductions were
achieved, the net result was to increase the
overall computing time, and so it transpires that
the simple approach is the best yet found,

The algorithm, considered as a software
method, could be regarded as a scan-line method
with & preprocessor that allows the logic to
solve the 2D hidden-line problem on each
scan-line to be greatly simplified, In fact,
extensions along these lines are the subject of
current investigations, The idea is to produce a
list of faces and face fragments which, if
written to the screen map in order, would produce
the correct picture. A back end consisting of a
much simplified scan-line method could then be
used to produce the picture. Intersections and
orderings would thus be handled on a face by face
basisg, thereby improving line to line coherence,
It is hoped that an improved performance will be
achieved by this method,

PICTURE DISPLAY

The device used at the CAD Centre for
displaying shaded pictures is a PDPQ computer
with 340 display unit., The PDP9 is an 8K machine
and the 340 is capable of displaying

epproximately 2000 inches of line per second, In
order to display a shaded picture, the screen map
is converted (in ATLAS) into a compressed format
display file that is processed interpretively by
the PDPQ for display on the 340. The compressed
format allows three horizontal line segments to
be held in two PDPg 18 bit words. The DEC 340
display has been enhanced to 04 intensities, thus
6 bits are used to define the intensity of a line
segment, and 6 bits are used to hold its length,
To overcome the limited speed at which the 340
can display lines, the picture can be interlaced,
Raster lines are not displayed in order of
increasing y value., In the case of a picture of
5312 raster lines, the nth raster line displayed
has a y value of (n,p)modulo 512, where p is
prime to 512, 1In practice a value of p of 97 has
been found to give good results, in some cases
nearly freezing the picture, For the purposes of
taking photographs, the picture is displayed an
integral number of times while the camera shutter
is open, thereby ensuring that all parts of the
film are exposed for an equal amount of time,

FUNCTIONS USED FOR SHADING

Several authors [3,6,71 have discussed
methods of computing the intensity of a
particular face of the object for a given light
condition, Usually the problem is limited to
cases where the light source is at the eye and a
uniform mean intensity is computed over the whole

face, One of the reasons for this restriction is

446

to avoid the complexity of solving the shadow
problem, However, interesting effects can be
obtained with oblique lighting even if the shadow
problem is ignored. The most interesting objects
to investigate with different lighting functions
are those that consist of a large number of small
faces derived from some curved surface
definition, The large number of differing
orientations arising in the scene lead to
interesting reflection patterns, For instance,
consider the simple intensity function

I = r.cos™(d)+b

where r 1is the intensity range, n is some
arbitrary power, a is some measure of the angle
between the incident light and the face normal
and b is the ambient level of lighting.

For n=1 this function simulates diffuse
reflection, but if n is increased to a high
value, say 20, then this leads to most of the

with a few critical faces
This gives

object appearing dark,
appearing at the brightest intensity.
the effect of a black shiny object,

Observations in the real world show that
many curved surfaces, for example bottles and
other solids of revolution, are characterised by
having longitudinal reflection patterns. This
effect is easily simulated by having a component
in the lighting function of the form

s.s8in™(a)

where again m is a high power, In this case the
brightest faces appear where the light is nearly
tangential, which in the case of a bottle
produces a white streak right down the side of
the bottle.

A third effect that picks out the silhouette
of a dark object has been used, This is done by
having a 1light source of the 'sine' type at the
viewing point,

Transparent materials can be simulated by
using a small extension to the screen map

routine, When a line segment is to be added .to
the map, instead of completely overwriting the
map, some function of the intensity of what it

would obscure and of its own intensity is used,
The form of this function determines the apparent
transparency of the material, The function used
at present defines the resulting intensity, I,
as:

I,<Iy 1 I=w I +(1-w). I,
I1>Io H I=I1
Where I and I, are the intensities of the new

and obscured line segments respectively, and w is
a weighting factor.

These functions do not attempt to simulate
the real world,though a judicious use of them can

considerably enhance the appearance of some
objects, Examples of various combinations of
these effects can be found in the accompanying
illustrations,

PERFORMANCE OF THE METHOD

Wetkins [4] has
hidden-surface algorithms
criteria; deterministic or non-deterministic,
area subdivision or scan-line subdivision, and
object space or sample space, It is relevant to
see where the current algorithm fits into this
classification,

The non-deterministic front end
current algorithm works in object space and is
also of the area subdivision type. The
fundamental difference from Warnock's approach is
that area subdivision is carried out on the
planar faces of the object in an intelligent
manner, instead of on areas of the screen in a
fixed manner, However, the deterministic back
end, namely the screen map, works in semple space
on a scan-line basis,

The present algorithm has not been directly
tested against any other published methods and so

classified published
according to three

of the

accurate assessments cannot be given of the
performance relative to these methods. The
current implementation is written wholly in

FORTRAN except for the screen map routines, which
are written in machine code, The program runs in
24k of core in ATLAS 2 and up to 800 faces and
1000 points can be accomodated in this core
space, The time taken to produce an image can be

2. Preparation of faces for the screen map
including ordering tests and face splitting,

3. Writing of faces to the screen map.

4. Conversion of screen map into compressed
format display file.

Items 1 and make a relatively
insignificant contribution to the total
computation time, wusually taking less than 2

seconds, The time taken for item 2 is largely
dependent on how good the initial ordering is., If
few faces intersect then this time is usually
short, but cases can arise where it becomes
significant,)

Item 3 takes most of the time, and clearly
this is a part of the algorithm that can be
isolated and implemented with fairly cheap
hardware. However, the software method used still
makes this approgsch to the hidden-surface problem
a feasible proposition.

The table in Figure 2 gives a breakdown of
the times taken for a series of test objects. For
comparison with other machines, it is estimated
that equivalent FORTRAN programs take 3 times
longer on ATLAS 2 than on a UNIVAC 1108. All
times quoted in the table are based on a picture
of 512 by 512 raster points.

broken down into four parts as follows: Figure 3 shows & cube and an octahedron
intersecting, The intersections were handled
1. Object transformation, preliminary data completely by the program, This picture
calculations and initialisation of ordered
list,
f COMPLEXITY TIME SPENT (SECONDS)
G TOTAL FACES FACE LINE TRANSFORMING] ORDERING WRITING CONVERTING
U FACES CONSIDERED FRAGMENTS SEGMENTS AND AND FRAGMENTS SCREEN MAP
R BY WRITTEN TO IN INITIALISING | SLICING TO SCREEN TO DISPLAY
E PROGRAM SCREEN MAP PICTURE FACES MAP FILE
3 14 7 18 2431 0.1 0.2 1.4 1.2
4 225 106 410 5474 0.7 10.6 10.6 1.8
5 140 62 158 3860 0.2 3.9 8.6 1.6
6 140 140 409 7197 0.6 12,6 33.4 2.4
i 63 27 449 3258 0.2 27.0 12.0 1.3
8 625 599 600 2182 2.8 6.2 14.8 2.4
9 625 625 626 6333 3.0 6.4 12,4 2.2
10 720 406 408 4503 2.5 3.2 5.7 2.0
11 450 444 444 4224 2.1 3.5 14.5 1.5
12 393 180 180 7107 1.3 1.1 9.8 2.5
13 195 98 118 2532 0.6 1.5 4.4 1.6
Figure 2

447

illustrates the program's capability of assigning.

different material functions to parts of an

object. Up to six different materials can be
specified.

Figures 4 to 7 are included for comparison
with gimilar objects given as examples in

previous papers, Figure 4 is taken from Bouknight
[5]1, and figures 5 and 7 are from Watkins [4].

Figure 6 shows the same object as figure 5,
rendered in a transparent material,

Figures 8 to 10 are examples of objects
designed with a solids of revolution program,

Figure 11 is an example of an object
generated with THINGS [8]. It is necessary to
consider all but the edge-on planes in this
object, because it is not a solid,

Figure 12 is another object generated with
THINGS. The picture was generated on its side
since the horizontal complexity is far greater
than the vertical,

Figure 13 shows a representation of a
crematorium modelled using THINGS,

Figures 14 to 17 are further examples of
output from the program. Figures 14 and 15 were
designed using bi-cubic patches,

APPLICATIONS OF SHADED PICTURES IN COMPUTER AIDED

DESIGN

Any department that invests time developing
a shaded picture facility should show that the
result is not merely a sophisticated paint brush
with relevance only to the cosmetics of CAD, For
this reason effort has been devoted to evolving a
generalized input system for the production of
shaded pictures wusing the results of design
programs as input [Q], The central part of this
input system is THINGS - THree dimensional INput
of Graphical Solids, THINGS is implemented as a
set of subroutines that can be called from a
user's FORTRAN design program. The function of
this package is to enable a user to assemble
objects at different positions and orientations
in space and store these on a file for future use
by the shaded picture program, This system is
capable of taking object definitions from a
number of sources, including two surface design
systems, a highway design system, and a solids of
revolution design system, together with standard
objects such as prisms, spheres and boxes.

One of the main potential uses of shaded
pictures is in the assessment of the aesthetics
of a new piece of architecture or a proposed

product, This potential has not yet been
realized, although the cost of producing a
sequence of views from one object definition is
cheap,

Another application is data verification,
Small errors in objects defined with curved
surfaces often become blatantly obvious in a
shaded picture, despite the approximation by
planar faces. An example of such an error occurs
when two surfaces unintentionally intersect, such
as a car engine fouling the body. This type of
error is very obvious in a shaded picture,
Another error is the existence of ridges or

448

grooves in a surface, Although at every
quadrilateral face boundary there is a
discontinuity in the slope of the approximated
surface, it is surprising how obvious

discontinuities in the Briginal definition can
be. Errors of this nature have already been found
by using shaded pictures,

CONCLUSIONS

A pumber of methods of solving the
hidden-surface problem now demonstrate that a
variety of pictures can be produced economically.
The main area of use seems to be in the final
stages of computer-aided design. A further
reduction in cost is needed before shaded
pictures can become fully integrated with the
design process itself,

The method described in this paper compares
favourably both in speed and storage requirements
with other published methods, An advantage of the
method 1lies in the fact that a large part of the
computational 1load can be removed by using a
hardware screen map. This device could be either
a digital video disc or a solid state memory.

ACKNOWLEDGEMENTS

To R, M. Williamson for designing and
implementing the display routines enabling the
production of the pictures on an 8K PDPQ with 340
display.

REFERENCES

1. Appel A,,'On Calculating the Illusion of
Reality', IFIP Congress 68 Proc., EY9,
August 1968,

2. Wylie C,, Romney G., Evans D.C,, Erdahl A,,
'Halftone Perspective Drawings by
Computer', AFIPS Proc, FJCC 31 November
1967.

Assisted Assembly and
Solids', RADC Contract

3. Romney G.W,,'Computer
Rendering of
AF30(602)-4277.

4. Watkins G.S.,'A Real Time Visible Surface
Algorithm', UTECT-CSC~70-101,University
of Utah, June 1970,

5. Bouknight W.J.,'A Procedure for Generation of
Three~Dimensional Half-toned Computer
Graphics Presentations', CACM Vol 13, 0,
September 1Q70.

6. Warnock J.E.,'A Hidden Surface Algorithm for
Computer Generated Halftone Pictures',
RADC-TR-69-249, University of Utah, 1969.

7. Gouraud H.,'Continuous Shading of Curved
Surfaces', IEEE Transactions on
Computers, Vol, ¢-20,6, June 1971,

8. CAD Centre, Cambridge, England, ' THINGS - THree
dimensional INput of Graphical Solids’,

9. Newell M.E,, Newell R.G. and Sancha T.L. 'The
Economic Application of a Half-tone
Picture Generating Algorithm', Computer

Aided Design, IEE Conference Publication
86, Ssouthampton April 1972.

449

