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M A N Y  P A G E S  D I S C A R D E D

1.1.2 Historical Development of Computer Animation Systems

Traditionally, animation systems have neatly filed themselves into one of two distinctly

different classifications: scripting and interactive. Modern systems still can be classified in

this manner, although increasingly the distinction between the two classifications is being

blurred.
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1.1.2.1 Scripting Systems

The first computer animations were produced by writing programs to generate the an-

imation using general purpose programming languages (e.g., Fortran). General purpose

languages are flexible and inherently allow programmers to take advantage of conventional

programming mechanisms (e.g., variables, subroutines, conditional statement execution, it-

eration) and techniques (e.g., structured programming, object-oriented design, recursion) to

produce animation. The main disadvantage of this approach is that many elements needed

to generate animations (e.g., specifying geometric shapes, building hierarchies, generating

output for renderers, applying transformations to objects) have to be reimplemented for

each animation. The amount of work required to provide the underlying framework can

easily outweigh the programming needed that is unique to the production of the animation

task at hand.

In response to the problems of using general purpose programming languages, re-

searchers developed specialized programming languages,procedural animation languages,

designed for the task of computer animation [30, 47, 60, 64, 65, 80, 104, 111, 113]. These

animation languages are either new programming languages entirely (often with similari-

ties to existing languages) or extensions of existing general purpose languages (extension

languages). In the case of an extension language, the underlying, general purpose lan-

guage is called thebase language. The base language provides conventional programming

functionality; the extensions to the base language provide the functionality needed to pro-

duce computer animation. Animation languages that are built from scratch (i.e., without an

underlying base language) tend to lack the wide range of functionality that extension lan-

guages have (particularly with regards to the richness of data types and device I/O), but are
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often easier to learn, use, and implement. A detailed discussion of procedural animation

languages in given in Chapter 2.

As the field of computer animation began to mature, more and more non-technical users

started working with animation systems. Researchers quickly realized that there was a need

for systems that did not require complicated programming in order to specify animation

[27, 30, 54]. TheAnima II system [54] was the first animation system to use a high-level

script — a list of instructions or commands that specify how the objects in the scene are

to be animated. Scripts are specified using acommand language. Command languages

are simpler than procedural animation languages and thus easier for non-programmers to

use. Command languages are typified by a lack of one or more of the features considered

essential for general programming languages like variables, function calls, data structures,

and control-flow constructs. Most command languages employ a simple syntax where one

command is specified per line and each command has a similar syntax. Often a verb-noun

syntax was used as shown below.

hverbi hnouni hparametersi

The hverbi specifies the action. Thehnouni specifies the object that the action will

affect. Thehparametersi specify additional values required to fully specify the action. The

Anima II commands shown below are adapted from [54].

SET POSITION ball 0, 0, 0, AT frame 1
CHANGE POSITION ball TO, 1, 0, 0, FROM frame 1 TO frame 100

The commands inAnima II are executed in parallel so that simultaneous actions can

be expressed. In the example above, an object named “ball” is positioned at coordinates

(0; 0; 0) at frame 1 and simultaneously moved to coordinates(1; 0; 0) over frames 1 to 100.
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The use of parallel commands such as these avoids the need for iterative programming

constructs.

The disadvantage of command languages is that they are not procedural (i.e., they do

not have the features of general programming languages). By eliminating the language

constructs that make learning animation languages difficult, command languages give up

the mechanisms that make animation languages powerful. Complex objects that can be rep-

resented using mathematical constraints, procedural rules, and behavioral processes cannot

be effectively represented using command languages. Authors of systems which employ

command languages have to resort to a general programming language to procedurally

generate complex scripts as is illustrated in [26, 96]. Newell states “Many systems dictate

a data format based on their particular primitive form. As these systems are developed,

the need for more and more generality in the facilities provided results in escalations in

the complexity of the data format until it begins to resemble a programming language. At

this point, the arguments for and against special purpose programming languages become

relevant [94].”

1.1.2.2 Interactive Systems

In the late 1970’s and early 1980’s, the emphasis in computer animation turned towards

the development of interactive animation systems [26, 43, 48, 53, 81, 96, 129]. Interac-

tive animation systems allow the animator to make continuous modifications to the shape,

transformations, and attributes of three-dimensional objects. Modifications are specified

using an input device, such as a mouse, and the results are computed and shown (rendered)

quickly enough to the user so that the user feels as if he or she is directly manipulating the

object on the screen.
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Interactive systems have become the predominant method for creating computer ani-

mation today because they provide immediate, visual, user feedback. As such, the features

of such systems are well known and are typified by the powerful commercial systems such

asAlias PowerAnimator[2], SoftImagej3D [126], and3D Studio Max[70].

1.1.2.3 Systems That Combine Scripting and Interaction

Over the years, developers and users have debated about what type of animation sys-

tem, scripting or interactive, was superior. More recently, researchers agree that both types

of systems are important [60, 119]. Three types of systems that incorporate both script-

ing (procedural) and interactive techniques now exist: procedural animation languages that

have integrated interactive capabilities, visual programming systems, and interactive sys-

tems that incorporate procedural capabilities.

The most successful system to date that adds interactive capabilities to a procedural ani-

mation language is Pixar’sMenvsystem [111]. The key technology inMenvis a language-

level mechanism called thearticulated variablethat permits the procedural representation

of objects to be modified interactively. The articulated variable is an extension of previous

work by Hanrahan and Sturman [60] and Reynolds [113]. TheMenvsystem and articulated

variables are discussed further in Section 2.5.

Visual programming systems, such as Haeberli’sConMan[55] and the commercial

Houdini system [120], use a graphical representation of dataflow networks [92, 108]. In a

visual programming system, the scene is represented as an acyclic graph (See Figure 1.12).

Nodes in the graph represent functions that produce shapes and functions that apply trans-

formations to shapes. Each node, like a function, has a set of inputs and outputs that can

be used to pass data between nodes. Outputs of nodes are connected to inputs of other
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nodes by interactively connecting the nodes with edges. In addition to inputs (data) from

other nodes, nodes typically have other parameters that can be modified interactively and

animated over time using conventional animation channels or tracks. Nodes are usually

implemented as independent, modular components. New nodes can be implemented in a

general purpose programming language (e.g., C or C++) by the user using an API (applica-

tion programmer’s interface) specific to the system. Visual programming systems provide

facilities for procedural animation and are easier for non-programmers to use because they

are interactive and the syntax of a programming language is avoided. However, more com-

plex types of procedural animation, such as flocking [114], can be difficult to express when

communication channels between components are complex or implicit, when centralized

data structures are needed, or when an object-oriented design style is preferred.

Interactive animation systems add procedural animation capabilities through three main

mechanisms: command languages for scripting (described earlier),expressions, andplug-

ins. Expressions allow parameters that are usually specified interactively to be specified

using simple mathematical expressions that are typed in by the user. Plug-ins are mod-

ular software units that can be used to extend the functionality of the system. Like the

nodes of visual programming systems, plug-ins are implemented using a general purpose

programming language and an API specific to the animation system.

The problem with existing systems that use plug-ins and visual programming is porta-

bility. It is difficult, if not impossible, for a procedural object implemented in either type of

system to be transferred intact (i.e., with the same procedural capabilities) to a different an-

imation system because the representations used to implement plug-ins and store network

graphs are system specific.
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Figure 1.12: AHoudininetwork (left) for a fluted cylinder (right).

1.2 Motivation

This chapter began by introducing the term “encapsulated models.” Recall that an en-

capsulated model is an object that contains an integrated set of dynamic attributes using a

procedural data format (i.e., a procedural animation language). The encapsulated attributes

may include some or all of the following: geometric shape, time-varying motion, surface

materials, light sources, cameras, sound, and even special effects like smoke and fire.
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The concept of encapsulated models is an attempt to improve the representation (i.e.,

data format) used to describe graphical objects for photorealistic computer animation. An

improved representation will yield two major benefits:

1. The complexity and sophistication of objects that can be created will be increased.

2. The cost of producing complex, sophisticated computer animation will be reduced.

Nearly all animate objects exhibit complex, dynamic interactions between motion,

form, and other attributes. A procedural representation can model these dynamic inter-

actions effectively. Consider the work of Scheeperset al. in anatomically-based modeling

of human muscles [117]. Using the AL language, visually realistic, procedural models of

the anatomy of humans were developed. The procedural models include different types of

muscles that vary in shape, size, placement, and behavior. Complex interactions between

the different muscle types, tendons, bones, and skin are modeled. Animation of the skele-

tal structure (represented as an articulated hierarchy) by the animator results in realistic

changes in the musculature and skin. The detailed models of skeletal and muscle layers

can be manipulated in real-time. The detail and computational efficiency of the complex

musculature is achieved because the underlying procedural data format allows for multi-

ple, highly specialized models of joints, muscles, and tendons to be developed. Models of

this complexity (and more) where shape and animation are integrally linked will become

increasingly common as artistic demands and computing technology advance.

To argue reduced costs, consider the state of affairs with commercial companies that

sell three-dimensional objects for producers of computer animated films. These companies
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sell data for thousands of objects including all types of cars, planes, people, furniture, archi-

tecture, appliances, etc. Unfortunately, the objects only contain static geometric informa-

tion (usually polygonal or NURB-based) and in some cases, surface material descriptions.

Why? Because the data formats used by animation systems for the description of individ-

ual objects lacks the expressive power needed to describe other components. Even simple

objects (e.g., an alarm clock, See Section 4.2.5) would be much easier to use if anima-

tors could purchase models of objects, “off-the-shelf,” that have predefined movable parts,

built-in animation controls, built-in sound effects, and parameters to vary the shape, style,

or functionality of the model. In order to provide this type of object, more sophisticated

data representations and animation systems that manipulate those representations have to

be developed. Currently, the price of three-dimensional data objects is generally based

on the number of polygons. With more advanced data representations, the price could be

dictated by the sophistication of the self-contained animation, the quality of built-in sound

effects, and the range of parameterization.

In order to develop the concept of encapsulated models, the following problems have

to be solved:

1. The properties of encapsulated models have to be defined in order to reason about

representations and systems for them.

2. The requirements for procedural animation languages as a representation for encap-

sulated models have to be specified. These requirements can be derived directly from

the properties in item 1. The requirements should be independent of any specific pro-

gramming language so that they can have general applicability.
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3. Mechanisms for interactive manipulation of encapsulated models have to be devel-

oped. Historically, procedurally based animation systems are difficult to use (even

by technicians) because they lack interactivity and require programming. One ap-

proach, to make such systems effective, is to develop programming language mech-

anisms and software tools to support interactive manipulation and construction of

procedural representations.

4. Prototype procedural animation languages and interactive animation systems to sup-

port encapsulated models must be developed.

MANY PAGES DELETED
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