
~ Computer Graphics, Volume 23, Number 3, July 1989 

Hypertexture 

ABSTRACT 

We model phenomena intermediate between shape and tex- 
ture by using space-filling applicative functions to modu- 
late density. The model is essentially an extension of pro- 
cedural solid texture synthesis, but evaluated throughout a 
volumetric region instead of only at surfaces. 
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We have been able to obtain visually realistic representa- 
tions of such shape+texture (hypertexture) phenomena as 
hair, fur, fire, glass, fluid flow and erosion effects. We 
show how this is done, first by describing a set of base 
level functions to provide basic texture and control capabil- 
ity, then by combining these to synthesize various 
phenomena. 

Hypertexture exists within an intermediate region between 
object and not-object. We introduce a notion of general- 
ized boolean shape operators to combine shapes having 
such a region. 

Rendering is accomplished by ray marching from the eye 
point through the volume to accumulate opacity along each 
ray. We have implemented our hypertexture rendering 
algorithms on a traditional serial computer, a distributed 
network of computers and a coarse-grain MIMD computer. 
Extensions to the rendering technique incorporating refrac- 
tion and reflection effects are discussed. 

CR Categories and Subject Descriptors: C.1.2 [Proces- 
sor Architectures]: Multiprocessors - parallel processors; 
1.3.3 [Computer Graphics]: Picture/Image Generation - 
display algorithms - viewing algorithms; 1.3.5 [Computer 
Graphics]: Computational Geometry and Object Modeling 

curve, surface, solid and object representations; 1.3.7 
[Computer Graphics]: Three Dimensional Graphics and 
Realism - animation - visible line~surface algorithms; 
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1. Introduction 

In computer graphics objects are traditionally modeled as 
sets having infinitesimally thin boundary surfaces. Often a 
computed or digitized texture or displacement is then 
mapped onto the surface for enhanced realism. However, 
there are limitations in treating object boundaries merely as 
surfaces. 

Many objects, such as fur or woven materials, have a com- 
plex definition which is at best awkward, and at worst 
impossible, to describe by a surface model. For other 
objects, such as eroded materials or fluids, a highly com- 
plex boundary is actually an artifact of a process that is 
often more readily described volumetrically. Still other 
objects, such as flame, clouds, or smoke, don't actually 
have a well defined boundary surface at all. 

We have found that the appearance of many such objects 
can be described directly by some applicative function, 
evaluated over a sampling of some region of R 3. Within 
this framework we are intuitively working with a solid 
block of material; visual characteristics of objects can be 
finely tuned by inserting numerical controls into their 
defining functional descriptions [3]. In that sense this work 
extends the procedural texture generation work of [5]. As 
in [5], we make use of a single controllable stochastic noise 
function together with a toolkit of shaping functions and 
programming constructs. 

We render hypertexture by combining ideas from volume 
rendering ([1],[7],[8],[10],[16]) with some new extensions 
particularly suited to this model. 

t Current address: Apple Computer, Cupertino, CA 
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1.1 Overview 

In this paper, we first discuss the modeling issues of hyper- 
texture. Instead of modeling objects as connected surfaces, 
we model objects as distributions of density. We describe a 
mechanism to generate simple base-shape density distribu- 
tions. These base-shapes have a hard region where they are 
completely solid, and a soft region where they are indeter- 
minate. Whenever we are in the soft region, we can apply 
a toolkit of shaping functions, allowing the flexibility to 
create and manipulate volumetric form. An analogy is to 
think of this region as malleable, where the user can push 
in, pull out, twist or otherwise deform simulated matter in a 
controllable manner. We also develop a CSG style scheme 
to combine shapes using the operators union, intersection, 
difference and complement. 

When the foundation of modeling has been described we 
show how hypertexture is rendered. The renderer needs to 
evaluate many density samples throughout the volume 
since the model can become highly detailed and may con- 
tain a high degree of depth complexity. The rendering 
stage of the process allows a user to control the color and 
opacity of the object at every point in R 3 via the use of 
color maps. Since hypertexture rendering is relatively 
expensive (O(n 3) with respect to image resolution), we 
have implemented both distributed and parallel renderers. 

2. Modeling Hypertexture 

In order to describe hypertexture, we need to introduce the 
concepts of: 

an Object Density Function D(x) with range [0,1] 
which describes the density of a 3D shape for all 
points x throughout R 3. The soft region of an object 
consists of all x such that 0 < D (x) < 1. 

a Density Modulation Function (DMF) .~, which is 
used to modulate an object's density within its soft 
region. Each DMF is used to control some aspect of 
an object's spatial characteristics; a collection of 
DMFs comprises a volume modeling toolkit. 

Hypertexture is created by successive application of DMFs 
3~ to an object's D (x): 

H(D (x), x)= f~ ( . . . . f 2  (fl (f0 (D(x))))) 

The DMF 3~ can be of three types: position-dependent, 
position-independent and geometry-dependent. Position- 
dependent DMFs are f ( x ), position-independent are f (k) 
where k is a scalar and geometry-dependent DMFs may 
depend on variables other than x such as density gradient in 
the vicinity of x. 
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2.1 Soft Objects 

Formally, a soft object is a density function D (x) over R 3, 
where D is 1.0 inside the object, 0.0 outside the object, and 
0.0 < D < 1.0 in a region of nonzero thickness in between. 
As an example, consider the sphere centered at c of radius r 
and softness s. This can be defined by the density function: 

D [c,~sj(x) : 
r 1 := (r-s~2) ~ 
r0 2 := (r+s/2) 2 
r$ := (x~-cx)  2 + ( x F c y )  2 + ( x , - c , )  2 
D := ifr.2_<r~ 2 then 1.0 else 

if r~_>ro ~ then 0.0 else (ro2-r~) / (ro2-rl 2) 

where r 0 is the the outer (D=0) boundary, r 1 is the inner 
(D =1) boundary and r~ is the radius of the sphere at the 
point x. 

2.2 Generalized Booleans 

We extend the boolean operations of set union, set comple- 
ment, set intersection and set difference t to soft objects A 
and B through their density functions a(x) and b(x): 

• intersection: Ac-tB =- a(x)b(x) 

• complement: A ~ 1 . 0 -  a(x) 

s difference: A - B = A r ~  ~_ a(x) - a(x)b(x) 

* union: A uB = A ~ _-- a (x) + b(x) - a(x)b(x). 

As with traditional boolean shape operators, we can con- 
struct expressions of arbitrary complexity to represent com- 
binations of different primitive shapes. By using boolean 
algebra, soft objects can be added or subtracted with 
smooth and controllable fillets at the regions where they 
join. Note that the size of the region where objects join can 
be controlled by modifying the width of each object's soft 
region. It should be noted that these operations don't actu- 
ally form a complete boolean algebra (since from the above 
definitions AriA ~:A and Ar-~A~ • ) but do allow for stan- 
dard set operations. 

2.3 Base Density Modulation Functions 

Here are the base level DMFs that higher-order DMFs are 

t There is a rough analogy here to the principles of  fuzzy set theory 
[18]. We choose algebraic sum and algebraic product for union and inter- 
section, respectively [19], instead of  the fuzzy set theoretic rnin and m a x  
operators [18], because the former preserve continuity. This is needed to 
maintain smoothness of  fillets at the regiotas where objects join. It would 
be interesting also to try the rain and max operators. 
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built upon. 

bias 

We use bias to either push up or pull down an object 's den- 
sity. A function that controls mean, bias~, is a power curve 
defined over the unit interval such that biasb(O)=O, 
biaSb(1/2)=b, and bias~,(1)=l. By increasing or decreasing 
b, we can thus bias the values in an object 's soft region up 
or down. Biaso.5 is the identity function over [0,1]. 

Bias can be defined by the power function: 

In (b) 
t/.(0.5) 

gain 

We use gain to make an object 's density gradient either 
flatter or steeper. A function that controls variance, gai% 
is defined over the unit interval such that: gaing(O)=O, 
gaing(l/4)=(I-g)/2, gaing(1/2)=l/2, gaing(3/4)=(l+g)/2, 
and gai%(1)=l. By increasing or decreasing g, we can 
thus increase or decrease the rate at which the midrange of 
a object 's soft region goes from 0.0 to 1.0. Gaino.5 is the 
identity function over [0,1]. 

Gain can be defined as a spline of two bias curves: 

if t < 0.5 thenbiasl_g(2t) / 2 
else 1 -biasl_s(2-2t) / 2 

noise 

An approximation to white noise band-limited to a single 
octave, noise [5] allows us to introduce randomness into 
the digital signal without sacrificing either continuity or 
control over spatial frequency. 

We implement noise as a summation of  pseudorandom 
spline knots, one for each point on the integer lattice of  R 3. 
The knot ~i,j,k at lattice point (i,j,k) consists of a pseu- 
dorandom linear gradient 1-' i j k weighted in each dimension 
by a smooth drop off  functio~ 0~(t) t: 

f ia,k(u,v,w) =  u)o (v)co(w) (r a,k • (u,v,w)) 

where " o "  denotes vector inner product. We choose for 
co(t) the cubic weighting function: 

if  I t l < l  then 21t13-31t12+l  else 0 

giving the spline a support of 2 in each dimension, so that 
in practice for any given point in R 3 we only need to take 
the sum of  the 23 nearest spline knots. Thus our noise 
implementation is defined at point (x,y,z) by: 

Lad +1 Ly.] +1 LzJ +1 
E Z E 

i=[xJ J=LyJ ~=l.,J 
~i,j,k(X--i, y --j,z--k ) 

w h e r e "  [J " denotes the floor function. 

For speed, we implement the pseudo-random gradient by 
hashing (i,j,k) to create an index into a precomputed gra- 
dient table G: 

U V 
b = 0.25 b = 0.50 b = 0.75 

Different bias curves 

g = 0.25 g = 0 .50 

Different gain curves 

/ 
g = 0.75 

Fi,j, k = G [ ~ i + ~ ( j + ~ ( k ) ) ) ]  

where: 

• ~(i) = P[i~a,],  where P is a precomputeed array contain- 
ing a pseudorandom permutation of the first n integers, 

• G is a precomputed array of  n pseudorandom vectors 
uniformly distributed on the unit sphere, 

• n is the length of the P and G arrays (in practice, we find 
n =256 to be a reasonable value). 

To ensure that each element v of  G is uniformly distributed 
on the unit sphere, we employ a three step Monte Carlo 

t It would have been somewhat  faster and simpler to use a constant 
F (which is essentially a wavelet model), but we have found that this pro- 
duces visible artifacts at the lattice points, where gradient becomes zero. 
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technique: 

(1) generate each coordinate of v, choosing 
uniformly from the interval [-1,+1] 

(2) if I v I > 1.0 then goto (1) 
(3) normalize the length of v 

It is important to use the three-fold table lookup of 
"dp(i+dp(j+d~(k)))" above for hashing the three integer lat- 
tice coordinates (i , j ,k),  so that neighboring lattice points 
will not have correlated indices into the gradient table G 
(which would otherwise be visible as unsightly patterns). 

turbulence 

Because of its great general utility in building higher level 
DMFs, we also include the turbulence function of [5] as a 
base function, defined by: 

1 abs ( 2---- 7- noise ( 2 i x ) ) 
i 

Note that this is not a true turbulence model, but merely a 
method of simulating the appearance of turbulent activity. 

arithmetic base functions 

The set of base functions is rounded out by basic 
mathematical routines such as the abs and sine functions, 
together with arithmetic and control flow operations. 

2.4 Higher Level Functions (Hypertextures) 

In this section, we describe how to create and combine 
DMFs to generate hypertextural phenomena. In most of our 
examples, the shape defined by the object density function 
of the hypertexture is very simple, such as a cube, sphere 
or torus. The DMFs shape the soft region of these objects; 
color and alpha maps determine the mapping of density to 
color and transparency. 

Basic Noise 

Figure noisy sphere shows a sphere with noise of fre- 
quency f and amplitude 1/f used to scale the radius: 

] 
D(x) = sphere(x (1 + ~noise ( f x ) ) )  

The frequency controls the number of bumps on the sur- 
face; the amplitude controls their height. 

noisy sphere 

Varying Frequency 

Figure high-frequency noisy sphere shows the same 
sphere with noise of twice the frequency and half the 
amplitude. This creates smaller but similarly shaped pertur- 
bations of the surface. 

Varying Amplitude 

Figure high-amplitude noisy sphere is the same as above 
but with amplitude increased, so that the noise modulation 
dominates the shape. 

Combining Frequencies 

Figure fractal sphere shows the same sphere again, with 
noise of many different frequencies summed together: 

high-frequency noisy sphere 
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high-amplitude noisy sphere dripping sphere 

fractal sphere 

D ( x ) :  sphere(x (1 + L~ " ~fnoise(2ifx))) 
The base frequency here is f; at each step of the summa- 
tion, amplitude is inversely proportional to frequency. 

1 Now the shape takes on a characteristic -~ fractal appear- 
d 

ance. 

Shaped noise 

Figure dripping sphere illustrates what happens when we 
use noise to modulate only the y component of x in order to 
simulate the appearance of dripping material. 

blue glass 

renderer at a sample is different from its value at the previ- 
ous sample. We add an extra channel to the renderer's 
color table to modulate refractive index as a function of 
density. In this example we apply it to one of the noisy 
spheres seen earlier. 

Erosion 

Figure eroded cube is an example of an erosion model. We 
use generalized booleans to generate this composite shape 
by applying the intersection operator to combine a fractal 
sphere with a cube. The turbulence function is also used 
here, to create color variations through the hypertexture as 
in [5]. 

Transparency 

Figure blue glass illustrates the notion of refractive hyper- 
texture. In this case, rays are bent following Shell's law 
[20] whenever the refractive index encountered by the 

Fire 

Figure fire ball was created by the density function: 
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eroded cube 

geometry-dependent function project. At the surface we 
compute noise of high frequency freq, and use it to modu- 
late the object density D(x), as follows: 

s := noise(freq * project(x)) 
f := gaino.9(biaso.3(s)) * D(x) 

Figure furry donut shows this algorithm applied to a donut 
shaped object. The bias and gain adjustments are used to 
shape the noise profile into a relatively hard boundary (gain 
adjustment) with more empty space than hair (bias adjust- 
ment). The hairs will all be of the same length, equal to the 
width of the object's soft region. The projection function 
can be computed analytically here, since the object's 
geometry is well understood. This is an example of a 
geometry-dependent DMF. 

To make the fur curly as in figure tribble we use noise to 
displace x before projecting. We use a vector valued func- 
tion noise for this, instead of the usual scalar noise 

fire ball 

D(x) = sphere(x (1 + turbulence(x))) 

The color map is structured in this case so that low densi- 
ties map to red, higher densities to yellow, This is a direct 
extension to three dimensions of the flame model used to 
create the Solar Corona of [5]. 

We now describe an example of hypertexture in greater 
detail, to give a sense of how these algorithms are 
developed. 

furry donut 

Hair and Fur 

We create furlike hypertexture in stages. First we start 
with a soft object defined by D (x). The fur will exist in the 
object's soft region, each filament growing out from the 
inner boundary (where D = 1.0) towards the outer boun- 
dary (where D = 0.0). 

We first project each point x in the soft region perpendicu- 
larly down to the inner solid boundary surface using the tribble 
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function, so that the displacement will occur in an arbitrary 
direction. This creates a sort of three dimensional ripple 
glass effect, as though straight hair were being seen 
through a distorted space: 

d := D(x) 
x" := x + gaino.8(1 - d) * curliness * noise(x) 
s := noise(freq * project(x'))  
f := gaino.9(biaso.3(s)) * d 

There are several things to note in the above algorithm. 
The scalar variable curliness controls the magnitude of the 
curl. We use the expression gaino.s(1-d) to shape the 
curl, so that the hairs are initially straight where they grow 
out of the root (where D = 1.0), and gradually curl up as 
they reach the outer boundary (where D = 0.0). The vector 
valued noise function is built from noise as: 

noise = [ noise(x-c),noise(x),noise(x+~)] 

where the offset vector cr is made large enough so that the 
three calls to noise are guaranteed to return uncorrelated 
values (since each call will encounter an entirely different 
set of pseudorandom knots). 

Note how in all of  the above we create a relatively simple 
algorithmic mechanism with a small number of scalar vari- 
ables that control aspects of perceptual interest (filament 
length, fineness, curliness, etc). As in [5], these are essen- 
tially knobs that a user of a hypertexture system can adjust 
at a high level to synthesize a particular variety of fur, 
without necessarily knowing the details of furrier synthesis. 

3. Rendering ttypertexture 

Implementation of hypertexture rendering is only practical 
using volume rendering techniques, since hypertextural 
objects often have no well defined surfaces. Since volume 
rendering techniques have rime complexity O(n 3) with 
respect to resolution, they are typically slow. Fortunately 
the DMF evaluation is independent at each sample point, so 
hypertexture is particularly suitable for parallel or distri- 
buted implementations. We have found that designing and 
rendering hypertexture can be done on a serial yon Neu- 
mann machine, but is much more enjoyable when com- 
puted in parallel. This section focuses on the hypertexture 
rendering algorithm and its different implementations. 

3.1 Ray Marching Algorithm 

In this section, we describe the ray marching algorithm [1] 
to generate images of hypertexture. As in traditional ray 
casting, the ray marcher casts a ray into model space for 
every pixel. We first clip each ray to a parallelpiped that 
bounds the hypertexture volume, using the optimal 

bounding test of [13]. If the ray does not intersect the 
paraUelpiped, we move to the next pixel for processing. If 
the ray does intersect the parallelpiped, the ray parameters 
I.to and l.tl, representing respectively the entry and exit 
points of the parallelpiped, are computed. Ray marching 
begins at the ray parameter value !1o, and proceeds at a 
fixed increment Ag. We sample the model along the ray at 
points: 

where 

x = x ~  + k  Axrt 

k = 0 , 1 , 2  .... such that J.to+k AI.t_<l.t 1 

and Ax~t is the displacement along the ray, in model space, 
at each increment. 

Aliasing of hypertexture is a potential problem. In practice 
we have achieved excellent results by manually tuning 
each hypertexture to be frequency clamped [17] as a func- 
tion of ray-marching step size. For example, in the tur- 
bulence function described above, we stop the iteration 
when the period of the noise function is as small as the size 
of Axe. The fact that an empirical approach works so well 
is encouraging but is clearly not definitive +. 

At each point along the ray, we first evaluate a DMF f(x). 
If 0 < f (x) < 1, then we evaluate the field gradient V f, nor- 
malize it, and use it as a normal vector for diffuse and/or 
specular shading, as well as for any refraction and 
reflection computations. To compute V f  it is sufficient to 
evaluate f at two points perpendicularly off the ray in 
mutually perpendicular directions Ax v and Axe. Since we 
have already computed the result of f a t  our previous sam- 
ple x-Ax~t , we can then approximate the gradient of f with 
respect to (I.t,v,c0) by the finite difference vector: 

f(x)-f(x-Axlx ),f(x+Ax v)-f(x) ,f(x+Axo)-f(x)]  

To convert this gradient vector in (I.t,v,00) space into a gra- 
dient vector in (x,y,z) space, we multiply by the transfor- 
marion matrix: 

Ax~t 
Axv 

Axo 

t A more systematic approach to antialiasing hypertexture is still a 
subject of research. We corljecture that it will involve discovering percep- 
tually equivalent tradeoffs between different base functions (so that, for 
example, increasing gain at small scales, which increases gradient will au- 
tomatically force the properly reduced amplitude). 
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The ray basis vectors Ax~t, Axv, and Ax~ can be precom- 
puted once per ray. For an orthogonal view, they only need 
be computed once for the entire image. 

Note that the expense of ray marching triples within an 
object's soft region, since computing Vf requires us to 
evaluate f three times inslead of just once per sample. 

We must also accumulate opacity for visibility determina- 
tion. A method similar to that of [7] is employed along the 
ray, so that at the kth step: 

running time by 64, we usually do our quick "is  it even 
there?" tests at a resolution of 32×32, which take a few 
seconds, our rough tests at 128×128, which take a few 
minutes, and our final runs at 512×512, which take a few 
hours if run serially. As a rule of thumb, we see how many 
seconds a run takes at 32x32 to estimate how many serial 
hours it will be at 512×512. Final runs would take any- 
where from 3 to 15 hours, depending on hypertexture com- 
plexity, on a single Sun 4-260 workstation. To improve 
this performance, we have taken the two following 
approaches to parallelizing the algorithm. 

t := o~k(l-~) 
color := color + t * colork 

~ : = ~ + t  

where color k and ¢x k are sample color and opacity, respec- 
tively. To ensure resolution independence, we make opa- 
city a function of both density and step-size: 

~k := 1- (1 -dens i t y )  c * stcr,-~izc 

Parallel Rendering 

The ray marcher was implemented in C on an AT&T Pixal 
Machine [14], an MIMD coarse-grain computer with gen- 
eral purpose floating-point processors, having relatively lit- 
tle memory per processor. In our implementation each of 
64 processors uses an identical hypertexture program to 
compute a different interleaved subset of the final screen 
image, an arrangement that tends to optimize load balanc- 
ing among processors. 

where c is a normalizing constant. Color is the product of 
the shading value and the user specified color. The color 
mapping can be as simple or as complex as desired; step 
functions or splines may be appropriate. This same 
approach to color mapping was taken in [5]. Color maps 
are typically used to identify or isolate particular features in 
a scalar field [10]. Here again the local gradient V f i s  used 
to estimate the local normal vector. The use of opacity 
allows us to see amorphous or very fine volumetric features 
with a great deal of clarity. 

The above differs from the method of [7], since we proceed 
in a front to back order (as we move along the ray from its 
entry point towards its exit point) as opposed to back to 
front order. If the accumulated opacity reaches unity, the 
evaluation along a ray stops before we exit the volume. 
This avoids unnecessary computation for regions that are 
entirely obscured. 

Since in practice we have been able to tune our hypertex- 
tures empirically to be frequency clamped [17], do have 
not needed to use supersampling. We note though that sto- 
chastic ray marching might be employed as an extension of 
our algorithm, implemented by firing jittered rays with jit- 
tered step phases within each pixel. Similarly, motion blur 
might be achieved by sampling rays over time [21]. Other 
improvement might be made by utilizing recent work on 
optimization of ray marching [12]. 

Our memory requirements are particularly small because 
hypertexture is highly procedural. The only significant 
data space required is for color maps, alpha map and the 
noise function lookup tables. The sum of these is less than 
5 Kbytes. Thus we are able to maintain a complete copy of 
the database at each processor. 

Since hypertexture can be evaluated independently at each 
pixel, and because each processor maintains its own data- 
base, this implementation has the following characteristics: 

it executes independently and asynchronously at 
each node 
no interprocessor communication is required 
the cost associated with parallelizing the algorithm is 
negligible 

We have found that increasing the number of processors 
produces a linear (optimal) decrease in execution time. 
Therefore in principle hypertexture could be generated 
interactively, since with enough processors, the time to 
render an image would be bounded only by the time to 
render the slowest pixel (in our experience, a fraction of a 
second at most). 

Distributed Rendering 

Running Time 

An nxn image requires O (n 3) sample evaluations, so run- 
ning time rises dramatically with increased resolution. 
Since increasing resolution by a factor of 4×4 increases 
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In addition to implementing the ray-marcher on a parallel 
computer, we also implemented the distributed ray- 
marching computation over a local-area network of Unix 
workstations on a shared Network File System. Each 
workstation runs the identical program, compiled for its 
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particular processor, to compute different pixels of the 
same image. In practice we have observed a linear 
speedup over the single processor serial version of the 
algorithm, using the dozen or so workstations in our lab. 

4. Summary, Conclusions and Future 

We have described a new modeling technique which 
modulates shape by applying procedural texture to a con- 
tinuous volumetric region. The method contrasts with pre- 
vious techniques in that we manipulate matter throughout 
R 3, instead of only at surfaces. This approach allows us to 
create the appearance of complex, real-world phenomena 
that would be difficult or impossible to generate with previ- 
ous methods. The computational model is O(n 3) but 
optimally parallelizable, achieving linear decreases in exe- 
cution time with increases in the number of processors. 

Clearly the model as described is highly empirical, leaving 
unanswered the disturbing question of why such simple 
techniques produce such visually convincing results. Prior 
work [22] has led us to believe that there is a sound percep- 
tual basis for this, and that in general procedural textures 
can be organized into a human perceptual taxonomy. We 
plan in future work to extend this taxonomy to the descrip- 
tion of hypertexture. 

Our newest research concentrates on applying hypertexture 
to empirical shape data such as cranio-facial structures and 
teapots. By performing preprocessing passes through 
volumetric shape images, we are currently implementing 
cast shadows and extending geometry-dependent functions 
such as the project operator of fur hypertexture to empiri- 
cal shapes at O (n 3) cost. We also plan to incorporate more 
sophisticated shading models, in particular the anisotropic 
shading of Kajiya [23]. 
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