An Architecture for a Scientific Visualization System

Bruce Lucas, Gregory D. Abram, Nancy S. Collins,
David A. Epstein, Donna L. Gresh, Kevin P. McAuliffe

IBM T. J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

Abstract
This paper describes the architecture of Datla
Ezplorer,! a scientific visualization system. Datla Ez-

plorer supports visualization of a wide variety of data
by means of a flexible set of visualization modules.
This paper discusses five elements of the system ar-
chitecture: 1) A single powerful data model common
to all modules that allows a wide range of data types
to be imported and passed between modules. 2) Inte-
gral support for parallelism, affecting the data model
and the ezecution model. 3) A powerful set of visu-
alization modules that are highly interoperable, due in
part to the common data model, and ezemplified by
the renderer. 4) An ezecution model designed to facil-
itate parallelization of modules and incorporating op-
timizations such as caching. 5) A two-process client-
server system structure consisting of a user interface
that communicates with an ezeculive via a¢ dataflow
language.

1 Introduction

Over the past few years scientific visualization sys-
tems have evolved from loose collections of programs
and algorithms generally designed for a specific dis-
cipline, supporting a limited number of data types,
and requiring full-time programmer support, towards
systems specifically designed to encompass realization
and rendering algorithms of use in many scientific and
engineering disciplines, with the ability to handle mul-
tiple types of data, and usable by the scientist himself.
With this evolution, two distinct classes of system ar-
chitectures have arisen.

The first, found in systems like FieldView [1] and
The Data Visualizer [2], provides a fixed set of power-
ful tools. While these systems can produce a great
range of visualizations and can potentially be very
easy to use, the “power” user will find them limiting.
This is because the tools either operate individually or
have very limited interactions; for example, the tools
cannot operate in series.

The second system architecture, exemplified by apE
[3], AVS [4], IRIS Explorer [5], and Data Explorer

!The full name of the system is the IBM AIX Visualization
Data Explorer/6000.

0-8186-2897-9/92 $03.00 © 1992 IEEE

107

[6], provides many interoperable modules which, when
connected into a dataflow graph, generate a visualiza-
tion. This paper surveys the architectural issues en-
countered in the design of such a system. We concen-
trate on architectural design decisions in which Data
Explorer differs from the other systems. The purpose
of this paper is to provide an overview of the issues
rather than to discuss any issue in great detail.

We begin by describing the two-process system
structure, briefly describing the user interface, and
discussing the reasons for splitting up the system in
this way. In the next section we discuss the system-
wide approach to supporting parallelism that we have
taken. Then we describe the data model, discussing
how it accommodates a wide variety of scientific data
and the significance of its support for data sharing.
In the next section we discuss the execution model,
showing how it allows for execution optimizations, and
describing how it facilitates parallelism. Finally, we
discuss the visualization modules, showing by exam-
ple the principle of interoperability that they follow,
and discussing a couple of issues encountered in their
parallelization.

2 System Structure

Data Explorer consists of two components, the user
interface and the erecutive, illustrated in Figure 1.
These two components run as separate processes com-
municating via a socket interface. The two processes
may be on the same machine, such as the user’s work-
station. Alternatively, the two processes may run on
separate machines; for example, the user interface may
run on the user’s workstation, and the executive may
run on a server, such as a departmental parallel com-
pute server. This is illustrated in Figure 1.

The user interface (depicted in Figure 6) provides a
visual programming interface, in which the user con-
structs a dataflow graph. It also provides the means
for the user to interact with the visualization in the
form of control panels containing interactors specified
by the visual programmer, and maintains an image
window in which the result of the visualization is dis-
played.

The datafiow graph consists of a collection of boxes,
each box representing a function of some number of in-
puts with some number of outputs, with the inputs at

File Edit Executs ...
] e
Import m!
P OO0 e
]
——

Image h
:
]
]
!

User interface on workstation Executive on server

Figure 1: Data explorer system structure

the top of the box and the outputs at the bottom. In
Figure 1 a minimal visual program is shown that im-
ports some data, constructs an isosurface whose value
is determined by a scalar interactor (not shown), and
displays the isosurface.

The visual program constructed by the user is
translated into a script in a dataflow language, which
is then sent to the executive for interpretation. In re-
sponse to commands from the user, such as changing
interactor values or activating the sequencer, the exec-
utive executes the dataflow program, calling visualiza-
tion functions as needed, and displaying the resulting
image in the image window on the user’s workstation.

The dataflow language is also available to the user
for writing scripts. For some purposes this a more con-
venient way of using the system. Since such a scripting
interface was a system requirement, it seemed advan-
tageous to also use it as the mechanism by which the
user interface communicated with the executive.

There are several advantages to this system struc-
ture. It places the user interface on the user’s work-
station for good interactivity, while allowing the ac-
tual visualization to take place on a high-performance
shared server. By centralizing the execution of
the visual program, important optimizations such as
caching of intermediate results and pruning unneces-
sary calculations can be done. By combining the vi-
sualization modules into one binary (the executive),
rather than implementing each as a separate process,
unwanted overhead is avoided in dispatching the mod-
ules. Efficient communication of data between the
modules by passing pointers to objects in global mem-
ory is also facilitated.

A disadvantage to having a single binary for the
executive is that it somewhat complicates the process
of adding modules to the system. To add a new mod-
ule, it is necessary for the user to re-link the executive
binary. However, we have found that in practice this
poses little problem; with the right automated pro-
cedures, this process appears to the programmer lit-
tle more complicated than compiling the module as a
separate program. Dynamic linking would also ame-
liorate this problem. We feel that the performance
advantages gained by having modules invoked by a
simple procedure call and passing data between mod-

108

ules by passing pointers outweighs this consideration.

3 Parallelism

Data Explorer was designed from the outset to support
parallel computers. We assume that it is necessary
to support a computer having tens of processors with
high-speed (but perhaps long-latency) access to global
memory, and possibly with per-processor local mem-
ory. We assumed that inter-processor synchroniza-
tion was sufficiently expensive to rule out fine-grained
(such as loop-level) parallelism, but that inter-module
parallelism does not in general achieve sufficient pro-
cessor utilization. This 1s because with inter-module
parallelism the achievable speedup is limited to the
number of modules available to be run at any one
time. Furthermore, running more than one module
at a time has the drawback that sufficient space to
store the outputs of all the running modules must be
available. Thus we needed a system-wide architecture
to support coarse-grained intra-module parallelism.

The method we chose to achieve this parallelism
was data parallelism by explicit partitioning of the
data sets. That is, early in the visualization, or as a
pre-processing step, the data is divided into spatially-
local non-overlapping partitions. The number of such
partitions is generally on the order of a small multi-
ple of the number of processors available. Then, most
of the visualization modules operate by parallelizing
across the data partitions. This approach was cho-
sen because our analysis showed that most modules
would parallelize rather easily by this method; for ex-
ample, generally the processing of each partition is in-
dependent of the processing of other partitions. Fur-
thermore, such spatial partitioning occurs naturally
in some data sets, such as multi-gridded simulations,
and must therefore be accommodated by the mod-
ules in any case. There are some exceptions to this
model, such as the renderer, which parallelizes based
on screen patches.

Support for this parallelism model has implications
across the system: The data model must be able to
represent such partitioned data sets. The execution
model must provide support to the modules for such
parallelizations. Finally, the modules themselves must
be parallelized, and some problems arising from such
partitioning must be solved.

4 Data Model

Data representation is a significant problem in a vi-
sualization system, for two reasons. First, scientists
have a wide range of representation requirements for
data that is to be imported into the system that must
be accommodated if the system is to have the greatest
possible applicability. Second, to facilitate the inter-
operability of the modules, that is the possibility of
connecting the modules in a large variety of ways, it
is important that they speak a common language.

Thus Data Explorer provides a common data model
for import of data into the system and for use in
communicating between modules. The concrete data
model used by Data Explorer is based on an abstract
data model presented by Haber et al. [7]. The ab-
stract data model has two concrete representations in
Data Explorer: First, data is passed between modules
in the form of pointers to objects in shared memory.
Second, data may be stored externally in files that
embody the data model.

Fields Data Explorer data model centers around the
notion of a sampled field. A field is a mapping from one
space to another space. In Data Explorer, the space
to be mapped from is represented by a set of positions
in that space and a set of connections, or interpola-
tion elements, that allow interpolation between those
positions. The mapping is defined by a set of data
values. The data associated with a field may maintain
a one-to-one correspondence with the positions com-
ponent, in which case the data is said to depend on
the positions component. The data may also be made
dependent on the connections, in which case each ele-
ment has a constant value.

Datastructures that can be represented by the data
model include two- and three-dimensional data defined
on a regular orthogonal grid, on a deformed rectangu-
lar grid, and on a variety of irregular grids such as tri-
angular, quadrilateral, tetrahedral, and cubic meshes;
and unstructured data with no connections between
the data samples. The data samples may be defined
over spaces of any dimensionality, and independently
may be connected by primitives of various dimension-
alities. Thus for example this model accommodates in
a natural way both three-dimensional volumetric data
and surfaces embedded in three-space.

A field may also contain several additional compo-
nents such as colors, opacities, tangents, normals, and
data statistics that have been derived from its basic
components. These components may be used either
for rendering of the field or for the generation of ad-
ditional transformations.

Fields may be aggregated into groups which may
themselves be collected with other fields and groups.
By providing the ability to share components between
fields and by using this aggregation mechanism it is
possible to easily and compactly represent both mul-
tivariate data over the same space and univariate data
located in many spaces. Data structures are also de-
fined to represent traditional graphics data structures,
such as coordinate transformations, as well as some
novel system features, such as render-time clipping by
arbitrary convex shapes.

Data sharing All data that is passed between mod-
ules in the system is passed in the form of pointers
to objects. An object is a region of global memory
that contains an identification of its type, some type-
independent information such as a reference count,
and additional type-dependent information. Access
to objects is through a set of information-hiding ac-
cess routines. Efficiency is maintained by encapsulat-

109

ing the bulk of the data in arrey objects, which con-
sist of an object header (containing reference count
and type information) that points to a simple array
of data. Thus, to actually operate on the data, the
module calls a routine to get a pointer to the data,
and thereafter accesses the data efficiently as a simple
array.

An important consequence of this data model is
that sharing of data between objects is possible and
indeed encouraged. This is illustrated in Figure 2.
This figure shows two field objects sharing one “posi-

Field Object Field Object
“positions” ~J / "positions”
aa | \ / |

Array Object
Array Array
Object Object
array data

Figure 2: Data sharing

tions” array (which thus has a reference count of 2),
while each field object points to its own independent
“data” array. Such a structure might arise from a
time series in which each member of the series is a
field defined over the same grid, and hence each shar-
ing the same array of positions. Alternatively, such a
structure might arise as a result of a module that say
changes only a field’s data values but does not change
the grid over which the field is defined. Dataflow se-
mantics require that a module not modify its inputs;
hence a module that changes the data of a field must
produce copy of its input. However, data sharing al-
lows this copying to be limited to that information
which is actually changed (the “data” array and the
field headers in this case).

This sharing yields a considerable performance ad-
vantage, both in time and space. Space is saved be-
cause the components that are not modified need not
be copied, but rather may be pointed to. A reference
count system is an essential part of the data sharing.
Time is saved because the time to actually copy data
that is not changed need not be spent.

Note that this model of data passing is in distinc-
tion to the method employed by other visualization
systems, in which data passing is “stream-oriented,”
in that data is copied from module input to module
output without sharing of unchanged data.

Parallelism Data in the system are prepared for
parallelization by explicit partitioning. The partition-
ing process divides an input field into a number of

spatially local, self-contained fields which are then col-
lected into a composite field. Each interpolation ele-
ment from the input field is assigned to one and only
one of the output fields. By doing so, the union of
the resulting fields covers exactly the same space as
the input field. The partitioning process may be con-
trolled by specifying the number of output partitions
desired and the minimum number of elements required
in a partition. If these partitioning parameters are not
specified, the partitioning process chooses values ap-
propriate for the particular architecture.

5 Execution Model

After construction of a visual dataflow program and
Just before the first execution of it, the user interface
translates the completed visual program into a textual
dataflow program and transmits it to the executive.
For example, using the simple visual program shown
in Figure 1, the corresponding textual program sent
to the executive would be

macro main() {

a = Import("data.dx");
b = Isosurface(a, scalar);
Image(b);

For purposes of illustration, we assume that the name
of the data set to import ("data.dx") was specified
as a constant by the visual programmer (using the
“configuration dialog box” associated with the Import
module), whereas the value of the scalar for the iso-
surface will be specified by the user.

The user may request execution of the program by
explicitly selecting a menu item, or by changing one or
more interactor values, or by activating the sequencer,
which operates much like a VCR control. For exam-
ple, if the user changes the value of the Scalar input
to the Isosurface module in Figure 1, then the user
interface, having already sent across the definition of
main(), will then send the following commands to the
executive:

scalar =
main();

3.0; // value supplied by user

// execute main

Each subsequent change of the interactor value will
send across a similar sequence of commands.

Because execution of the visual program is done
by a centralized executive, and because a dataflow
programming paradigm is used, several performance
optimizations are possible. The executive can prune
computations whose results can be determined not to
be needed, for example because of conditionals, and
can cache intermediate results.

Caching During each execution of the program, ob-
Jects created by a module are entered into a cache by
the executive, and during subsequent executions may
be retrieved and used, reducing the computation. This
also allows identical portions of the graph to be shared
automatically.

110

For example, in the program above, when the user
changes the scalar interactor value, only the value of
the scalar variable in the program is changed. Thus,
when main() is executed on command of the user in-
terface, only the Isosurface and Image modules but not
the Import module need to be re-executed, because the
output of the Import module will be retained in the
cache.

This caching is possible because in general, execu-
tion of modules has no side effect, and modules are
pure functions, meaning that the outputs depend only
on the inputs and not on any internal or external state.
Therefore the output of a module will be the same
given the same inputs, and the execution of a module
can be omitted without changing its side effects. An
exception to this rule is made for “output” modules
that affect the state of the world outside Data Ex-
1];{orer, such as by displaying an image or writing to a

e.

System performance is improved by saving more
than just the single previously computed result from
each module. For example, this allows “movie loops”
to be executed at display rates rather than at com-
putation rates. This is because the images that re-
sult from rendering the visualization are stored in the
cache. As another example, in the program above,
each time the user specifies a different isosurface value,
both the resulting isosurface geometry and the ren-
dered image of it may be saved in the cache. Depend-
ing on how much space is available in the cache, re-
turning to a previously specified isosurface value may
require either only the re-display of the cached image,
or the re-rendering of the isosurface geometry and re-
display of the resulting image.

The cache is managed as follows: When the mem-
ory system is not able to satisfy a memory request, an
LRU algorithm (modified by cost of computing each
object) is used to determine which objects to eject
from the cache. As with most general-purpose caching
algorithms, this works well because it accommodates
itself to the portions of the visualization graph being
explored. It is not perfect: for example, if a “movie
loop” is created that is too big to fit in the cache, the
LRU algorithm will tend to discard precisely those
frames that are about to be needed again, because
they are the least-recently-used objects.

Parallelism On the principle that parallel program-
ming is difficult and that most programmers have lit-
tle or no experience in parallel programming, Data
Explorer tries to ease this task by providing specific
support for parallel programming, in contrast to other
systems, which provide provide support only for inter-
module parallelism at the system level. We have
found, however, that inter-module parallelism is not
in general sufficient: consider for example the extreme
case where the dataflow graph consists of only a single
module. Clearly intra-module parallelism is needed in
such a case.

Support for parallelism at the level of the executive
takes the form of a fork-join model that is simple in
appearance, but nevertheless powerful and flexible. It

frees the user from having to explicitly manage exe-
cution synchronization. The central notion is that of
a task group consisting of a heterogeneous group of
tasks. Each task is defined by a function to call, an
argument block of arbitrary size, and a cost estimate.

The module defines a task group by calling
CreateTaskGroup() and then adds the tasks to the
task group by calling AddTask(). The module then
causes the task group to be executed by calling
ExecuteTaskGroup(). The tasks are automatically
distributed to all available processors, with the indi-
vidual task cost estimates being used for load balanc-
ing. The call to ExecuteTaskGroup() does not return
until all tasks in the group have finished. (The proces-
sor that calls ExecuteTaskGroup() does not sit idle,
because it in fact executes some of the tasks in the
task group.)

Most modules are parallelized by assigning one task
per field. This is accomplished either by performing a
simple recursive descent of the input data objects or by
using a built-in function that automatically does the
recursive descent, creating a task using a user supplied
function for each field encountered.

On the other hand, some modules will need more
sophisticated kinds of parallel synchronization, such
as semaphores and monitors. In this case, the mod-
ule may simply create a number of tasks equal to the
number of processors and then use lower-level lock-
ing primitives provided by the system to do its own
synchronization “by hand.”

This execution model poses a couple of potential
difficulties. First, unlike an execution model that
assumes that modules execute as separate processes
communicating by a stream of data, this execution
model does not lend itself as naturally to remote ex-
ecution of modules. In Data Explorer, remote execu-
tion could be accomplished by writing a module that
exports its input object as a file and using standard
remote execution facilities to fire up a remote process.
A better solution would be a system facility that made
this remote execution automatic, sending the data di-
rectly over a socket connection rather than writing it
to a file first.

A second danger concerns the necessity of doing a
recursive traversal of the object to define task group
for processing the object. Since the traversal is done
before the fork, if adequate care is not taken in writ-
ing this traversal code, it can represent a performance-
degrading serial section. We have found that in gen-
eral this problem is avoidable with careful coding style.

6 Module Design

The pictures at the end of the paper illustrate the
range of modules available in Data Explorer.

Figure 7 shows how the MapToPlane and Color
modules can be used to produce a “cutting plane”
with data mapped onto it and colored. This is com-
bined and rendered together with streamlines and the
original pseudocolored volumetric data.

Figure 8 includes a molecular ball-and-stick model,
produced using the Tube and Glyph modules, com-

111

bined with translucent isosurface of electron density,
and an isosurface representing the Van der Walls en-
velope converted into a dot surface for rendering. A
slice through the data is shown with the electron den-
sity field mapped onto the surface and pseudocolored,
while the derivative of the density is mapped onto the
surface and used to “rubber-sheet” the surface.

Figure 9 represents a simulation of a flooding of
an oil-well core sample. A nested set of isosurfaces
shows various levels of saturation, while a set of vec-
tor glyphs shows the pressure gradient, obtained by
using the Gradient module. Viscosity is mapped onto
the isosurfaces and colored. The clipping of the iso-
surfaces has been done using the render-time clipping
capability of the system.

Figure 10 illustrates observational data with miss-
ing observations. This figure shows satellite observa-
tions of the ozone depletion over the South Pole, with
ozone level shown as height above the ground, super-
imposed over a map of Antarctica.

In addition to the capabilities illustrated by these
pictures, Data Explorer includes modules for import-
ing data into and exporting data out of the system;
modules to rearrange and change the dimensionality
of the data; and modules to decrease or increase the
resolution of the data. Modules also exist for auto-
matic and manual color map generation; divergence,
curl and gradient calculations; data convolution; and
mapping data from one field onto another. Annota-
tion facilities such as axes, glyphs, ribbons, tubes, and
captions are provided.

Design philosophy The set of modules provided
by Data Explorer are designed for a high degree of
inleroperability. Interoperability is simply the prop-
erty that the modules may be connected in a large
variety of ways to achieve different effects. This prop-
erty arises from two module design goals: to make
the modules sufficiently primitive, and to make them
as powerful as possible. These two principles are il-
lustrated in Figure 3. The figure on the left shows
modules that are not sufficiently primitive and not
sufficiently powerful. The figure on the right shows a
primitive, powerful module: it performs one function
on all data types.

Powerful
- Not powerful ol Primitive
- [Not primitive
T T T T T T
functions functions

Figure 3: Module interoperability

It should be understood that the primitiveness goal
strives not for absolute primitiveness, but rather for
sufficient or optimal primitiveness. Almost any func-

tion can be decomposed into more primitive functions,
but it is not always useful to do so: the resulting pieces
may not add appreciably to the utility of the system,
while making it more complicated to perform the orig-
inal function. Thus, a module is sufficiently primitive
if it cannot be broken down into more primitive func-
:.'ions while increasing the overall usability of the sys-
em.

Powerfulness in this context means the same thing
as polymorphism. That is, each module should oper-
ate on any input regardless of its data type, if that
the operation makes sense on that data type. One
consequence of this is the relative lack of need in Data
Explorer for modules that convert data types.

Examples The flexibility afforded by the module
design is illustrated in Figure 4. The example

[

[AutoColor | [Rubbersheet | [Sample] [isosurface |

Glyph

Figure 4: Interoperability example

starts with a three-dimensional data set that has been
mapped onto an arbitrary slicing plane by the Map-
ToPlane module. The interoperability of the modules
is illustrated by the flexibility with which the result of
this operation may be treated.

In the first case, the result of MapToPlane is pseu-
docolored, producing a plane colored by the data val-
ues it passes through. Figure 7 shows such a color-
mapped plane.

In the second case, the plane is “rubber-sheeted,”
that is, deformed in a direction perpendicular to the
plane by an amount proportion to the data values,
resulting in surface whose shape shows the data values
at each location on the plane. A rubber-sheeted plane
is shown in Figure 8.

In the third case, the Sample module is used to
select an evenly spaced set of sample points on the
plane, and the Glyph module is then used to assign
glyphs to those points. This results in a glyph-style
visualization of the data values on the plane. A set of
regularly spaced glyphs is shown in Figure 9.

In the final case, the Isosurface module is applied
to the plane, which results in a contour line or set of
contour lines on the plane. In the next section we dis-
cuss the flexibility that is provided in rendering these
visualizations.

The Isosurface module provides an example of poly-
morphism. Given a three-dimensional volumetric field
(defined over regular or irregular grids), the module
chooses an appropriate algorithm to produce an iso-
surface. Given a two-dimensional surface input, the
Isosurface module produces contours; in this case,

112

the input surface may be either defined over two-
dimensional positions, or may be a surface embedded
in three-space. For example, the contour lines could
even be computed from a field mapped onto an iso-
surface of a different field (see Figure 5). Besides

Field 1

Field 2

Map

output

Figure 5: Contours on an isosurface

the conceptual simplicity that it affords, this general-
ity provides a concrete benefit in allowing the user to
construct a visualization program without knowing in
advance the type of the input.

Sometimes the interoperability goal is at odds with
the goal of usability. This is because decomposing
a module into two or more primitive modules may
increase the flexibility of the system, but may make
the original function more difficult for the user to in-
voke, because the user must use a combination of mod-
ules instead of just the one original module. To solve
this problem, Data Explorer provides a macro facility,
which allows multiple modules to be bundled up into
a macro that performs a complex function, and which
appears to the user to be a single module.

Parallelism Building parallelism into the system
from the outset is a two-edged sword. While the path
we have taken seems to make it easier to write paral-
lel modules by providing in effect a standard method
for doing so, it does make life more difficult for the
module programmer in two ways.

First, all modules must be written to expect par-
titioned input. While as we have said this is neces-
sary independent of partitioning for parallelism be-
cause some simulations are done over multiple grids,
it nevertheless requires a module programmer to re-
cursively traverse a data structure. To make simple
things simple, the system provides a traversal routine.
The programmer supplies the traversal routine with a
processing function that is called at each leaf of the
tree; the traversal routine takes care of the details of
traversing and copying the input structure.

Second, some modules, such as Gradient, Streak-
line, and Filter, require neighborhoods that extend
beyond the boundaries of a given spatially-local par-
tition. To ease this problem, the system provides a
“growth” function that extends each.partition by a
specified number of its interpolation elements. The
extended elements and their values are drawn from
neighboring partitions. Fields so grown may then eas-

ily and correctly be operated on without the necessity
or complexity of special boundary condition code.

Rendering The interoperability of the modules is
exemplified by the rendering tools, which include the
Render and Display modules. Both modules take an
arbitrary data model object as input and render it.
The Render module produces an image as a result that
can be further operated on, while the Display module
directly renders the image on the display for perfor-
mance. The rendering capability of both modules in-
cludes opaque and translucent, regular and irregular,
points, lines, surfaces, and volumes, in arbitrary com-
binations. (The techniques used to implement these
capabilities are discussed in a companion paper in this
volume [8].)

This illustrates one aspect of interoperability: dif-
ferent renderers are not required for different data
types. This is in contrast to other systems, which
use a separate rendering module for geometry, vol-
umes, and images. For example, the output of each of
the operations shown in Figure 4 may be directly con-
nected to the Display module to render and display an
image of the object. The visualizations may also be
combined with each other by using Collect module, or
may be combined with the original three-dimensional
data and passed to Display, resulting in a combined
surface and volume rendering. This is particularly ef-
fective when the simple colored surface is combined
with the volume, as in Figure 7.

A second aspect of the interoperability of the ren-
derer is that the output of the Render module is an
image, which is in fact a field with two-dimensional
regular positions and a grid of regular quadrilateral
connections. Thus it can be operated on by most other
modules in the system. For example, besides such ob-
vious operations as filtering, the resulting image may
be contoured by using the Isosurface module, or it
may be displayed as a surface deformed according to
the image intensity by using the RubberSheet module.
The possibility of such unanticipated combinations is
the hallmark of a system exhibiting a high degree of
interoperability.

Generating a general data structure such as the
interoperable image representation mentioned above
will be less efficient than directly generating a display-
specific format, such as an eight-bit dithered image.
This problem is solved in our system by providing the
Render module, which generates an output image for
interoperability, and the Display module, which goes
directly to the frame buffer, using rendering hardware
if available.

A potential performance problem also arise because
of the generality of the algorithms that are needed to
handle such a wide variety of input. This problem is
solved by detecting important special cases, such as
opaque surfaces or single regular volumes, and switch-
ing to code specifically optimized for that case.

113

7 Conclusion

The approach taken Data Explorer differs in several
respects from other dataflow-based visualization sys-
tems. A single powerful data model that is flexible
and supports data-sharing in global memory is used.
The resulting execution model, in which modules are
tightly coupled and communicate by passing point-
ers to objects in global memory, allows several perfor-
mance optimizations. The system is designed around
intra-module parallelism, which is necessary to achieve
good processor utilization on parallel computers. The
goal of interoperability guides the design of the mod-
ules, resulting in considerable flexibility in construct-
ing visualization programs.

Data Explorer strives to provide the user with the
greatest possible generality, through its general data
model and interoperable module design. At the same
time, it strives for the highest possible performance by
supporting parallelism. Occasionally these two goals
can be in conflict, such as in the renderer as discussed
above. In general we have found that each such per-
formance problem due to generality has a solution.
We feel that the work required to arrive at these so-
lutions is well-rewarded by the resulting generality of
the system.

References
(1] Steve M. Legensky. “Advanced Visualization on
Desktop Workstations.” Proc. IEEE Visualization
’91, San Diego, October 1991.

Donald L. Brittain, Josh Aller, Michael Wilson,
Sue-Ling C. Wang. “Design of and End-User Data
Visualization System.” Proc. IEEE Visualization
’91, San Diego, October 1991, pp. 323-328.

D. Scott Dyer. “A Dataflow Toolkit for Visualiza-
tion.” JEEE CG&A, Vol. 10 No. 4, July 1990, pp.
60-69.

(2

3]

Craig Upson, ei al. “The Application Visualiza-
tion System: A Computational Environment for
Scientific Visualization.” IEEE CG&A, Vol. 9 No.
4, July 1989, pp. 30-42.

“IRIS Explorer.” Technical Report BP-TR-1E-01
(Rev. 7/91). Silicon Graphics Computer Systems.

IBM AIX Visualization Date Ezplorer/6000
User’s Guide. IBM Publication SC38-0081.

Robert Haber, Bruce Lucas, Nancy Collins. “A
Data Model for Scientific Visualization with Provi-
sions for Regular and Irregular Grids.” Proc. IEEE
Visualization 91, San Diego, October 1991.

(4]

(5]
(6]
(7

[8] Bruce Lucas, “A Scientific Visualization Ren-
derer.” Proc. IEEE Visualization '92, Boston, Oc-

tober 1992.

temperature

rain water

Figure 6: Data Explorer User Iinterface. Figure 7: A thunderstorm simulation, showing volume
rendering combined with surface and line rendering.
Data courtesy NCSA.

Figure 8: Visualization of an enalapryl molecule. Figure 9: Simulated flooding of an oil well core.
Data courtesy IBM UK Scientific Centre. Data courtesy ARCO.

Evolstion of Totdl Siratospheric Souther Hemispheric Ozone Hole for 1987, Day 275

Figure 10: Safteliite observations of the ozone
depletion over the South Pole. Data courtesy NASA/
Goddard Space Flight Center.

(See color plates, p. CP-14.)
114

