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Abstract
The redlistic depiction of smoke, steam, mist and water reacting
to a turbulent field such as wind is an attractive and challenging
problem. Its solution requires interlocking models for turbulent
fields, gaseousflow, and realistic illumination. We present amodel
for turbulent wind flow having a deterministic component to spec-
ify large-scale behaviour, and a stochastic component to model
turbulent small-scale behaviour. The small-scale component is
generated using space-time Fourier synthesis. Turbulent wind
fields can be superposed interactively to create subtle behaviour.
An advection-diffusion model is used to animate particle-based
gaseous phenomena embedded in awind field, and we derive an
efficient physically-basedillumination model for renderingthesys-
tem. Becausethenumber of particles can bequitelarge, we present
aclustering algorithm for efficient animation and rendering.
CR Categories and Subject Descriptors. 1.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism; 1.3.3
[Computer Graphics]: Picture/lmage Generation; G.3 [Proba-
bility and Statisticg]: Probabilistic algorithms.
Additional keywordsand phrases: turbulent flow, stochastic mod-
elling, Kolmogorov energy spectrum and cascade, transport model
of illumination, Fourier synthesis, advection-diffusion, gaseous
phenomena.

1 Introduction

We have cometo appreciate the central role that irregularity plays
in modelling the shape of natural objects. The analogue for wind
and fluids is turbulence, and its effects are no less essential to the
realistic portrayal of gaseousnatural phenomena: curling wisps of
smoke, mist blowing across afield, car exhaust, an aerosol spray,
steam rising from a coffee mug, cloudsforming and moving across
the sky, the fall of leaves, a swirl of dust in a room, a hurricane.
These effects are caused by the interaction of objects with a wind
velocity field. Modelling the effect of wind requires that we model
both the wind field and this interaction. Both Sims [14] and We-
jchert and Haumann [17] model a wind field as the superposition
of deterministic fields. Modelling a visually convincing turbulent
wind field this way is painstaking. The greatest successin this
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direction was the particle-based “ Blowing in the Wind” animation
by Reevesand Blau [10].

Stochastic modelling is a natural aternative strategy. In [13],
Shinyaand Fournier describe an approach devel oped independently
of ours but which has some similarities. They employ stochastic
processesand Fourier synthesisto deriveawind field in spatiotem-
poral frequency domain, and invert the result to get a periodic
space-time wind field. We employ the same paradigm, but our
model and application are quite different. Although both wind
models can be applied to a wide range of phenomena, and [13]
demonstratesthisvery well, their main concerniswith coupling the
wind model to macroscopic physical modelsof rigid or deformable
objects, whereaswe are mostly concerned with microscopic inter-
action with gaseousand fluid phenomena. Consequently, our model
of turbulenceisdissimilar: Shinyaand Fournier assumea constant
deterministic temporal evolution (Taylor Hypothesis), whilefor us
temporal evolution is also a stochastic process. Our wind model
also differsin that an animator hasdirect control over deterministic
and stochastic componentsof afield.

In this paper, turbulent wind fields are modelled as stochastic
processes. The model is empirically plausible[5]. A wind field is
generated from large-scale motion and from the statistical charac-
teristics of the small turbulent motion, both freely chosen by an
animator. This is analogous to modelling rough terrain by pro-
viding the global shape as given by a set of height samples, and
the desired roughness of the terrain [2]. The large scale of the
wind field will be modelled using simple wind field primitives
[14, 17]. The small scale of the wind field will be modelled as
a three-dimensional random vector field varying over space and
time. Thisfield is generated using inverse an FFT method[16] that
we have generalized to a vector field. The resulting wind field has
two desirable properties. Firgt, it isperiodic and is thus defined for
any point in space-time. Second, it isgenerated on adiscretelattice
and can beinteractively calculated using four-linear interpolation.

Gaseshavebeenmodelled in several ways. Ebert modelsagasas
a solid texture. With some trial-and-error (and in our experience,
significant human effort), realistic animations were obtained[1].
Sakas models a gas as a 3-D random density field, generating it
using spectral synthesis[12]. While spectral synthesisisuseful in
generating turbulent wind fields, it isnot ideal for directly generat-
ing density fields: visual artifacts appear due to the periodicity of
thefield and the entire density field must be computed at once. The
temporal evolution of the density field islimited to smple tranda-
tions. Both of the above models are computationally expensiveto
visualize, and hence interactive modelling is not feasible. Using
physically-based turbulence to animate density fieldsis mathemat-
ically nontrivial, but we shall show that this can be doneefficiently.

We model gasesasdensity distributions of particles. Theevolu-
tion of adensity distribution within our wind field is described by



an advection-diffusion equation. We efficiently solvethis equation
by modelling the gas as a “fuzzy blobby” with time varying pa
rameters. A fast ray-tracing algorithm is used, based on afront to
back single-scattering illumination model, to render such adensity
distribution.

2 A Multiple-ScaleWind Field M odel

Physically, wind fieldsaretheresult of the variationsof thevelocity
u(x, t) andthepressure p(x, ¢) of afluid (including air) over space
and time. These variations are caused by various forces: external

forces F' applied to the fluid, non-linear interactions between dif-
ferent modes of the velocity field and viscous dissipation at arate
v. By summing these forces and equating them to the acceleration
of the fluid we obtain the Navier-Stokes equations:

N (a-V)u— LVp+vviu+F, (1)
at Pf

where p; is the density of the fluid. If the velocities of the fluid
are much smaller than the speed of sound, we can assumethat the
fluid isincompressible[5], i.e.,

V.u=0. (2)

When proper initial conditions and boundary conditions are speci-
fied, Egs. 1 and 2 are sufficient to solve for the velocity field and
the pressure of the fluid for any time instant.

The above equations could be used to animate realistic wind
fields. One would first specify the physical properties of the fluid
that make up the model, including an initial velocity field and
boundary conditions. One would then control the fluid motion by
applying external forces. Realistic wind fields would be obtained
by solving the Navier-Stokes equations as heeded. Thisis entirely
akin to the control problem for articulated figures, and it shares
the same difficulties. First, a desired effect is hard to achieve by
“programming” it using only external forces. Second, the non-
linearities present in the Navier-Stokes equations make them hard
to solve numerically, especially in the presence of turbulence (low
viscosity). Linearizing the equations can improve stability and
efficiency, which has been done by Kass and Miller to model the
surface of water [4]. This results in highly viscous fluids that do
not exhibit turbulence.

We shall model a turbulent wind field by separating it into a
large-scale component u; and a small scale component u.. The
large-scale term is composed of simple wind fields, resulting in
very viscous fluids. The small-scale term is a random field. We
shall make auseful but physically implausible assumption that the
componentsare independent, that is, that large scales do not affect
the small scales and vice-versa. Hence we will write

u(x,t) = w(x, t) + u.(x, ). 3

This assumption permits the real-time simulation and independent
control of both large-scale and small-scale effects. Theresults, as
we shall see, are quite convincing. We shall further discuss this
assumption in our conclusions.

3 Small Scale Modelling

3.1 Random Vector Fields

In thissection wewill denotethe small scalecomponent u. simply
by u. It isdefined as a random space-time vector field, a function
that assigns a random velocity to each point (x, ¢) in space-time
[15]. We shall invoke the standard Gaussian assumption [7]: that
the random vector field is entirely determined by its second-order
moments. These moments are obtained by statistically averaging
(denoted by { }) components of the evolving random velocity
field. We will assume that the mean values of each component

pi(x,t) = {ui(x,¢)) (¢ = 1,2,3) of u are constant and equal
to zero. The cross-correlation between different components of
the velocity field at two different points in space-time (x, ¢t) and
(x',t") are given by the functions

(ui(x, hu; (X', 1))

vl N
Fi(x, 6x,t) = ) ,

;=123 (4

Where (u?) = (u? + u3 + u3) denotesthe variance of the velocity
field and physically isequal to twice the kinetic energy of thefield.
We will assume that the velocity field is homogeneous in space
and stationary in time, which meansthat the cross-correlation only
dependson the difference r = x’ — x between the two points and
thedifference r = ¢’ — ¢ betweenthetwotimes: I';;(x, ¢;x', ') =
Fi] r, 7).

Iflomggeneous velocity fields have a corresponding representa-
tion in spatial-frequency domain via a spatial Fourier transform.
Intuitively this transformation can be thought of as a decompo-
sition of the velocity field into “eddies’ of different sizes: large
eddies correspond to small spatial frequencies and conversely for
small eddies. The stationarity of the velocity field allows it to be
represented in frequency domain by atemporal Fourier transform.
We will denotespatial frequenciesby k = (k1, k2, k3) and tempo-
ral frequenciesby w.! We represent the velocity field in frequency
domain viathe usual Fourier transform:

ak,w) = //u(x, t)exp(—ik - x —iwt) dxdt. (5)

Writing the transform in this manner facilitates its separation into
spatial and temporal frequency components. The Fourier-domain
equivaent of the cross-correlation functions are the cross-spectral
density functions:

&, (k,w) = (@] (k,w)a;k,w)), i,5=123, (6)

wherethe “+” denotesthe complex conjugation. Conveniently for
us, the cross-spectral density functions and the cross-correlation
functions are Fourier-transform pairs [15].

Finally, we assume that the velocity field is spatially isotropic,
meaning that the cross-correlation functions are invariant under
rotations. Thus the cross-correlation functions only depend on the
distance r = ||r|| between two points. Isotropy and incompress-
ibility (Eq. 2) imply that the cross-spectral density functions are of
theform [5]

E(k,w)
Ar kA

where é;; is the Kronecker delta, & is the length of the spatial
frequency k and £ isapositivefunction called the energy spectrum
function. Its physical interpretation isthat it givesthe contribution
of all spatial frequencies of length £ and frequency w to the total
kinetic energy of the velocity field:

3.2 TheEnergy Spectrum Function
Eqg. 7 states that the structure of a velocity field (via its cross-

spectral density functions) is entirely determined by its energy
spectrum function. In other words, an animator can control the
qualities of turbulent motion by specifying the shape of the energy
spectrum. This function can be arbitrary aslong as the integral of

;i (k,w) = (K%6:5 — kikj), 4,7=1,23  (7)

Ynthe turbulenceliterature, the term wave number is often used instead of spatial
frequency. We will use spatial frequency, whichis more commonin computer graph-
ics, but we shall denote spatial frequenciesby k, reserving the letter w for temporal
frequencies.



Eq. 8exists. Intheturbulenceliterature onecanfind awide variety
of different energy spectrafor various phenomena. These models
are either determined from experimental data or obtained from
simplifying assumptionsabout the fluid. The best-known example
of the latter for turbulence that has reached a steady-state (i.e.,
ffooo E(k,w)dw — E(k)) is the Kolmogorov energy spectrum
[SI:
0 if k& < Kinetia

Erc(k) = { 1.56%2 1k75/2  otherwise (9)

This spectrum results from an energy cascade, where energy intro-
duced at frequency kinetia 1S propagated to higher frequenciesat a
constant rate e. Instead of invoking Taylor’s Hypothesis [13] we
model the temporal frequency dependenceof the energy spectrum
function E(k, w) by multiplying the Kolmogorov energy spectrum
Ex (k) by atemporal spread function G (w) subject to:

/OO E(k,w) dw = Exc (k) /OO Gr(w)dw = Exc(k). (10)

o] — o0

This guarantees conservation of kinetic energy (cf. Eq. 8). Fur-
thermore, we want the small eddies to be less correlated in time
than the large eddies. Spatially, this meansthat small eddies spin,
ebb and flow more quickly than large eddies; this behaviour can
be observed when watching a water stream or smoke rising from
a cigarette. We can achieve this behaviour by setting G to a
Gaussian with a standard deviation proportional to &:

1 w?
Indeed, for large eddies (as k¥ — 0), G is a spike at the origin,
corresponding to the spectral distribution of a highly-correlated

signal; for small eddies(as & — oo) the spectral density becomes
constant, denoting an uncorrelated signal.

3.3 Generating the Small Scale Component

We now describe an algorithm to generate arandom velocity field
having specified cross-spectral density functions ®;;. The algo-
rithm is a generalization of Voss'sinverse FFT method[16]. The
idea is to filter an uncorrelated white noise velocity field in the
Fourier domain, and then to take an inverse Fourier transform to
obtain the desired random velocity field. The chalenge is thus
to find the right filter such that the resulting velocity field has the
desired statistics.

We first compute the velocity field in the frequency domain for
discrete spatial frequencies (i, 5, k) and temporal frequencies 1.2
Let us assume that the discretization is uniform and that there are
N samples per dimension. Then the discrete Fourier transform
(DFT) of the velocity field a; ; x; is defined on a discrete lattice
of size3N*. To ensure that the resulting space-time velocity field
isreal valued, the elements of the DFT must satisfy the following
symmetries. 0; ;51 = UN_; v, v_k n—1,» Where the indices
are taken modulo N ie, N-0= 0[9] In the special case
when the indices on both sides of the equality are identical (e.g.,
U /2,0 n/2,n5/2) We have to set the imaginary parts of 11; 5, to
zero. Thefollowing algorithm generatesa DFT with the required
properties.
fori, j, k, lin{O N/2} do

CompUteuz FERE UN_i ks ﬁz N—j ks ul,],N Kl
~ uz,],k,N I, Un_q JN— ],k,l, Un_ 0,7,N—k,ls Un_ i,9,k,N—1

Grlw) =

UN—i,N—j,N—k,N— l—llyjykl
uzN —5,N—k,N— l—uN i,k
UnN iy, N—k,N— l_uzN —jk,l

2The choice of 1, 7, k here asindices should not be confused with their different
use above.

llN i, N—j,k,N— 1—1}7]71\7 k1

llN i ,N—j,N—k, :u,],k,N 1

Wi Nk -t = UNy i v

Ui N—jk,N—l = UN 0,9, N—k,l

Wi, Ny, N—k, = UR_ W5,k N—1
end for

fors, j, k,1in{0, N/2} do
set imaginary partsof u; ; x ; to zero
end for

To compute each element 11, 5 4 in thefirst loop, three indepen-
dent complex random variables X,, = rpe?™ %" (m = 1,2,3)
are generated with normally distributed gaussian random ampli-
tudes r,,, and with uniformly distributed random phases 4,,,. The

componentsof that element are then calculated as

(ﬁl)a,b,c,d = hﬂ((l ]a )’ l)Xl’

(42)abea = h21((l 7, k), D X1+ hao((4, 4, k), )Xo,

(43)a,bea = h31((l 7 ), X1+ hao((2,5,k), N X2+
((2,5,k),0)

The functions %, are derived from the cross-spectral density
functions as shown in Appendix A (Eg. 21). Thevelocity field is
then obtained by taking three inverse DFT’s:

wy = invFl——I'4D(ﬁ1)
U2 = invFl——I'4D(ﬁ2)
U3 = invFl——I'4D(ﬁ3).

The resulting velocity field is defined on a discrete lattice and is
periodicin spaceand time. Thuseven asmall |attice definesafield
everywherein space-time. The spacing of this grid determinesthe
smallest scale of the turbulence.

4 Animation of Gaseous Phenomena

Physically agasiscomposed of many particles. We could therefore
animate agas by moving its particles about the wind field, but this
would require avast set of particles. We shall instead consider the
density p(x, t) of particles at space-time point (x, ¢). Assuming
that the particles have no effect on the wind field, the evolution of
the density distribution is given by an advection-diffusion (A-D)
equation [5] to which we have added a dissipation term:

g—f =—uVp+ &V — ap. (12)
The first term on the right hand side is the advection term that
accounts for the effects of the wind field on the density. The sec-
ond term accounts for molecular diffusion at rate k. This term
can also be used to model turbulent diffusion from scales smaller
than the smallest scale of the modelled turbulence. Thethird term
accountsfor dissipation of density at rate «. Sincethevelocity uis
given, theequationislinear in p and can be solved by finite differ-
ences. Thedensity distribution is then resolved on afinite grid and
can be rendered using an efficient voxel-based volume renderer
[1, 6]. Figure 1 depicts the evolution of an initialy square dis-
tribution evolving under the influence of a two-dimensional wind
field calculated using astandard PDE solver [9]. Computationsfor
four-dimensional wind fields become rapidly prohibitive both in
computation time and memory. To obtain tractable animations we
propose an alternative strategy. We shall assume that the density
distribution is aweighted sum of asimple distribution f:

Zml szXt

Flx=%:(t)|], t—1t:)



Figure 1. Evolution of adensity distribution

In other words the density distribution is a “fuzzy blobby” with
time-dependent field function f, wherex; (¢) isthe centre of mass,
t; is the time at which the “blob” p; is created and m;(¢) is its
mass. If wesupposethat f isagaussiandistribution with astandard
deviation oo much smaller than the smallest scale of the turbulent
wind field, the wind field can be assumed to be constant on each
blob. The advection term therefore only moves the blob, but does
not deform its shape. The movement of the blob is hence given by
integrating its centre of mass over the wind field:

Xi(t) :Xi(ti)—l—/ u(xi(s),s) ds, 1=1---,n. (14)

z

The deformation of the shapeof the blob is given by the diffusion
term. Here we note that the diffusion at rate  after timet¢ — ¢; of
agaussianwith variance o3 is equivaent to convolving a gaussian
of variance (¢ — t;) with a gaussian of variance 3 (cf. [18]).
Gaussiansare closed under convolution, and the resulting gaussian
hasvariance 62(t) = 03 + &(t — t;):

1 r2

7

Thus f diffuses outward with variance o?(¢) that increases with

t. The normalization factor (2x) %a?(t) guarantees that the mass
of the blob is invariant under diffusion. Once the variance of a
blob becomes comparable to the smallest scale of the turbulent
wind field we can replace it by smaller blobs and distribute the
mass equally among them. The effect of the dissipation term isan
exponential decay of the massesover time:

m;(t) = mo exp (—a(t — tl)) . (16)

5 Efficient Rendering of Gas
In conventional ray-tracing, light-object interactions are only com-
puted at object boundaries. Hence light travelling along aray is
only modified at its endpoints. In the presence of a participating
medium, thelight carried by aray can be attenuated and increased:
attenuation is caused by light absorbed and scattered away by the
gas; an increase may arise from light scattered in the direction of
theray from other directionsand by self-emission of thegas. These
effects can beincluded into a standard ray-tracer, by modifying the
intensity value returned along any ray in the ray-tree. For each
such ray we first determine which blobs have domainsintersecting
theray (in practice we truncate the domain of each gaussian). For
each such blob we store in a sorted list the parameter value s both
for the entry and exit points of the ray. This subdivides the ray
into N digoint intervals I; = [si, si+1] ¢ = 0,---, N — 1) as
illustrated in Figure 2, with so = 0 being the origin of the ray and
the s; being points of ray/blob intersections.

Oncethe ordered list of blobsintersecting the ray is calcul ated,
the intensity of light C' reaching the origin of the ray is computed
by shading the list from front to back [6]:

Ttotal = 1

C=0

158 189 510511

$0 81 182183 "sa iS5 Sg iS7

Figure 2: Subdivision of ray into intervals
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Figure 3: Calculation of transparencies ;

fori=1to N —2do
=0+ Ttotal(l - Tz)cz
Ttotal = TtotalT:

end for

c=C + TtotalCN1

Here, ; isthetransparency of thedensity distribution oninterval 7;,
and C; istheintensity of light emitted onthat interval by the density
distribution. Thesevaluesare definedin Appendix B, in which we
also derive the illumination model. C'y is the intensity returned
by the standard ray-tracer. In casethe ray is cast to determine a
shadow, only 7¢.:4; hasto be returned.

The transparency along an interval /; dueto asingle blobisa
function only of the distance of theray to the centre of the blob and
the endpoints s; and s; 41 of theinterval asshownin Figure3. The
exact relationship and an efficient way to computethemisgivenin
Appendix B. Thetransparency ; of the interval is then computed
by combining the transparency valuescal cul ated for each blob that
intersects the ray along that interval.

Instead of testing separately for an intersection of the ray with
each blob, we traverse a tree data structure of bounding spheres.
Thetreeis constructed prior to rendering aframe asfollows. First
all theblobsareputin alinked list. Thetreeisthen constructed by
the following a gorithm:

whilelist has at |east two elements do
for each blob 4 in thelist do
search for blob &' closest to &
remove b’ from list
create new blob & which bounds & and '
set b and b’ to children of 4"
replace b by b” inlist
end for
endwhile

There are some obvious optimizations that can be made to this



brute-force algorithm, such as non-binary blob groupings and the
useof a k-d tree to accel erate the search, but the cost of ray tracing
overwhelms even brute-force preprocessing cost. On average, the
use of the tree data structure has reduced rendering times by an
order of magnitude. The tree can be thought of as a multi-scale
representation of the density distribution and hence could be used
to render the distribution at different levels of detail.

6 Interactive Field Modelling/Results

In our implementation, modelling wind fields and their effects
consists of several steps. First the energy spectrum for the spatial
component of the small-scale turbulenceis specified by providing
numerical values for the rate ¢ and the inertial frequency kinertia
of the Kolmogorov energy cascade. The standard deviation o for
the temporal component of the energy spectrum is also specified.
The overall energy spectrum (cf. Section 3.2) is the product of the
temporal and spatial (Kolmogorov) energy spectra. A 4-D vector
field is then generated (cf. Section 3.3) which can be placedin a
library (although its computation is swift).

We have devel oped an interactive animation system in which an
animator candesign acomplex wind field and visualizeits effect on
agasdensity. Complex wind fieldsare formed by the superposition
of small-scaleturbulencewith large-scalefieldssuchasdirectional,
spherical, and exponentially decaying fields. The user is also able
to changethe grid spacing of the small scaleindependently in each
component of space and time, alowing the specification of non-
homogeneousfields. Thisalso permitsthe same prototypical small-
scale field to be given different behaviours in different contexts
(which is precisely what has been for the images shown below).

Our animation system also simulates the effect of a wind field
on agas. A specific gaseous phenomenonis specified asa particle
system characterized by the following values: the region over
which blobs of particles are born, their birth rate, and the initial
standard deviation and the initial mass of each blob. During a
simulation, the system introducesblobs at the given rate, animates
their motion by advection, modifies the standard deviations by
diffusion and the masses by dissipation, as described in Section 4.
Additionally, particlescan begivenillumination parameterssuch as
acolour. Inthis modelling step the centre of each blob is depicted
(with intensity modulated by parameters such as duration), but
positions and other data can be piped into a high-quality renderer
for image synthesis. About 6, 000 particles can beanimated in real
time on an SGI Indigo.

The parameters needed for rendering include (Appendix B):
the extinction coefficient «., which describes the decay of light
in inverse proportion to distance; the albedo Q € [0, 1], which
definesthe proportion of light scattered at agiven point; the phase
function p, giving the spherical distribution of scattered light; and
self-emission @, whichistheamount of light emitted by ablob at a
given position. Theillumination computation for gasdensitiesat a
resolution of 640 x 480typically requiresfrom oneto ten minutes,
although 1-2 hour computationsare possi blewhen rendering scenes
of high optical complexity.

For theimages presented bel ow, we have assumed that the phase
function is constant and we have ignored shadows cast onto the
density distribution for all but oneimage sequence. In all simula-
tions the same statistical parameters were used for the small scale
component: € = 1, kinetia = 4and o = 1.

Steam from a mug: Oneglobal directional wind field wasused to
model the rising of the steam due to thermals. The particles were
generated uniformly on a disk.

Psychedelicsteam: Threetrails of smokeof different colourswere
combined. Asfor the steam we used a directional wind field, this
timetilted in the direction of the teapot spout. Particleswere again
generated on small disks.

Cigarette smoke: Two smoke trails originating from the tip of a

cigarette are derived from the similar small-scale turbulence asthe
steam with adirectional heat source.

Interaction of a spherewith smoke: Thissimulation shows how
objects can interact with our wind field model. Instead of testing
for collision of particleswith the objects, wedefinearepulsionfield
around each object. We modelled the repulsion force by a radial
potential field. The sphereis moved along a path given by aspline
curve. Note that this image sequence depicts self-shadowing.
Three-dimensional mor phing: Thecylindrical range data of two
human heads was converted into two sets of blobs and input to
the animation system. The scene was illuminated by setting the
self-illumination parameter (@2 in Eq. 24) of each blob to the
illumination given by the range data. The albedo was set to zero
and dissipation was set to a large value to allow rapid dissolution
of each set of blobs (with one run in reverse).

7 Conclusionsand Extensions

We have presented anew model for thevisual simulation of gaseous
phenomenain turbulent wind fields. Our model provides an ani-
mator with control over both the large-scale motion and the statis-
tical features of the small-scale turbulence. This model has been
successfully applied to the animation of gaseous phenomena. Our
model, however, canbe applied to many other phenomenaresulting
from theinteractions of objectswith awind field. For example, the
wind field model can beincluded in any existing physically-based
animation system. Our model canin fact generate arandom vector
field of any dimension, not only three-dimensional vector fields
with afour dimensional domain. The derivation of the algorithm
can be adapted in a straightforward manner. Our fast rendering
algorithm can be used to visualize sparsely sampled data. The
rendering of the headsin the morphing animation is a good exam-
ple. Also our animation system could be used to visualize wind
fields calculated by direct numerical simulation for fluid dynamics
applications.

There are many other extensions to our model that we will
explore in future research. We have assumed that the large scale
motions of the wind do not modify the small turbulent scale. This
isimplausible. One possible solution is to warp the domain of the
turbulent scale accordingto the large scales. We would requirethe
use of a global deformation algorithm. Also it is possible to use
a physical model for the large scales. A numerical techniquein
computational fluid dynamics known as Large Eddie Smulation
(LES) solves the Navier-Stokes equations on a coarse grid using
a statistical model for the small scales[11]. However, a physical
simulation might not be relevant in computer graphics when a
specific behaviour is intended.

A Inverse FFT Method Derivation

A white noise velocity field has cross-spectral density functions
defined by:3

o}k, w) = (b} (k, w)di(k, w)) = . (17)

A random field with cross-spectral density functions @;; can be
obtained by cross-convolving this white noise with a set of deter-
ministic kernels hy;:

3 co
k=Y [ ] hatxm vty dsdy,
=1 8/ —co

(18)
which in the Fourier domain becomes
3
ik, w) =Y hu(k, w)idi(k, w). (19)
=1

3All subscri pted indicesin this appendix take on the values 1, 2, 3.



We obtain an equation for the transformed kernels #y; in terms of
the cross-spectral density functions @;; by inserting theexpressions
for the Fourier velocity components @; and «; given by Eq. 19
into the definition of the cross-spectral density function ®;; (see
Eqg. 6).

®i;k,w) = <”“(k w )iy (k, w))
= Zth L) (k, w)
= th o (k, w). (20)

Wethushave9 equationsfor the 9kernels h1 intermsof the cross-
spectral density functions. Because of the symmetry of the cross-
spectral density functions (®;; = ®;;), only 6 of thesekernelsare
independent and three kernels can be chosen arbitrarily. If we set
h12 = h1z = hoz = 0, then the system of equations given by Eq.
20 becomesdiagonal and can easily be solved as follows.

~ ~ (] ~ (]
hunu = VOu, ha = AZl, hay = ——=
h]_'L h]_’l.
. - . D3 — harh
hp = Oy — h3), hxp = T Tana
h2
has = 1/ ®xn—h2 —h, (1)

B Illumination M odel

Consider aray x. = O + sD, with origin O and direction D.
Let C'x be the intensity of light reaching O aong the ray from
point x; in the absence of a density distribution (i.e., given by a
conventional ray-tracer). If we ignore multiple scattering effects,
then the illumination Cy reaching point O along the ray for each
visible wavelength X is[3]

c@:/ (0, s)p(x:)kp CH(x:) ds, (22)

where

7')‘(5/,5”) = exp (—K?/L P(XS)ds) ) (23)

Crxo) = Q'MAx)+(1-0MHQNx.), (29)

and . is the extinction coefficient, and Q is the albedo. Theterm
L(x.) isthe contribution due to N; light sources:

= ZpA(cosek(Xs))Sk(Xs)Lé, (25)

where p is the phase function characterizing the scattering proper-
tiesof thedensity distribution, the 8, aretheanglesbetweentheray
and the vectors pointing to the light sources, S, determinesif the
light sourceis in shadow and 7 isthe colour of the light source.
The term Q*(x.) accounts for self-emission and can be used to
rOX|mate the effects of multiple scattering. If we assume that
X.) = C? isconstant on eachinterval I;, whichis reasonable

in the case of many small blobs, then Eq. 22 becomes

cy = Z(j)‘ /Ll+l (0, s)p(x:)k; ds
= Z C;\ (7')\(
1=0

—0,5i41)) . (26)

If we define r* = 7*(si, s:41) asthe transparency along interval
1; then the equation becomes

i=0 \j=0

r}) cr(1-17). (27)

We now show how the integral occurring in the calculations of
the transparencies r;* can be computed efficiently. Let us assume
that the blobs p;,, - - -, pj,,, intersect the ray on interval /;. The
transparency on interval I; isthen

i Si41
) =exp (—mf‘ Z/ P (Xs) ds) . (28)
k=1"5:

As we render for aparticular frame in time we defines? = o§ +
k(t —t;) and m; = m;(t). Using these definitions, each integral
in Eq. 28 can be written as[8]:

Si41 sig1 2 )
P (Xs)ds = m; exp _M ds
J 3 3 2

: 2n)it ).

S

2
my Tmin Si+1— Smin S —Smin
= expl— T =T .
@m3o? p( 205)(( Z ) ( % ))

The first equality results from the geometry of Figure 3. The
function T" isthe following integral:

T(s) = /S exp (—%2) du, (29)

and can be precomputed and stored in atable for efficiency.
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