
~ Computer Graphics, Volume 23, Number 3, July 1989

Hypertexture

ABSTRACT

We model phenomena intermediate between shape and tex-
ture by using space-filling applicative functions to modu-
late density. The model is essentially an extension of pro-
cedural solid texture synthesis, but evaluated throughout a
volumetric region instead of only at surfaces.

Ken Perlin
Courant Institute of the Mathematical Sciences

New York University

Eric M. Hoffert t
AT&T Pixel Machines

General Terms: volume modeling, noise, turbulence,
translucency, opacity, volume rendering, parallel render-
ing, distributed rendering

Additional Key Words and Phrases: hypertexture, gen-
eralized boolean, density modulation function (DMF), ray
marching, furrier synthesis

We have been able to obtain visually realistic representa-
tions of such shape+texture (hypertexture) phenomena as
hair, fur, fire, glass, fluid flow and erosion effects. We
show how this is done, first by describing a set of base
level functions to provide basic texture and control capabil-
ity, then by combining these to synthesize various
phenomena.

Hypertexture exists within an intermediate region between
object and not-object. We introduce a notion of general-
ized boolean shape operators to combine shapes having
such a region.

Rendering is accomplished by ray marching from the eye
point through the volume to accumulate opacity along each
ray. We have implemented our hypertexture rendering
algorithms on a traditional serial computer, a distributed
network of computers and a coarse-grain MIMD computer.
Extensions to the rendering technique incorporating refrac-
tion and reflection effects are discussed.

CR Categories and Subject Descriptors: C.1.2 [Proces-
sor Architectures]: Multiprocessors - parallel processors;
1.3.3 [Computer Graphics]: Picture/Image Generation -
display algorithms - viewing algorithms; 1.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling

curve, surface, solid and object representations; 1.3.7
[Computer Graphics]: Three Dimensional Graphics and
Realism - animation - visible line~surface algorithms;

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

1. Introduction

In computer graphics objects are traditionally modeled as
sets having infinitesimally thin boundary surfaces. Often a
computed or digitized texture or displacement is then
mapped onto the surface for enhanced realism. However,
there are limitations in treating object boundaries merely as
surfaces.

Many objects, such as fur or woven materials, have a com-
plex definition which is at best awkward, and at worst
impossible, to describe by a surface model. For other
objects, such as eroded materials or fluids, a highly com-
plex boundary is actually an artifact of a process that is
often more readily described volumetrically. Still other
objects, such as flame, clouds, or smoke, don't actually
have a well defined boundary surface at all.

We have found that the appearance of many such objects
can be described directly by some applicative function,
evaluated over a sampling of some region of R 3. Within
this framework we are intuitively working with a solid
block of material; visual characteristics of objects can be
finely tuned by inserting numerical controls into their
defining functional descriptions [3]. In that sense this work
extends the procedural texture generation work of [5]. As
in [5], we make use of a single controllable stochastic noise
function together with a toolkit of shaping functions and
programming constructs.

We render hypertexture by combining ideas from volume
rendering ([1],[7],[8],[10],[16]) with some new extensions
particularly suited to this model.

t Current address: Apple Computer, Cupertino, CA

©1989 ACM-O-89791- 312-4/89/O07/0253 $0O.75

253

 ,, S GGRAP. '89, Boston, 31 July-4 August, 1989

1.1 Overview

In this paper, we first discuss the modeling issues of hyper-
texture. Instead of modeling objects as connected surfaces,
we model objects as distributions of density. We describe a
mechanism to generate simple base-shape density distribu-
tions. These base-shapes have a hard region where they are
completely solid, and a soft region where they are indeter-
minate. Whenever we are in the soft region, we can apply
a toolkit of shaping functions, allowing the flexibility to
create and manipulate volumetric form. An analogy is to
think of this region as malleable, where the user can push
in, pull out, twist or otherwise deform simulated matter in a
controllable manner. We also develop a CSG style scheme
to combine shapes using the operators union, intersection,
difference and complement.

When the foundation of modeling has been described we
show how hypertexture is rendered. The renderer needs to
evaluate many density samples throughout the volume
since the model can become highly detailed and may con-
tain a high degree of depth complexity. The rendering
stage of the process allows a user to control the color and
opacity of the object at every point in R 3 via the use of
color maps. Since hypertexture rendering is relatively
expensive (O(n 3) with respect to image resolution), we
have implemented both distributed and parallel renderers.

2. Modeling Hypertexture

In order to describe hypertexture, we need to introduce the
concepts of:

an Object Density Function D(x) with range [0,1]
which describes the density of a 3D shape for all
points x throughout R 3. The soft region of an object
consists of all x such that 0 < D (x) < 1.

a Density Modulation Function (DMF) .~, which is
used to modulate an object's density within its soft
region. Each DMF is used to control some aspect of
an object's spatial characteristics; a collection of
DMFs comprises a volume modeling toolkit.

Hypertexture is created by successive application of DMFs
3~ to an object's D (x):

H(D (x), x)= f~ (. . . . f 2 (fl (f0 (D(x)))))

The DMF 3~ can be of three types: position-dependent,
position-independent and geometry-dependent. Position-
dependent DMFs are f (x), position-independent are f (k)
where k is a scalar and geometry-dependent DMFs may
depend on variables other than x such as density gradient in
the vicinity of x.

254

2.1 Soft Objects

Formally, a soft object is a density function D (x) over R 3,
where D is 1.0 inside the object, 0.0 outside the object, and
0.0 < D < 1.0 in a region of nonzero thickness in between.
As an example, consider the sphere centered at c of radius r
and softness s. This can be defined by the density function:

D [c,~sj(x) :
r 1 := (r-s~2) ~
r0 2 := (r+s/2) 2
r$:= (x~-cx) 2 + (x F c y) 2 + (x , - c ,) 2
D := ifr.2_<r~ 2 then 1.0 else

if r~_>ro ~ then 0.0 else (ro2-r~) / (ro2-rl 2)

where r 0 is the the outer (D=0) boundary, r 1 is the inner
(D =1) boundary and r~ is the radius of the sphere at the
point x.

2.2 Generalized Booleans

We extend the boolean operations of set union, set comple-
ment, set intersection and set difference t to soft objects A
and B through their density functions a(x) and b(x):

• intersection: Ac-tB =- a(x)b(x)

• complement: A ~ 1 . 0 - a(x)

s difference: A - B = A r ~ ~_ a(x) - a(x)b(x)

* union: A uB = A ~ _-- a (x) + b(x) - a(x)b(x).

As with traditional boolean shape operators, we can con-
struct expressions of arbitrary complexity to represent com-
binations of different primitive shapes. By using boolean
algebra, soft objects can be added or subtracted with
smooth and controllable fillets at the regions where they
join. Note that the size of the region where objects join can
be controlled by modifying the width of each object's soft
region. It should be noted that these operations don't actu-
ally form a complete boolean algebra (since from the above
definitions AriA ~:A and Ar-~A~ •) but do allow for stan-
dard set operations.

2.3 Base Density Modulation Functions

Here are the base level DMFs that higher-order DMFs are

t There is a rough analogy here to the principles of fuzzy set theory
[18]. We choose algebraic sum and algebraic product for union and inter-
section, respectively [19], instead of the fuzzy set theoretic rnin and m a x
operators [18], because the former preserve continuity. This is needed to
maintain smoothness of fillets at the regiotas where objects join. It would
be interesting also to try the rain and max operators.

~ Computer Graphics, Volume 23, Number 3, July 1989

built upon.

bias

We use bias to either push up or pull down an object 's den-
sity. A function that controls mean, bias~, is a power curve
defined over the unit interval such that biasb(O)=O,
biaSb(1/2)=b, and bias~,(1)=l. By increasing or decreasing
b, we can thus bias the values in an object 's soft region up
or down. Biaso.5 is the identity function over [0,1].

Bias can be defined by the power function:

In (b)
t/.(0.5)

gain

We use gain to make an object 's density gradient either
flatter or steeper. A function that controls variance, gai%
is defined over the unit interval such that: gaing(O)=O,
gaing(l/4)=(I-g)/2, gaing(1/2)=l/2, gaing(3/4)=(l+g)/2,
and gai%(1)=l. By increasing or decreasing g, we can
thus increase or decrease the rate at which the midrange of
a object 's soft region goes from 0.0 to 1.0. Gaino.5 is the
identity function over [0,1].

Gain can be defined as a spline of two bias curves:

if t < 0.5 thenbiasl_g(2t) / 2
else 1 -biasl_s(2-2t) / 2

noise

An approximation to white noise band-limited to a single
octave, noise [5] allows us to introduce randomness into
the digital signal without sacrificing either continuity or
control over spatial frequency.

We implement noise as a summation of pseudorandom
spline knots, one for each point on the integer lattice of R 3.
The knot ~i,j,k at lattice point (i,j,k) consists of a pseu-
dorandom linear gradient 1-' i j k weighted in each dimension
by a smooth drop off functio~ 0~(t) t:

f ia,k(u,v,w) = u)o (v)co(w) (r a,k • (u,v,w))

where " o " denotes vector inner product. We choose for
co(t) the cubic weighting function:

if I t l < l then 21t13-31t12+l else 0

giving the spline a support of 2 in each dimension, so that
in practice for any given point in R 3 we only need to take
the sum of the 23 nearest spline knots. Thus our noise
implementation is defined at point (x,y,z) by:

Lad +1 Ly.] +1 LzJ +1
E Z E

i=[xJ J=LyJ ~=l.,J
~i,j,k(X--i, y --j,z--k)

w h e r e " [J " denotes the floor function.

For speed, we implement the pseudo-random gradient by
hashing (i,j,k) to create an index into a precomputed gra-
dient table G:

U V
b = 0.25 b = 0.50 b = 0.75

Different bias curves

g = 0.25 g = 0 .50

Different gain curves

/
g = 0.75

Fi,j, k = G [~ i + ~ (j + ~ (k)))]

where:

• ~(i) = P[i~a,], where P is a precomputeed array contain-
ing a pseudorandom permutation of the first n integers,

• G is a precomputed array of n pseudorandom vectors
uniformly distributed on the unit sphere,

• n is the length of the P and G arrays (in practice, we find
n =256 to be a reasonable value).

To ensure that each element v of G is uniformly distributed
on the unit sphere, we employ a three step Monte Carlo

t It would have been somewhat faster and simpler to use a constant
F (which is essentially a wavelet model), but we have found that this pro-
duces visible artifacts at the lattice points, where gradient becomes zero.

255

"~~:~SIGG RAPH '89, Boston, 31 July-4 August, 1989

technique:

(1) generate each coordinate of v, choosing
uniformly from the interval [-1,+1]

(2) if I v I > 1.0 then goto (1)
(3) normalize the length of v

It is important to use the three-fold table lookup of
"dp(i+dp(j+d~(k)))" above for hashing the three integer lat-
tice coordinates (i , j ,k), so that neighboring lattice points
will not have correlated indices into the gradient table G
(which would otherwise be visible as unsightly patterns).

turbulence

Because of its great general utility in building higher level
DMFs, we also include the turbulence function of [5] as a
base function, defined by:

1 abs (2---- 7- noise (2 i x))
i

Note that this is not a true turbulence model, but merely a
method of simulating the appearance of turbulent activity.

arithmetic base functions

The set of base functions is rounded out by basic
mathematical routines such as the abs and sine functions,
together with arithmetic and control flow operations.

2.4 Higher Level Functions (Hypertextures)

In this section, we describe how to create and combine
DMFs to generate hypertextural phenomena. In most of our
examples, the shape defined by the object density function
of the hypertexture is very simple, such as a cube, sphere
or torus. The DMFs shape the soft region of these objects;
color and alpha maps determine the mapping of density to
color and transparency.

Basic Noise

Figure noisy sphere shows a sphere with noise of fre-
quency f and amplitude 1/f used to scale the radius:

]
D(x) = sphere(x (1 + ~noise (f x)))

The frequency controls the number of bumps on the sur-
face; the amplitude controls their height.

noisy sphere

Varying Frequency

Figure high-frequency noisy sphere shows the same
sphere with noise of twice the frequency and half the
amplitude. This creates smaller but similarly shaped pertur-
bations of the surface.

Varying Amplitude

Figure high-amplitude noisy sphere is the same as above
but with amplitude increased, so that the noise modulation
dominates the shape.

Combining Frequencies

Figure fractal sphere shows the same sphere again, with
noise of many different frequencies summed together:

high-frequency noisy sphere

256

~ Computer Graphics, Volume 23, Number 3, July 1989

high-amplitude noisy sphere dripping sphere

fractal sphere

D (x) : sphere(x (1 + L~ " ~fnoise(2ifx)))
The base frequency here is f; at each step of the summa-
tion, amplitude is inversely proportional to frequency.

1 Now the shape takes on a characteristic -~ fractal appear-
d

ance.

Shaped noise

Figure dripping sphere illustrates what happens when we
use noise to modulate only the y component of x in order to
simulate the appearance of dripping material.

blue glass

renderer at a sample is different from its value at the previ-
ous sample. We add an extra channel to the renderer's
color table to modulate refractive index as a function of
density. In this example we apply it to one of the noisy
spheres seen earlier.

Erosion

Figure eroded cube is an example of an erosion model. We
use generalized booleans to generate this composite shape
by applying the intersection operator to combine a fractal
sphere with a cube. The turbulence function is also used
here, to create color variations through the hypertexture as
in [5].

Transparency

Figure blue glass illustrates the notion of refractive hyper-
texture. In this case, rays are bent following Shell's law
[20] whenever the refractive index encountered by the

Fire

Figure fire ball was created by the density function:

257

~\,~SIGGRAPH '89, Boston, 31 July-4 August, 1989

eroded cube

geometry-dependent function project. At the surface we
compute noise of high frequency freq, and use it to modu-
late the object density D(x), as follows:

s := noise(freq * project(x))
f := gaino.9(biaso.3(s)) * D(x)

Figure furry donut shows this algorithm applied to a donut
shaped object. The bias and gain adjustments are used to
shape the noise profile into a relatively hard boundary (gain
adjustment) with more empty space than hair (bias adjust-
ment). The hairs will all be of the same length, equal to the
width of the object's soft region. The projection function
can be computed analytically here, since the object's
geometry is well understood. This is an example of a
geometry-dependent DMF.

To make the fur curly as in figure tribble we use noise to
displace x before projecting. We use a vector valued func-
tion noise for this, instead of the usual scalar noise

fire ball

D(x) = sphere(x (1 + turbulence(x)))

The color map is structured in this case so that low densi-
ties map to red, higher densities to yellow, This is a direct
extension to three dimensions of the flame model used to
create the Solar Corona of [5].

We now describe an example of hypertexture in greater
detail, to give a sense of how these algorithms are
developed.

furry donut

Hair and Fur

We create furlike hypertexture in stages. First we start
with a soft object defined by D (x). The fur will exist in the
object's soft region, each filament growing out from the
inner boundary (where D = 1.0) towards the outer boun-
dary (where D = 0.0).

We first project each point x in the soft region perpendicu-
larly down to the inner solid boundary surface using the tribble

2sg

@ ~ Computer Graphics, Volume 23, Number 3, July 1989

function, so that the displacement will occur in an arbitrary
direction. This creates a sort of three dimensional ripple
glass effect, as though straight hair were being seen
through a distorted space:

d := D(x)
x" := x + gaino.8(1 - d) * curliness * noise(x)
s := noise(freq * project(x'))
f := gaino.9(biaso.3(s)) * d

There are several things to note in the above algorithm.
The scalar variable curliness controls the magnitude of the
curl. We use the expression gaino.s(1-d) to shape the
curl, so that the hairs are initially straight where they grow
out of the root (where D = 1.0), and gradually curl up as
they reach the outer boundary (where D = 0.0). The vector
valued noise function is built from noise as:

noise = [noise(x-c),noise(x),noise(x+~)]

where the offset vector cr is made large enough so that the
three calls to noise are guaranteed to return uncorrelated
values (since each call will encounter an entirely different
set of pseudorandom knots).

Note how in all of the above we create a relatively simple
algorithmic mechanism with a small number of scalar vari-
ables that control aspects of perceptual interest (filament
length, fineness, curliness, etc). As in [5], these are essen-
tially knobs that a user of a hypertexture system can adjust
at a high level to synthesize a particular variety of fur,
without necessarily knowing the details of furrier synthesis.

3. Rendering ttypertexture

Implementation of hypertexture rendering is only practical
using volume rendering techniques, since hypertextural
objects often have no well defined surfaces. Since volume
rendering techniques have rime complexity O(n 3) with
respect to resolution, they are typically slow. Fortunately
the DMF evaluation is independent at each sample point, so
hypertexture is particularly suitable for parallel or distri-
buted implementations. We have found that designing and
rendering hypertexture can be done on a serial yon Neu-
mann machine, but is much more enjoyable when com-
puted in parallel. This section focuses on the hypertexture
rendering algorithm and its different implementations.

3.1 Ray Marching Algorithm

In this section, we describe the ray marching algorithm [1]
to generate images of hypertexture. As in traditional ray
casting, the ray marcher casts a ray into model space for
every pixel. We first clip each ray to a parallelpiped that
bounds the hypertexture volume, using the optimal

bounding test of [13]. If the ray does not intersect the
paraUelpiped, we move to the next pixel for processing. If
the ray does intersect the parallelpiped, the ray parameters
I.to and l.tl, representing respectively the entry and exit
points of the parallelpiped, are computed. Ray marching
begins at the ray parameter value !1o, and proceeds at a
fixed increment Ag. We sample the model along the ray at
points:

where

x = x ~ + k Axrt

k = 0 , 1 , 2 such that J.to+k AI.t_<l.t 1

and Ax~t is the displacement along the ray, in model space,
at each increment.

Aliasing of hypertexture is a potential problem. In practice
we have achieved excellent results by manually tuning
each hypertexture to be frequency clamped [17] as a func-
tion of ray-marching step size. For example, in the tur-
bulence function described above, we stop the iteration
when the period of the noise function is as small as the size
of Axe. The fact that an empirical approach works so well
is encouraging but is clearly not definitive +.

At each point along the ray, we first evaluate a DMF f(x).
If 0 < f (x) < 1, then we evaluate the field gradient V f, nor-
malize it, and use it as a normal vector for diffuse and/or
specular shading, as well as for any refraction and
reflection computations. To compute V f it is sufficient to
evaluate f at two points perpendicularly off the ray in
mutually perpendicular directions Ax v and Axe. Since we
have already computed the result of f a t our previous sam-
ple x-Ax~t , we can then approximate the gradient of f with
respect to (I.t,v,c0) by the finite difference vector:

f(x)-f(x-Axlx),f(x+Ax v)-f(x) ,f(x+Axo)-f(x)]

To convert this gradient vector in (I.t,v,00) space into a gra-
dient vector in (x,y,z) space, we multiply by the transfor-
marion matrix:

Ax~t
Axv

Axo

t A more systematic approach to antialiasing hypertexture is still a
subject of research. We corljecture that it will involve discovering percep-
tually equivalent tradeoffs between different base functions (so that, for
example, increasing gain at small scales, which increases gradient will au-
tomatically force the properly reduced amplitude).

259

:(~SlGGBAPH '89, Boston, 31 July-4 August, 1989

The ray basis vectors Ax~t, Axv, and Ax~ can be precom-
puted once per ray. For an orthogonal view, they only need
be computed once for the entire image.

Note that the expense of ray marching triples within an
object's soft region, since computing Vf requires us to
evaluate f three times inslead of just once per sample.

We must also accumulate opacity for visibility determina-
tion. A method similar to that of [7] is employed along the
ray, so that at the kth step:

running time by 64, we usually do our quick "is it even
there?" tests at a resolution of 32×32, which take a few
seconds, our rough tests at 128×128, which take a few
minutes, and our final runs at 512×512, which take a few
hours if run serially. As a rule of thumb, we see how many
seconds a run takes at 32x32 to estimate how many serial
hours it will be at 512×512. Final runs would take any-
where from 3 to 15 hours, depending on hypertexture com-
plexity, on a single Sun 4-260 workstation. To improve
this performance, we have taken the two following
approaches to parallelizing the algorithm.

t := o~k(l-~)
color := color + t * colork

~ : = ~ + t

where color k and ¢x k are sample color and opacity, respec-
tively. To ensure resolution independence, we make opa-
city a function of both density and step-size:

~k := 1- (1 -dens i t y) c * stcr,-~izc

Parallel Rendering

The ray marcher was implemented in C on an AT&T Pixal
Machine [14], an MIMD coarse-grain computer with gen-
eral purpose floating-point processors, having relatively lit-
tle memory per processor. In our implementation each of
64 processors uses an identical hypertexture program to
compute a different interleaved subset of the final screen
image, an arrangement that tends to optimize load balanc-
ing among processors.

where c is a normalizing constant. Color is the product of
the shading value and the user specified color. The color
mapping can be as simple or as complex as desired; step
functions or splines may be appropriate. This same
approach to color mapping was taken in [5]. Color maps
are typically used to identify or isolate particular features in
a scalar field [10]. Here again the local gradient V f i s used
to estimate the local normal vector. The use of opacity
allows us to see amorphous or very fine volumetric features
with a great deal of clarity.

The above differs from the method of [7], since we proceed
in a front to back order (as we move along the ray from its
entry point towards its exit point) as opposed to back to
front order. If the accumulated opacity reaches unity, the
evaluation along a ray stops before we exit the volume.
This avoids unnecessary computation for regions that are
entirely obscured.

Since in practice we have been able to tune our hypertex-
tures empirically to be frequency clamped [17], do have
not needed to use supersampling. We note though that sto-
chastic ray marching might be employed as an extension of
our algorithm, implemented by firing jittered rays with jit-
tered step phases within each pixel. Similarly, motion blur
might be achieved by sampling rays over time [21]. Other
improvement might be made by utilizing recent work on
optimization of ray marching [12].

Our memory requirements are particularly small because
hypertexture is highly procedural. The only significant
data space required is for color maps, alpha map and the
noise function lookup tables. The sum of these is less than
5 Kbytes. Thus we are able to maintain a complete copy of
the database at each processor.

Since hypertexture can be evaluated independently at each
pixel, and because each processor maintains its own data-
base, this implementation has the following characteristics:

it executes independently and asynchronously at
each node
no interprocessor communication is required
the cost associated with parallelizing the algorithm is
negligible

We have found that increasing the number of processors
produces a linear (optimal) decrease in execution time.
Therefore in principle hypertexture could be generated
interactively, since with enough processors, the time to
render an image would be bounded only by the time to
render the slowest pixel (in our experience, a fraction of a
second at most).

Distributed Rendering

Running Time

An nxn image requires O (n 3) sample evaluations, so run-
ning time rises dramatically with increased resolution.
Since increasing resolution by a factor of 4×4 increases
260

In addition to implementing the ray-marcher on a parallel
computer, we also implemented the distributed ray-
marching computation over a local-area network of Unix
workstations on a shared Network File System. Each
workstation runs the identical program, compiled for its

~L..._~SIGG RAPH '89, Boston, 31 July-4 August, 1989

[17] Norton, A. Clamping: A Method of Antialiasing
Textured Surfaces by Bandwidth Limiting in Object
Space. In Computer Graphics 16, 3 (August 1982).

[18] Zadeh, L. A., Fuzzy Sets and Applications (selected
papers), John Wiley and Sons, New York, 1987.

[19] Zimmerman, H. J., Fuzzy Set Theory- and Its Appli-
cations, Kluwer-Nijhoff, Hingharn, 1985, pp. 30-36.

[20] Menzel, D. H., ed., Fundamental Formulas of Phy-
sics, vol. 2, Dover, New York, 1960, pp. 370-371.

[21] Cook, R., Distributed Ray Tracing, In Computer
Graphics 18, 3 (August 1984).

[22] Perlin, K., Synthesizing Realistic Textures by the
Composition of Perceptually Motivated Functions
[Ph.D. Dissertation], New York University, (Feb.
1986).

[23] Kajiya, J., Anisotropic Reflection Models. In Com-
puter Graphics 19, 3 (August 1985).

262

~ Computer Graphics, Volume 23, Number 3, July 1989

particular processor, to compute different pixels of the
same image. In practice we have observed a linear
speedup over the single processor serial version of the
algorithm, using the dozen or so workstations in our lab.

4. Summary, Conclusions and Future

We have described a new modeling technique which
modulates shape by applying procedural texture to a con-
tinuous volumetric region. The method contrasts with pre-
vious techniques in that we manipulate matter throughout
R 3, instead of only at surfaces. This approach allows us to
create the appearance of complex, real-world phenomena
that would be difficult or impossible to generate with previ-
ous methods. The computational model is O(n 3) but
optimally parallelizable, achieving linear decreases in exe-
cution time with increases in the number of processors.

Clearly the model as described is highly empirical, leaving
unanswered the disturbing question of why such simple
techniques produce such visually convincing results. Prior
work [22] has led us to believe that there is a sound percep-
tual basis for this, and that in general procedural textures
can be organized into a human perceptual taxonomy. We
plan in future work to extend this taxonomy to the descrip-
tion of hypertexture.

Our newest research concentrates on applying hypertexture
to empirical shape data such as cranio-facial structures and
teapots. By performing preprocessing passes through
volumetric shape images, we are currently implementing
cast shadows and extending geometry-dependent functions
such as the project operator of fur hypertexture to empiri-
cal shapes at O (n 3) cost. We also plan to incorporate more
sophisticated shading models, in particular the anisotropic
shading of Kajiya [23].

5. Acknowledgements

The authors greatly appreciate the insightful comments of
Don Mitchell, Jim Conant, Dave Weimer, Jim Demmel,
and Mark Perlin. The reviewers' comments were invalu-
able. In particular Ken would like to honor the request of
one reviewer by offering a most humble apology for
inflicting the term "furrier synthesis" on an unsuspecting
scientific populace.

References

[1] Tuy, H. and Tuy, L. Direct 2-D Display of 3-D
Objects, IEEE Computer Graphics and Applications
4, 10 (October 1984), pp. 29-33.

[2] Lorensen, W. Marching Cubes: A High Resolution
3D Surface Construction Algorithm, In Computer

Graphics 21, 4 (July 1987), pp. 163-169.

[3] Perlin, K. Functionally Based Modeling. SIG-
GRAPH Course Notes (August 1988).

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[121

[13]

[14]

[15]

[16]

Frieder, G., Gordon, D. and Reynolds, R. A. Back-
to-Front Display of Voxel-Based Objects, IEEE
Computer Graphics and Applications, (January
1985), pp. 52-60.

Perlin, K. An Image Synthesizer, In Computer
Graphics 19, 3 (July 1985).

Kaufman, Arie. Efficient Algorithms for 3D Scan-
Conversion of Parametric Curves, Surfaces and
Volumes, In Computer Graphics 21, 4 (July 1987).

Levoy, Marc. Volume Rendering: Display of Surface
from Volume Data, IEEE Computer Graphics and
Applications (May 1988), pp. 29-36.

Drebin, R., Carpenter, L. and Hanrahan, P. Volume
Rendering, In Computer Graphics 22, 4 (August
1988).

Sabella, Paolo. A Rendering Algorithm for Visualiz-
ing 3D Scalar Fields, In Computer Graphics 22, 4
(August 1988).

Upson, C. and Keeler, M. V-BUFFER: Visible
Volume Rendering, In Computer Graphics 22, 4
(August 1988).

Kaufman, A. and Bakalash, R. A 3D Cellular Frame
Buffer, Proceedings of EUROGRAPHICS 1985
(September 1985), Nice, France, pp. 215-220.

Amanatides, J. and Woo, A., A Fast Voxel Traversal
Algorithm for Ray Tracing, Proceedings of EURO-
GRAPttlCS 1987 (Amsterdam, Holland), pp. 3-10.

Toth, D. L., On Ray Tracing Parametric Surfaces, In
Computer Graphics 19, 3 (August 1985).

Potmesil, M. and Hoffert, E., The Pixel Machine: A
Parallel Image Computer, In Computer Graphics 23,
3 (August 1989).

Blinn, J., A Generalization of Algebraic Surface
Drawing, "ACM Transactions on Graphics 1," pp
235., 1982.

Kajiya, J., Herzen, B., "Ray Tracing Volume Densi-
ties," In Computer Graphics 18, 3 (August 1984).

261

