
Encapsulated Models: Procedural Representations for
Computer Animation

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

Stephen Forrest May, B.S., M.S.

* * * * *

The Ohio State University

1998

Dissertation Committee:

Prof. Wayne E. Carlson, Adviser

Prof. Richard E. Parent

Prof. Neelam Soundarajan

Prof. Charles A. Csuri

Approved by

Adviser

Department of Computer and
Information Science

M A N Y P A G E S D I S C A R D E D

1.1.2 Historical Development of Computer Animation Systems

Traditionally, animation systems have neatly filed themselves into one of two distinctly

different classifications: scripting and interactive. Modern systems still can be classified in

this manner, although increasingly the distinction between the two classifications is being

blurred.

16

1.1.2.1 Scripting Systems

The first computer animations were produced by writing programs to generate the an-

imation using general purpose programming languages (e.g., Fortran). General purpose

languages are flexible and inherently allow programmers to take advantage of conventional

programming mechanisms (e.g., variables, subroutines, conditional statement execution, it-

eration) and techniques (e.g., structured programming, object-oriented design, recursion) to

produce animation. The main disadvantage of this approach is that many elements needed

to generate animations (e.g., specifying geometric shapes, building hierarchies, generating

output for renderers, applying transformations to objects) have to be reimplemented for

each animation. The amount of work required to provide the underlying framework can

easily outweigh the programming needed that is unique to the production of the animation

task at hand.

In response to the problems of using general purpose programming languages, re-

searchers developed specialized programming languages,procedural animation languages,

designed for the task of computer animation [30, 47, 60, 64, 65, 80, 104, 111, 113]. These

animation languages are either new programming languages entirely (often with similari-

ties to existing languages) or extensions of existing general purpose languages (extension

languages). In the case of an extension language, the underlying, general purpose lan-

guage is called thebase language. The base language provides conventional programming

functionality; the extensions to the base language provide the functionality needed to pro-

duce computer animation. Animation languages that are built from scratch (i.e., without an

underlying base language) tend to lack the wide range of functionality that extension lan-

guages have (particularly with regards to the richness of data types and device I/O), but are

17

often easier to learn, use, and implement. A detailed discussion of procedural animation

languages in given in Chapter 2.

As the field of computer animation began to mature, more and more non-technical users

started working with animation systems. Researchers quickly realized that there was a need

for systems that did not require complicated programming in order to specify animation

[27, 30, 54]. TheAnima II system [54] was the first animation system to use a high-level

script — a list of instructions or commands that specify how the objects in the scene are

to be animated. Scripts are specified using acommand language. Command languages

are simpler than procedural animation languages and thus easier for non-programmers to

use. Command languages are typified by a lack of one or more of the features considered

essential for general programming languages like variables, function calls, data structures,

and control-flow constructs. Most command languages employ a simple syntax where one

command is specified per line and each command has a similar syntax. Often a verb-noun

syntax was used as shown below.

hverbi hnouni hparametersi

The hverbi specifies the action. Thehnouni specifies the object that the action will

affect. Thehparametersi specify additional values required to fully specify the action. The

Anima II commands shown below are adapted from [54].

SET POSITION ball 0, 0, 0, AT frame 1
CHANGE POSITION ball TO, 1, 0, 0, FROM frame 1 TO frame 100

The commands inAnima II are executed in parallel so that simultaneous actions can

be expressed. In the example above, an object named “ball” is positioned at coordinates

(0; 0; 0) at frame 1 and simultaneously moved to coordinates(1; 0; 0) over frames 1 to 100.

18

The use of parallel commands such as these avoids the need for iterative programming

constructs.

The disadvantage of command languages is that they are not procedural (i.e., they do

not have the features of general programming languages). By eliminating the language

constructs that make learning animation languages difficult, command languages give up

the mechanisms that make animation languages powerful. Complex objects that can be rep-

resented using mathematical constraints, procedural rules, and behavioral processes cannot

be effectively represented using command languages. Authors of systems which employ

command languages have to resort to a general programming language to procedurally

generate complex scripts as is illustrated in [26, 96]. Newell states “Many systems dictate

a data format based on their particular primitive form. As these systems are developed,

the need for more and more generality in the facilities provided results in escalations in

the complexity of the data format until it begins to resemble a programming language. At

this point, the arguments for and against special purpose programming languages become

relevant [94].”

1.1.2.2 Interactive Systems

In the late 1970’s and early 1980’s, the emphasis in computer animation turned towards

the development of interactive animation systems [26, 43, 48, 53, 81, 96, 129]. Interac-

tive animation systems allow the animator to make continuous modifications to the shape,

transformations, and attributes of three-dimensional objects. Modifications are specified

using an input device, such as a mouse, and the results are computed and shown (rendered)

quickly enough to the user so that the user feels as if he or she is directly manipulating the

object on the screen.

19

Interactive systems have become the predominant method for creating computer ani-

mation today because they provide immediate, visual, user feedback. As such, the features

of such systems are well known and are typified by the powerful commercial systems such

asAlias PowerAnimator[2], SoftImagej3D [126], and3D Studio Max[70].

1.1.2.3 Systems That Combine Scripting and Interaction

Over the years, developers and users have debated about what type of animation sys-

tem, scripting or interactive, was superior. More recently, researchers agree that both types

of systems are important [60, 119]. Three types of systems that incorporate both script-

ing (procedural) and interactive techniques now exist: procedural animation languages that

have integrated interactive capabilities, visual programming systems, and interactive sys-

tems that incorporate procedural capabilities.

The most successful system to date that adds interactive capabilities to a procedural ani-

mation language is Pixar’sMenvsystem [111]. The key technology inMenvis a language-

level mechanism called thearticulated variablethat permits the procedural representation

of objects to be modified interactively. The articulated variable is an extension of previous

work by Hanrahan and Sturman [60] and Reynolds [113]. TheMenvsystem and articulated

variables are discussed further in Section 2.5.

Visual programming systems, such as Haeberli’sConMan[55] and the commercial

Houdini system [120], use a graphical representation of dataflow networks [92, 108]. In a

visual programming system, the scene is represented as an acyclic graph (See Figure 1.12).

Nodes in the graph represent functions that produce shapes and functions that apply trans-

formations to shapes. Each node, like a function, has a set of inputs and outputs that can

be used to pass data between nodes. Outputs of nodes are connected to inputs of other

20

nodes by interactively connecting the nodes with edges. In addition to inputs (data) from

other nodes, nodes typically have other parameters that can be modified interactively and

animated over time using conventional animation channels or tracks. Nodes are usually

implemented as independent, modular components. New nodes can be implemented in a

general purpose programming language (e.g., C or C++) by the user using an API (applica-

tion programmer’s interface) specific to the system. Visual programming systems provide

facilities for procedural animation and are easier for non-programmers to use because they

are interactive and the syntax of a programming language is avoided. However, more com-

plex types of procedural animation, such as flocking [114], can be difficult to express when

communication channels between components are complex or implicit, when centralized

data structures are needed, or when an object-oriented design style is preferred.

Interactive animation systems add procedural animation capabilities through three main

mechanisms: command languages for scripting (described earlier),expressions, andplug-

ins. Expressions allow parameters that are usually specified interactively to be specified

using simple mathematical expressions that are typed in by the user. Plug-ins are mod-

ular software units that can be used to extend the functionality of the system. Like the

nodes of visual programming systems, plug-ins are implemented using a general purpose

programming language and an API specific to the animation system.

The problem with existing systems that use plug-ins and visual programming is porta-

bility. It is difficult, if not impossible, for a procedural object implemented in either type of

system to be transferred intact (i.e., with the same procedural capabilities) to a different an-

imation system because the representations used to implement plug-ins and store network

graphs are system specific.

21

Figure 1.12: AHoudininetwork (left) for a fluted cylinder (right).

1.2 Motivation

This chapter began by introducing the term “encapsulated models.” Recall that an en-

capsulated model is an object that contains an integrated set of dynamic attributes using a

procedural data format (i.e., a procedural animation language). The encapsulated attributes

may include some or all of the following: geometric shape, time-varying motion, surface

materials, light sources, cameras, sound, and even special effects like smoke and fire.

22

The concept of encapsulated models is an attempt to improve the representation (i.e.,

data format) used to describe graphical objects for photorealistic computer animation. An

improved representation will yield two major benefits:

1. The complexity and sophistication of objects that can be created will be increased.

2. The cost of producing complex, sophisticated computer animation will be reduced.

Nearly all animate objects exhibit complex, dynamic interactions between motion,

form, and other attributes. A procedural representation can model these dynamic inter-

actions effectively. Consider the work of Scheeperset al. in anatomically-based modeling

of human muscles [117]. Using the AL language, visually realistic, procedural models of

the anatomy of humans were developed. The procedural models include different types of

muscles that vary in shape, size, placement, and behavior. Complex interactions between

the different muscle types, tendons, bones, and skin are modeled. Animation of the skele-

tal structure (represented as an articulated hierarchy) by the animator results in realistic

changes in the musculature and skin. The detailed models of skeletal and muscle layers

can be manipulated in real-time. The detail and computational efficiency of the complex

musculature is achieved because the underlying procedural data format allows for multi-

ple, highly specialized models of joints, muscles, and tendons to be developed. Models of

this complexity (and more) where shape and animation are integrally linked will become

increasingly common as artistic demands and computing technology advance.

To argue reduced costs, consider the state of affairs with commercial companies that

sell three-dimensional objects for producers of computer animated films. These companies

23

sell data for thousands of objects including all types of cars, planes, people, furniture, archi-

tecture, appliances, etc. Unfortunately, the objects only contain static geometric informa-

tion (usually polygonal or NURB-based) and in some cases, surface material descriptions.

Why? Because the data formats used by animation systems for the description of individ-

ual objects lacks the expressive power needed to describe other components. Even simple

objects (e.g., an alarm clock, See Section 4.2.5) would be much easier to use if anima-

tors could purchase models of objects, “off-the-shelf,” that have predefined movable parts,

built-in animation controls, built-in sound effects, and parameters to vary the shape, style,

or functionality of the model. In order to provide this type of object, more sophisticated

data representations and animation systems that manipulate those representations have to

be developed. Currently, the price of three-dimensional data objects is generally based

on the number of polygons. With more advanced data representations, the price could be

dictated by the sophistication of the self-contained animation, the quality of built-in sound

effects, and the range of parameterization.

In order to develop the concept of encapsulated models, the following problems have

to be solved:

1. The properties of encapsulated models have to be defined in order to reason about

representations and systems for them.

2. The requirements for procedural animation languages as a representation for encap-

sulated models have to be specified. These requirements can be derived directly from

the properties in item 1. The requirements should be independent of any specific pro-

gramming language so that they can have general applicability.

24

3. Mechanisms for interactive manipulation of encapsulated models have to be devel-

oped. Historically, procedurally based animation systems are difficult to use (even

by technicians) because they lack interactivity and require programming. One ap-

proach, to make such systems effective, is to develop programming language mech-

anisms and software tools to support interactive manipulation and construction of

procedural representations.

4. Prototype procedural animation languages and interactive animation systems to sup-

port encapsulated models must be developed.

MANY PAGES DELETED

25

BIBLIOGRAPHY

[1] Adobe Systems Incorporated.PostScript Language Reference Manual, second edi-
tion, 1994.

[2] AliasjWavefront, a division of Silicon Graphics Limited, Toronto, Ontario.Alias
Studio, V8, 1997.

[3] Phil Amburn, Eric Grant, and Turner Whitted. Managing geometric complexity
with enhanced procedural models. In David C. Evans and Russell J. Athay, editors,
Computer Graphics (SIGGRAPH 86 Conference Proceedings), volume 20, pages
189–195. ACM SIGGRAPH, August 1986.

[4] Susan Amkraut and Michael Girard. Eurhythmy: Concept and process.Journal of
Visualization and Computer Animation, 1(1):15–17, August 1990.

[5] David Baraff. Coping with friction for non-penetrating rigid body simulation. In
Thomas W. Sederberg, editor,Computer Graphics (SIGGRAPH 91 Proceedings),
volume 25, pages 31–40, July 1991.

[6] Bren Bataclan. Documentation of a pilipino folk song animation utilizing computer
graphics technology and visual communication principles. Master’s thesis, The Ohio
State University, June 1995.

[7] Bren Bataclan, Steve May, and Ferdi Scheepers. Bahay kubo: A pilipino folk song.
The Ohio State University, August 1995.

[8] Bruce G. Baumgart. Geometric modeling for computer vision. AIM-249, STA CS-
74-463, CS Dept, Stanford University, October 1974.

[9] D. Scott Birney.Observational Astronomy. Cambridge University Press, 1991.

[10] Preston Blair.Cartoon Animation. Walter Foster Publishing, Inc., Tustin, California,
1994.

[11] James F. Blinn. A generalization of algebraic surface drawing.ACM Transactions
on Graphics, 1(3):235–256, July 1982.

186

[12] Beth Blostein. Procedural generation of alternative formal and spatial configurations
for use in architecture and design. Master’s thesis, The Ohio State University, 1995.

[13] Beth Blostein and Terry Monnett. Tectonic evolution. The Ohio State University,
August 1995.

[14] David E. Breen, Donald H. House, and Michael J. Wozny. Predicting the drape of
woven cloth using interacting particles. In Andrew Glassner, editor,SIGGRAPH
94 Conference Proceedings, Annual Conference Series, pages 365–372. ACM SIG-
GRAPH, Addison Wesley, July 1994.

[15] C. Wayne Brown and Barry J. Shepherd.Graphics File Formats. Manning Publica-
tions Co., 1995.

[16] Wayne E. Carlson. An advanced data generation system for use in complex object
synthesis for computer display. InProceedings of Graphics Interface ’82, pages
197–204, 1982.

[17] Wayne E. Carlson.Techniques for the generation of three dimensional data for use
in complex image synthesis. PhD thesis, The Ohio State University, 1982.

[18] Wayne E. Carlson. Computer and Information Science 783: Geometric modeling.
The Ohio State University, 1996.

[19] John E. Chadwick, David R. Haumann, and Richard E. Parent. Layered construction
for deformable animated characters. In Jeffrey Lane, editor,Computer Graphics
(SIGGRAPH 89 Conference Proceedings), volume 23, pages 243–252, July 1989.

[20] A.H.J. Christensen. “blocked puzzle,” approximation to a dougnut. In James J.
Thomas, editor,Computer Graphics (SIGGRAPH 80 Conference Proceedings), vol-
ume 16. ACM SIGGRAPH, July 1980.

[21] Sharon Rose Clay and Jane Wilhelms. Put: Language-based interactive manipula-
tion of objects. IEEE Computer Graphics and Applications, 16(2):31–39, March
1996.

[22] William Clinger, Jonathan Rees, et al. The revised4 report on the algorithmic lan-
guage Scheme.LISP Pointers, 4(3), 1991.

[23] Alison Colman. Deadly mister misty. The Ohio State University, August 1996.

[24] Robert L. Cook. Stochastic sampling in computer graphics.ACM Transactions on
Graphics, 5(1):51–72, January 1986.

[25] Franklin C. Crow. The aliasing problem in computer-generated shaded images.
Communications of the ACM, 20(11):799–805, November 1977.

187

[26] C. Csuri, R. Hackathorn, R. Parent, W. Carlson, and M. Howard. Towards an interac-
tive high visual complexity animation system. In Bary W. Pollack, editor,Computer
Graphics (SIGGRAPH 79 Conference Proceedings), volume 13, pages 289–299.
ACM SIGGRAPH, August 1979.

[27] Charles Csuri. Computer graphics and art.Proceedings of the IEEE, pages 558–570,
April 1974.

[28] Charles Csuri and Stephen F. May. Playground.
http://www.horizonsmedia.com/csuri/Playground.html, October 1995.

[29] Charles Csuri, Stephen F. May, Peter G. Carswell, and Lawson Wade. Queenly
gestures. ACM SIGGRAPH 97 Conference, August 1997.

[30] Tom DeFanti. The digital component of the circle graphics habitat. InAFIPS Con-
ference Proceedings (National Computer Conference), volume 45, pages 195–203,
1976.

[31] Julie Dorsey and Pat Hanrahan. Modeling and rendering of metallic patinas. In
Holly Rushmeier, editor,SIGGRAPH 96 Conference Proceedings, Annual Confer-
ence Series, pages 387–396. ACM SIGGRAPH, Addison Wesley, August 1996.

[32] Steven M. Drucker, Tinsley A. Galyean, and David Zeltzer. CINEMA: A system for
procedural camera movements. In David Zeltzer, editor,Computer Graphics (1992
Symposium on Interactive 3D Graphics), volume 25, pages 67–70, March 1992.

[33] R. Kent Dybvig.The Scheme Programming Language. Prentice Hall, second edition,
1996.

[34] David S. Ebert. Advanced geometric modeling. In Jr. Allen Tucker, editor,The
Computer Science and Engineering Handbook, chapter 56. CRC Press, 1997.

[35] David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven Wor-
ley. Texturing and Modeling: A Procedural Approach. Academic Press, October
1994. ISBN 0-12-228760-6.

[36] David S. Ebert and Richard E. Parent. Rendering and animation of gaseous phenom-
ena by combining fast volume and scanline A-buffer techniques. In Forest Baskett,
editor, Computer Graphics (SIGGRAPH 90 Conference Proceedings), volume 24,
pages 357–366, August 1990.

[37] Gerald Farin.Curves and Surfaces for Computer Aided Geometric Design: A Prac-
tical Guide. Academic Press, Inc., San Diego, CA, 1988.

[38] David Flanagan.Java in a Nutshell: A Desktop Quick Reference for Java Program-
mers. O’Reilly & Associates, Inc., 1996.

188

[39] David Flanagan.JavaScript: The Definitive Guide. O’Reilly & Associates, Inc.,
second edition, 1997.

[40] Kurt Fleischer and Andrew Witkin. A modeling testbed. InProceedings of Graphics
Interface ’88, volume 21, pages 127–137. Canadian Inf. Process. Society, 1988.

[41] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.Computer
Graphics, Principles and Practice, Second Edition. Addison Wesley, Reading, Mas-
sachusetts, 1990.

[42] Mark Fontana, Kirk Bowers, and Steve May. Butterflies in the rain. The Ohio State
University, 1997.

[43] D. Fortin, J. F. Lamy, and Daniel Thalmann. A multiple track animator sys-
tem for motion synchronization. InProceedings ACM SIGGRAPH/SIGART Inter-
disciplinary Workshop: Motion: Representation and Perception, pages 180–186,
Toronto, April 1983.

[44] Nick Foster and Dimitris Metaxas. Modeling the motion of a hot, turbulent gas. In
Turner Whitted, editor,SIGGRAPH 97 Conference Proceedings, Annual Conference
Series, pages 181–188. ACM SIGGRAPH, Addison Wesley, August 1997.

[45] Alain Fournier and William T. Reeves. A simple model of ocean waves. In David C.
Evans and Russell J. Athay, editors,Computer Graphics (SIGGRAPH 86 Proceed-
ings), volume 20, pages 75–84, August 1986.

[46] Curtis F. Gerald and Patrick O. Wheatley.Applied Numerical Analysis. Addison
Wesley, Reading, MA, 1985.

[47] G. B. Goates, M. L. Griss, and G. J. Herron. PICTUREBALM: A LISP-based graph-
ics language system with flexible syntax and hierarchical data structure. In James J.
Thomas, editor,Computer Graphics (SIGGRAPH 80 Conference Proceedings), vol-
ume 14, pages 93–99. ACM SIGGRAPH, July 1980.

[48] Julian E. Gomez. TWIXT: A 3D animation system. In K. Bo and H. A. Tucker,
editors,Eurographics ’84, pages 121–133. North-Holland, 1984.

[49] Mark Green and Hanqin Sun. A language and system for procedural modeling and
motion. IEEE Computer Graphics and Applications, 8:52–64, November 1988.

[50] Robin M. Green.Spherical Astronomy. Cambridge University Press, 1985.

[51] L. Gritz and J. K. Hahn. Genetic programming for articulated figure motion.Journal
of Visualization and Computer Animation, 6(3):129–142, July 1995.

189

[52] Larry Gritz and James K. Hahn. BMRT: A global illumination implementation of
the RenderMan standard.Journal of Graphics Tools, 1(3), 1996.

[53] R. Hackathorn, R. Parent, B. Marshall, and M. Howard. An interactive microcom-
puter based 3-D animation system. InProc. of the 7th Canadian Man-Computer
Communications Conf., pages 181–191, 1981.

[54] Ronald J. Hackathorn. Anima II: a 3-D color animation system. In James George,
editor, Computer Graphics (SIGGRAPH 77 Conference Proceedings), volume 11,
pages 54–64. ACM SIGGRAPH, July 1977.

[55] Paul E. Haeberli. ConMan: A visual programming language for interactive graphics.
In John Dill, editor,Computer Graphics (SIGGRAPH 88 Conference Proceedings),
volume 22, pages 103–111. ACM SIGGRAPH, Addison Wesley, August 1988.

[56] Paul E. Haeberli and Kurt Akeley. The accumulation buffer: Hardware support for
high-quality rendering. In Forest Baskett, editor,Computer Graphics (SIGGRAPH
90 Conference Proceedings), volume 24, pages 309–318, August 1990.

[57] J. K. Hahn, J. Geigel, J. W. Lee, L. Gritz, T. Takala, and S. Mishra. An integrated
approach to motion and sound.Journal of Visualization and Computer Animation,
6(2):109–124, April 1995.

[58] James K. Hahn. Realistic animation of rigid bodies. In John Dill, editor,Computer
Graphics (SIGGRAPH 88 Proceedings), volume 22, pages 299–308, August 1988.

[59] Mark Hammel and Przemyslaw Prusinkiewicz. Visualization of developmental pro-
cesses by extrusion in space-time. In Wayne A. Davis and Richard Bartels, editors,
Graphics Interface ’96, pages 246–258. Canadian Information Processing Society,
Canadian Human-Computer Communications Society, May 1996.

[60] Pat Hanrahan and David Sturman. Interactive animation of parametric models.The
Visual Computer, 1(4):260–266, December 1985.

[61] David R. Haumann and Richard E. Parent. The behavioral test-bed: obtaining com-
plex behavior from simple rules.The Visual Computer, 4(6):332–347, December
1988.

[62] Li-wei He, Michael F. Cohen, and David H. Salesin. The virtual cinematographer: A
paradigm for automatic real-time camera control and directing. In Holly Rushmeier,
editor, SIGGRAPH 96 Conference Proceedings, Annual Conference Series, pages
217–224. ACM SIGGRAPH, Addison Wesley, August 1996.

[63] C. Hewitt and R. Atkinson. Parallelism and synchronization in actor systems. In
ACM Symposium on Principles of Programming Languages 4, January 1977.

190

[64] Michael B. Johnson.Wavesworld: A testbed for constructing three-dimensional
semi-autonomous animated characters. PhD thesis, Massachusetts Institute of Tech-
nology, 1995.

[65] Ben Jones. An extended Algol-60 for shaded computer graphics. In Toby Berk,
editor,Computer Graphics (Proceedings ACM Symposium on Graphic Languages),
volume 10, pages 18–23. ACM SIGGRAPH/SIGPLAN, April 1976.

[66] K. Kahn. An actor-based computer animation language. InProceedings of the ACM-
SIGGRAPH Workshop on User-Oriented Design of Computer Graphics Systems,
October 1976.

[67] Arie Kaufman, Daniel Cohen, and Roni Yagel. Volume graphics.IEEE Computer,
26(7):51–64, July 1993.

[68] Brian W. Kernighan and Dennis M. Ritchie.The C Programming Language. Prentice
Hall, second edition, 1988.

[69] Muqeem Khan. The platonic problem. The Ohio State University, June 1996.

[70] Kinetix, a division of Autodesk, Inc., San Francisco, CA.3D Studio Max, April
1996.

[71] J. U. Korein and N. I. Badler. Techniques for generating the goal-directed animation
of articulated structures.IEEE Computer Graphics and Applications, 2(9):71–81,
November 1982.

[72] John Lasseter. Principles of traditional animation applied to 3D computer anima-
tion. In Maureen C. Stone, editor,Computer Graphics (SIGGRAPH 87 Conference
Proceedings), volume 21, pages 35–44, July 1987.

[73] Oliver Laumann.The OOPS Package for Elk Scheme. 1994.

[74] Oliver Laumann and Carsten Bormann. Elk: The extension language kit.USENIX
Computing Systems, 7(4), 1994.

[75] Eli L. Levitan. Handbook of Animation Techniques. Van Nostrand Reinhold Com-
pany, New York, 1979.

[76] Marc Levoy. SIGGRAPH 96 Conference Course Notes: Introduction to Volume
Visualization. 1991.

[77] Matthew Lewis. Abulafia gallery. The Ohio State University, http://www.cgrg.ohio-
state.edu/˜mlewis/Gallery/gallery.html, June 1995.

[78] Matthew Lewis. Art 894: Procedural animation. The Ohio State University, 1997.

191

[79] Matthew Lewis. Conversations. The Ohio State University, http://www.cgrg.ohio-
state.edu/˜mlewis/Converse/converse.html, July 1997.

[80] N. Magnenat-Thalmann and D. Thalmann. The use of high-level 3-D graphical types
in the Mira animation system.IEEE Computer Graphics and Applications, 3:9–16,
December 1983.

[81] N. Magnenat-Thalmann, D. Thalmann, and M. Fortin. MIRANIM: An extensi-
ble director-oriented system for the animation of realistic images.IEEE Computer
Graphics and Applications, 5(3):61–73, March 1985.

[82] Nadia Magnenat-Thalmann and Daniel Thalmann.Computer Animation: Theory
and Practice. Springer-Verlag, New York, 1985.

[83] Martti Mantyla. An Introduction to Solid Modeling. Computer Science Press,
Rockville, MD, 1988.

[84] Robert Marshall, Roger Wilson, and Wayne Carlson. Procedure models for gen-
erating three-dimensional terrain. In James J. Thomas, editor,Computer Graphics
(SIGGRAPH 80 Conference Proceedings), volume 14, pages 154–162. ACM SIG-
GRAPH, July 1980.

[85] Stephen F. May. AL: Animation language reference manual. Technical Report
OSU-ACCAD-11/94-TR3, ACCAD, The Ohio State University, November 1994.
http://www.cgrg.ohio-state.edu/˜smay/AL.

[86] Stephen F. May.LibDm: A Library for Shared Memory IPC Using C++ Objects.
The Ohio State University, August 1995.

[87] Stephen F. May, Wayne Carlson, Flip Phillips, and Ferdi Scheepers. AL: A language
for procedural modeling and animation. Technical Report OSU-ACCAD-12/96-
TR5, ACCAD, The Ohio State University, December 1996.

[88] Neal McDonald and Tonya Ramsey. Context. The Ohio State University, August
1995.

[89] Jean Meeus.Astronomical Formulae for Calculators. Willmann-Bell, 1988.

[90] Gavin Miller and Andrew Pearce. Globular dynamics: A connected particle system
for animating viscous fluids.Computers and Graphics, 13(3):305–309, 1989.

[91] Michael E. Mortenson.Geometric Modeling. John Wiley and Sons, 1985.

[92] Tom Nadas and Alain Fournier. GRAPE: An environment to build display processes.
In Maureen C. Stone, editor,Computer Graphics (SIGGRAPH 87 Conference Pro-
ceedings), volume 21, pages 75–84, July 1987.

192

[93] Jackie Neider, Tom Davis, and Mason Woo.OpenGL Programming Guide: The
Official Guide to Learning OpenGL, Release 1. Addison Wesley, Reading, Mas-
sachusetts, 1993.

[94] Martin E. Newell.The Utilization of Procedure Models in Digital Image Synthesis.
PhD thesis, University of Utah, 1975.

[95] William M. Newman. Display procedures.Communications of the ACM, pages
651–660, October 1971.

[96] T. J. O’Donnell and Arthur J. Olson. GRAMPS – A graphics language interpreter
for real-time, interactive, three-dimensional picture editing and animation. In Henry
Fuchs, editor,Computer Graphics (SIGGRAPH 81 Conference Proceedings), vol-
ume 15, pages 133–142. ACM SIGGRAPH, August 1981.

[97] Open Software Foundation, Cambridge, MA.OSF/Motif Programmer’s Guide,
1990.

[98] John K. Ousterhout.Tcl and the Tk Toolkit. Addison Wesley, 1994.

[99] Alan Paeth, Ferdi Scheepers, and Stephen F. May. A survey of extended graphics
libraries. In Alan Paeth, editor,Graphics Gems V. AP Professional, 1995.

[100] Richard E. Parent.A system for generating three-dimensional data for computer
graphics. PhD thesis, Ohio State University, 1977.

[101] Darwyn R. Peachey. Modeling waves and surf. In David C. Evans and Russell J.
Athay, editors,Computer Graphics (SIGGRAPH 86 Proceedings), volume 20, pages
65–74, August 1986.

[102] Ken Perlin. An image synthesizer. In B. A. Barsky, editor,Computer Graphics
(SIGGRAPH 85 Proceedings), volume 19, pages 287–296, July 1985.

[103] Ken Perlin and Athomas Goldberg. IMPROV: A system for scripting interactive
actors in virtual worlds. In Holly Rushmeier, editor,SIGGRAPH 96 Conference
Proceedings, Annual Conference Series, pages 205–216. ACM SIGGRAPH, Addi-
son Wesley, August 1996.

[104] Gregory F. Pfister. A high level language extension for creating and control-
ling dynamic pictures. In Toby Berk, editor,Computer Graphics (Proceedings
ACM Symposium on Graphic Languages), volume 10, pages 1–9. ACM SIG-
GRAPH/SIGPLAN, April 1976.

[105] Pixar. PhotoRealistic Renderman. Richmond, CA, 1987-1997.

[106] Pixar. Tin toy. By John Lasseter and Eben Ostby and William Reeves, August 1988.

193

[107] Pixar.The RenderMan Interface, Version 3.1, September 1989.

[108] Michael Potmesil and Eric M. Hoffert. FRAMES: Software tools for modeling,
rendering and animation of 3D scenes. In Maureen C. Stone, editor,Computer
Graphics (SIGGRAPH 87 Conference Proceedings), volume 21, pages 85–93. ACM
SIGGRAPH, July 1987.

[109] Przemyslaw Prusinkiewicz and Aristid Lindenmayer.The Algorithmic Beauty of
Plants. Springer-Verlag, 1990.

[110] William T. Reeves. Particle systems – a technique for modeling a class of fuzzy
objects.ACM Transactions On Graphics, 2:91–108, April 1983.

[111] William T. Reeves, Eben F. Ostby, and Samuel J. Leffler. The Menv modelling and
animation environment.Journal of Visualization and Computer Animation, 1(1):33–
40, August 1990.

[112] William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering antialiased
shadows with depth maps. In Maureen C. Stone, editor,Computer Graphics (SIG-
GRAPH 87 Conference Proceedings), volume 21, pages 283–291, July 1987.

[113] Craig W. Reynolds. Computer animation with scripts and actors. In R. Daniel
Bergeron, editor,Computer Graphics (SIGGRAPH 82 Conference Proceedings),
volume 16, pages 289–296. ACM SIGGRAPH, July 1982.

[114] Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral model.
In Maureen C. Stone, editor,Computer Graphics (SIGGRAPH 87 Conference Pro-
ceedings), volume 21, pages 25–34. ACM SIGGRAPH, July 1987.

[115] Barbara Robertson. Toy story: A triumph of animation.Computer Graphics World,
pages 28–38, August 1995.

[116] Ferdi Scheepers.Anatomy-Based Surface Generation for Articulated Models of Hu-
man Figures. PhD thesis, The Ohio State University, June 1996.

[117] Ferdi Scheepers, Richard E. Parent, Wayne E. Carlson, and Stephen F. May.
Anatomy-based modeling of the human musculature. In Turner Whitted, editor,SIG-
GRAPH 97 Conference Proceedings, Annual Conference Series. ACM SIGGRAPH,
Addison Wesley, August 1997.

[118] Robert Scheifler and James Gettys. The X window system.ACM Transactions On
Graphics, 5:79–109, 1986.

[119] John F. Schlag. Eliminating the dichotomy between scripting and interaction. In
M. Green, editor,Proceedings of Graphics Interface ’86, pages 202–206, May 1986.

194

[120] Side Effects Software Inc., Toronto, Ontario.Houdini 2.0: User Guide, September
1997.

[121] David Siegel.Creating Killer Web Sites: The Art of Third-Generation Site Design.
Hayden Books, 1996.

[122] Karl Sims. Artificial evolution for computer graphics. In Thomas W. Sederberg,
editor, Computer Graphics (SIGGRAPH 91 Proceedings), volume 25, pages 319–
328, July 1991.

[123] Karl Sims. Evolving virtual creatures. In Andrew Glassner, editor,SIGGRAPH 94
Conference Proceedings, pages 15–22. ACM SIGGRAPH, Addison Wesley, July
1994.

[124] Alvy Ray Smith. Plants, fractals, and formal languages. In Hank Christiansen,
editor, Computer Graphics (SIGGRAPH 84 Conference Proceedings), volume 18,
pages 1–10. ACM SIGGRAPH, July 1984.

[125] John M. Snyder.Generative Modeling for Computer Graphics and CAD: Symbolic
Shape Design Using Interval Analysis. Academic Press, Inc., 1992.

[126] Softimage, a subsidiary of Microsoft Corp.Softimagej3D, 1997.

[127] Richard Stallman.GNU Emacs Manual. Free Software Foundation, 11th edition,
1994.

[128] Jos Stam and Eugene Fiume. Depicting fire and other gaseous phenomena using
diffusion processes. In Robert Cook, editor,SIGGRAPH 95 Conference Proceed-
ings, Annual Conference Series, pages 129–136. ACM SIGGRAPH, Addison Wes-
ley, August 1995.

[129] Garland Stern. Bbop - a program for 3-dimensional animation. InNicograph ’83,
pages 403–404. December 1983.

[130] Paul S. Strauss and Rikk Carey. An object-oriented 3D graphics toolkit. In Edwin E.
Catmull, editor,Computer Graphics (SIGGRAPH 92 Conference Proceedings), vol-
ume 26, pages 341–349. ACM SIGGRAPH, Addison Wesley, July 1992.

[131] Tapio Takala and James Hahn. Sound rendering. In Edwin E. Catmull, editor,
Computer Graphics (SIGGRAPH 92 Conference Proceedings), volume 26, pages
211–220, July 1992.

[132] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically de-
formable models. In Maureen C. Stone, editor,Computer Graphics (SIGGRAPH 87
Proceedings), volume 21, pages 205–214, July 1987.

195

[133] Frank Thomas and Ollie Johnston.Disney Animation: The Illusion of Life. Abbeville
Press, New York, fifth edition, 1981.

[134] T. Towle and T. DeFanti. GAIN: An interactive program for teaching interactive
computer graphics programming. In Richard L. Phillips, editor,Computer Graph-
ics (SIGGRAPH 78 Conference Proceedings), volume 12, pages 54–59. ACM SIG-
GRAPH, August 1978.

[135] Paul Trachtman. Charles Csuri is an ‘Old Master’ in a new medium.Smithsonian,
25(11):56–65, February 1995.

[136] Steve Upstill. The RenderMan Companion: A Programmer’s Guide to Realistic
Computer Graphics. Addison Wesley, 1990.

[137] Lawson Wade and Richard E. Parent. Automatic generation of control skeletons
for animation of polyhedral models. Technical Report OSU-ACCAD-3/98-TR1,
ACCAD, The Ohio State University, January 1998.

[138] Graham Walters.SIGGRAPH 96 Conference Course Notes: The Making of Toy
Story. 1996.

[139] Alan Watt and Mark Watt.Advanced Animation and Rendering Techniques: Theory
and Practice. Addison Wesley, 1992.

[140] Jerry Weil. The synthesis of cloth objects. In David C. Evans and Russell J. Athay,
editors,Computer Graphics (SIGGRAPH 86 Proceedings), volume 20, pages 49–54,
August 1986.

[141] Josie Wernecke.The Inventor Mentor: Programming Object-Oriented 3D Graphics
with Open Inventor, Release 2. Addison Wesley, Reading, Massachusetts, 1994.

[142] Terry Winograd.Understanding Natural Language. Academic Press, 1974.

[143] David Zeltzer. Task-level graphical simulation: Abstraction, representation, and
control. In Norm Badler, Brian Barsky, and David Zeltzer, editors,Making them
move: mechanics, control, and animation of articulated figures, chapter 1, pages
3–33. Morgan Kaufmann, 1991.

196

