
Turbulent Wind Fields for Gaseous Phenomena

Jos Stam
Eugene Fiume0

Department of Computer Science
University of Toronto

10 King’s College Circle
Toronto, Canada, M5S 1A4

Abstract
The realistic depiction of smoke, steam, mist and water reacting
to a turbulent field such as wind is an attractive and challenging
problem. Its solution requires interlocking models for turbulent
fields, gaseous flow, and realistic illumination. We present a model
for turbulent wind flow having a deterministic component to spec-
ify large-scale behaviour, and a stochastic component to model
turbulent small-scale behaviour. The small-scale component is
generated using space-time Fourier synthesis. Turbulent wind
fields can be superposed interactively to create subtle behaviour.
An advection-diffusion model is used to animate particle-based
gaseous phenomena embedded in a wind field, and we derive an
efficient physically-basedillumination model for rendering the sys-
tem. Because the number of particles can be quite large, we present
a clustering algorithm for efficient animation and rendering.
CR Categories and Subject Descriptors: I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism; I.3.3
[Computer Graphics]: Picture/Image Generation; G.3 [Proba-
bility and Statistics]: Probabilistic algorithms.
Additional keywords and phrases: turbulent flow, stochastic mod-
elling, Kolmogorov energy spectrum and cascade, transport model
of illumination, Fourier synthesis, advection-diffusion, gaseous
phenomena.

1 Introduction
We have come to appreciate the central role that irregularity plays
in modelling the shape of natural objects. The analogue for wind
and fluids is turbulence, and its effects are no less essential to the
realistic portrayal of gaseous natural phenomena: curling wisps of
smoke, mist blowing across a field, car exhaust, an aerosol spray,
steam rising from a coffee mug, clouds forming and moving across
the sky, the fall of leaves, a swirl of dust in a room, a hurricane.
These effects are caused by the interaction of objects with a wind
velocity field. Modelling the effect of wind requires that we model
both the wind field and this interaction. Both Sims [14] and We-
jchert and Haumann [17] model a wind field as the superposition
of deterministic fields. Modelling a visually convincing turbulent
wind field this way is painstaking. The greatest success in this
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direction was the particle-based “Blowing in the Wind” animation
by Reeves and Blau [10].

Stochastic modelling is a natural alternative strategy. In [13],
Shinya and Fournier describe an approach developed independently
of ours but which has some similarities. They employ stochastic
processes and Fourier synthesis to derive a wind field in spatiotem-
poral frequency domain, and invert the result to get a periodic
space-time wind field. We employ the same paradigm, but our
model and application are quite different. Although both wind
models can be applied to a wide range of phenomena, and [13]
demonstrates this very well, their main concern is with coupling the
wind model to macroscopic physical models of rigid or deformable
objects, whereas we are mostly concerned with microscopic inter-
action with gaseous and fluid phenomena. Consequently,our model
of turbulence is dissimilar: Shinya and Fournier assume a constant
deterministic temporal evolution (Taylor Hypothesis), while for us
temporal evolution is also a stochastic process. Our wind model
also differs in that an animator has direct control over deterministic
and stochastic components of a field.

In this paper, turbulent wind fields are modelled as stochastic
processes. The model is empirically plausible[5]. A wind field is
generated from large-scale motion and from the statistical charac-
teristics of the small turbulent motion, both freely chosen by an
animator. This is analogous to modelling rough terrain by pro-
viding the global shape as given by a set of height samples, and
the desired roughness of the terrain [2]. The large scale of the
wind field will be modelled using simple wind field primitives
[14, 17]. The small scale of the wind field will be modelled as
a three-dimensional random vector field varying over space and
time. This field is generated using inverse an FFT method[16] that
we have generalized to a vector field. The resulting wind field has
two desirable properties. First, it is periodic and is thus defined for
any point in space-time. Second, it is generated on a discrete lattice
and can be interactively calculated using four-linear interpolation.

Gases have been modelled in several ways. Ebert models a gas as
a solid texture. With some trial-and-error (and in our experience,
significant human effort), realistic animations were obtained[1].
Sakas models a gas as a 3-D random density field, generating it
using spectral synthesis [12]. While spectral synthesis is useful in
generating turbulent wind fields, it is not ideal for directly generat-
ing density fields: visual artifacts appear due to the periodicity of
the field and the entire density field must be computed at once. The
temporal evolution of the density field is limited to simple transla-
tions. Both of the above models are computationally expensive to
visualize, and hence interactive modelling is not feasible. Using
physically-based turbulence to animate density fields is mathemat-
ically nontrivial, but we shall show that this can be done efficiently.

We model gases as density distributions of particles. The evolu-
tion of a density distribution within our wind field is described by
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an advection-diffusion equation. We efficiently solve this equation
by modelling the gas as a “fuzzy blobby” with time varying pa-
rameters. A fast ray-tracing algorithm is used, based on a front to
back single-scattering illumination model, to render such a density
distribution.

2 A Multiple-Scale Wind Field Model
Physically, wind fields are the result of the variations of the velocity
u(x; t) and the pressure p(x; t) of a fluid (including air) over space
and time. These variations are caused by various forces: external
forces F applied to the fluid, non-linear interactions between dif-
ferent modes of the velocity field and viscous dissipation at a rate
�. By summing these forces and equating them to the acceleration
of the fluid we obtain the Navier-Stokes equations:

@u

@t
= �(u � r)u� 1

�f
rp+ �r2u+F; (1)

where �f is the density of the fluid. If the velocities of the fluid
are much smaller than the speed of sound, we can assume that the
fluid is incompressible [5], i.e.,

r �u = 0: (2)

When proper initial conditions and boundary conditions are speci-
fied, Eqs. 1 and 2 are sufficient to solve for the velocity field and
the pressure of the fluid for any time instant.

The above equations could be used to animate realistic wind
fields. One would first specify the physical properties of the fluid
that make up the model, including an initial velocity field and
boundary conditions. One would then control the fluid motion by
applying external forces. Realistic wind fields would be obtained
by solving the Navier-Stokes equations as needed. This is entirely
akin to the control problem for articulated figures, and it shares
the same difficulties. First, a desired effect is hard to achieve by
“programming” it using only external forces. Second, the non-
linearities present in the Navier-Stokes equations make them hard
to solve numerically, especially in the presence of turbulence (low
viscosity). Linearizing the equations can improve stability and
efficiency, which has been done by Kass and Miller to model the
surface of water [4]. This results in highly viscous fluids that do
not exhibit turbulence.

We shall model a turbulent wind field by separating it into a
large-scale component ul and a small scale component us. The
large-scale term is composed of simple wind fields, resulting in
very viscous fluids. The small-scale term is a random field. We
shall make a useful but physically implausible assumption that the
components are independent, that is, that large scales do not affect
the small scales and vice-versa. Hence we will write

u(x; t) = ul(x; t) + us(x; t): (3)

This assumption permits the real-time simulation and independent
control of both large-scale and small-scale effects. The results, as
we shall see, are quite convincing. We shall further discuss this
assumption in our conclusions.

3 Small Scale Modelling
3.1 Random Vector Fields
In this section we will denote the small scale component us simply
by u. It is defined as a random space-time vector field, a function
that assigns a random velocity to each point (x; t) in space-time
[15]. We shall invoke the standard Gaussian assumption [7]: that
the random vector field is entirely determined by its second-order
moments. These moments are obtained by statistically averaging
(denoted by h i) components of the evolving random velocity
field. We will assume that the mean values of each component

�i(x; t) = hui(x; t)i (i = 1;2; 3) of u are constant and equal
to zero. The cross-correlation between different components of
the velocity field at two different points in space-time (x; t) and
(x0; t0) are given by the functions

Γij(x; t;x
0; t0) =

hui(x; t)uj(x0; t0)i
hu2i ; i; j = 1; 2;3: (4)

Where hu2i = hu2
1 +u2

2 +u2
3i denotes the variance of the velocity

field and physically is equal to twice the kinetic energy of the field.
We will assume that the velocity field is homogeneous in space
and stationary in time, which means that the cross-correlation only
depends on the difference r = x0 � x between the two points and
the difference � = t0�t between the two times: Γij(x; t;x0; t0) =
Γij(r; �).

Homogeneous velocity fields have a corresponding representa-
tion in spatial-frequency domain via a spatial Fourier transform.
Intuitively this transformation can be thought of as a decompo-
sition of the velocity field into “eddies” of different sizes: large
eddies correspond to small spatial frequencies and conversely for
small eddies. The stationarity of the velocity field allows it to be
represented in frequency domain by a temporal Fourier transform.
We will denote spatial frequencies by k = (k1; k2; k3) and tempo-
ral frequencies by !.1 We represent the velocity field in frequency
domain via the usual Fourier transform:

û(k; !) =

Z Z
u(x; t) exp(�ik � x� i!t) dxdt: (5)

Writing the transform in this manner facilitates its separation into
spatial and temporal frequency components. The Fourier-domain
equivalent of the cross-correlation functions are the cross-spectral
density functions:

Φij(k; !) = hû�i (k; !)ûj(k; !)i; i; j = 1;2; 3; (6)

where the “�” denotes the complex conjugation. Conveniently for
us, the cross-spectral density functions and the cross-correlation
functions are Fourier-transform pairs [15].

Finally, we assume that the velocity field is spatially isotropic,
meaning that the cross-correlation functions are invariant under
rotations. Thus the cross-correlation functions only depend on the
distance r = krk between two points. Isotropy and incompress-
ibility (Eq. 2) imply that the cross-spectral density functions are of
the form [5]

Φij(k; !) =
E(k; !)

4�k4
(k2�ij � kikj); i; j = 1; 2;3; (7)

where �ij is the Kronecker delta, k is the length of the spatial
frequencyk andE is a positive function called the energyspectrum
function. Its physical interpretation is that it gives the contribution
of all spatial frequencies of length k and frequency ! to the total
kinetic energy of the velocity field:

1
2
hu2i =

Z
1

0

Z
1

�1

E(k; !)d! dk: (8)

3.2 The Energy Spectrum Function
Eq. 7 states that the structure of a velocity field (via its cross-
spectral density functions) is entirely determined by its energy
spectrum function. In other words, an animator can control the
qualities of turbulent motion by specifying the shape of the energy
spectrum. This function can be arbitrary as long as the integral of

1In the turbulence literature, the term wave number is often used instead of spatial
frequency. We will use spatial frequency, which is more common in computer graph-
ics, but we shall denote spatial frequencies by k, reserving the letter ! for temporal
frequencies.
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Eq. 8 exists. In the turbulence literature one can find a wide variety
of different energy spectra for various phenomena. These models
are either determined from experimental data or obtained from
simplifying assumptions about the fluid. The best-known example
of the latter for turbulence that has reached a steady-state (i.e.,R
1

�1
E(k; !) d! ! E(k)) is the Kolmogorov energy spectrum

[5]:

EK(k) =

�
0 if k < kinertial

1:5 �3=2 k�5=2 otherwise
(9)

This spectrum results from an energy cascade , where energy intro-
duced at frequency kinertial is propagated to higher frequencies at a
constant rate �. Instead of invoking Taylor’s Hypothesis [13] we
model the temporal frequency dependence of the energy spectrum
functionE(k; !) by multiplying the Kolmogorov energy spectrum
EK(k) by a temporal spread function Gk(!) subject to:Z

1

�1

E(k; !) d! = EK(k)

Z
1

�1

Gk(!) d! = EK(k): (10)

This guarantees conservation of kinetic energy (cf. Eq. 8). Fur-
thermore, we want the small eddies to be less correlated in time
than the large eddies. Spatially, this means that small eddies spin,
ebb and flow more quickly than large eddies; this behaviour can
be observed when watching a water stream or smoke rising from
a cigarette. We can achieve this behaviour by setting Gk to a
Gaussian with a standard deviation proportional to k:

Gk(!) =
1p

2� k�
exp

�
� !2

2k2�2

�
: (11)

Indeed, for large eddies (as k ! 0), Gk is a spike at the origin,
corresponding to the spectral distribution of a highly-correlated
signal; for small eddies (as k ! 1) the spectral density becomes
constant, denoting an uncorrelated signal.

3.3 Generating the Small Scale Component
We now describe an algorithm to generate a random velocity field
having specified cross-spectral density functions Φij . The algo-
rithm is a generalization of Voss’s inverse FFT method[16]. The
idea is to filter an uncorrelated white noise velocity field in the
Fourier domain, and then to take an inverse Fourier transform to
obtain the desired random velocity field. The challenge is thus
to find the right filter such that the resulting velocity field has the
desired statistics.

We first compute the velocity field in the frequency domain for
discrete spatial frequencies (i; j; k) and temporal frequencies l.2

Let us assume that the discretization is uniform and that there are
N samples per dimension. Then the discrete Fourier transform
(DFT) of the velocity field ûi;j;k;l is defined on a discrete lattice
of size 3N 4. To ensure that the resulting space-time velocity field
is real valued, the elements of the DFT must satisfy the following
symmetries: ûi;j;k;l = û�N�i;N�j;N�k;N�l, where the indices
are taken modulo N , i.e., N � 0 = 0[9]. In the special case
when the indices on both sides of the equality are identical (e.g.,
ûN=2;0;N=2;N=2 ) we have to set the imaginary parts of ûi;j;k;l to
zero. The following algorithm generates a DFT with the required
properties.

for i; j; k; l in f0; . . . ;N=2g do
compute ûi;j;k;l, ûN�i;j;k;l, ûi;N�j;k;l , ûi;j;N�k;l ,
ûi;j;k;N�l, ûN�i;N�j;k;l, ûN�i;j;N�k;l, ûN�i;j;k;N�l

ûN�i;N�j;N�k;N�l = û�i;j;k;l
ûi;N�j;N�k;N�l = û�N�i;j;k;l
ûN�i;j;N�k;N�l = û�i;N�j;k;l

2The choice of i; j; k here as indices should not be confused with their different
use above.

ûN�i;N�j;k;N�l = û�i;j;N�k;l
ûN�i;N�j;N�k;l = û�i;j;k;N�l
ûi;j;N�k;N�l = û�N�i;N�j;k;l
ûi;N�j;k;N�l = û�N�i;j;N�k;l
ûi;N�j;N�k;l = û�N�i;j;k;N�l

end for

for i; j; k; l in f0;N=2g do
set imaginary parts of ûi;j;k;l to zero

end for

To compute each element ûa;b;c;d in the first loop, three indepen-
dent complex random variables Xm = rme

2�i�m (m = 1; 2;3)
are generated with normally distributed gaussian random ampli-
tudes rm and with uniformly distributed random phases �m. The
components of that element are then calculated as

(û1)a;b;c;d = ĥ11((i; j; k); l)X1;

(û2)a;b;c;d = ĥ21((i; j; k); l)X1 + ĥ22((i; j; k); l)X2;

(û3)a;b;c;d = ĥ31((i; j; k); l)X1 + ĥ32((i; j; k); l)X2 +

ĥ33((i; j; k); l)X3:

The functions ĥmn are derived from the cross-spectral density
functions as shown in Appendix A (Eq. 21). The velocity field is
then obtained by taking three inverse DFT’s:

u1 = invFFT4D(û1)

u2 = invFFT4D(û2)

u3 = invFFT4D(û3):

The resulting velocity field is defined on a discrete lattice and is
periodic in space and time. Thus even a small lattice defines a field
everywhere in space-time. The spacing of this grid determines the
smallest scale of the turbulence.

4 Animation of Gaseous Phenomena
Physically a gas is composedof many particles. We could therefore
animate a gas by moving its particles about the wind field, but this
would require a vast set of particles. We shall instead consider the
density �(x; t) of particles at space-time point (x; t). Assuming
that the particles have no effect on the wind field, the evolution of
the density distribution is given by an advection-diffusion (A-D)
equation [5] to which we have added a dissipation term:

@�

@t
= �ur�+ �r2�� ��: (12)

The first term on the right hand side is the advection term that
accounts for the effects of the wind field on the density. The sec-
ond term accounts for molecular diffusion at rate �. This term
can also be used to model turbulent diffusion from scales smaller
than the smallest scale of the modelled turbulence. The third term
accounts for dissipation of density at rate �. Since the velocityu is
given, the equation is linear in � and can be solved by finite differ-
ences. The density distribution is then resolved on a finite grid and
can be rendered using an efficient voxel-based volume renderer
[1, 6]. Figure 1 depicts the evolution of an initially square dis-
tribution evolving under the influence of a two-dimensional wind
field calculated using a standard PDE solver [9]. Computations for
four-dimensional wind fields become rapidly prohibitive both in
computation time and memory. To obtain tractable animations we
propose an alternative strategy. We shall assume that the density
distribution is a weighted sum of a simple distribution f :

�(x; t) =

nX
i=1

mi(t)f(kx�xi(t)k; t�ti) =
nX
i=1

�i(x; t): (13)
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Figure 1: Evolution of a density distribution

In other words the density distribution is a “fuzzy blobby” with
time-dependent field function f , wherexi(t) is the centre of mass,
ti is the time at which the “blob” �i is created and mi(t) is its
mass. If we supposethat f is a gaussiandistribution with a standard
deviation �0 much smaller than the smallest scale of the turbulent
wind field, the wind field can be assumed to be constant on each
blob. The advection term therefore only moves the blob, but does
not deform its shape. The movement of the blob is hence given by
integrating its centre of mass over the wind field:

xi(t) = xi(ti) +

Z t

ti

u(xi(s); s)ds; i = 1; � � � ; n: (14)

The deformation of the shape of the blob is given by the diffusion
term. Here we note that the diffusion at rate � after time t� ti of
a gaussian with variance �2

0 is equivalent to convolving a gaussian
of variance �(t � ti) with a gaussian of variance �2

0 (cf. [18]).
Gaussians are closed under convolution, and the resulting gaussian
has variance �2

i (t) = �2
0 + �(t� ti):

f(r; t� ti) =
1

(2�)
3
2�3

i (t)
exp

�
� r2

2�2
i (t)

�
: (15)

Thus f diffuses outward with variance �2
i (t) that increases with

t. The normalization factor (2�)
3
2 �3

i(t) guarantees that the mass
of the blob is invariant under diffusion. Once the variance of a
blob becomes comparable to the smallest scale of the turbulent
wind field we can replace it by smaller blobs and distribute the
mass equally among them. The effect of the dissipation term is an
exponential decay of the masses over time:

mi(t) = m0 exp
�
��(t� ti)

�
: (16)

5 Efficient Rendering of Gas
In conventional ray-tracing, light-object interactions are only com-
puted at object boundaries. Hence light travelling along a ray is
only modified at its endpoints. In the presence of a participating
medium, the light carried by a ray can be attenuated and increased:
attenuation is caused by light absorbed and scattered away by the
gas; an increase may arise from light scattered in the direction of
the ray from other directions and by self-emission of the gas. These
effects can be included into a standard ray-tracer, by modifying the
intensity value returned along any ray in the ray-tree. For each
such ray we first determine which blobs have domains intersecting
the ray (in practice we truncate the domain of each gaussian). For
each such blob we store in a sorted list the parameter value s both
for the entry and exit points of the ray. This subdivides the ray
into N disjoint intervals Ii = [si; si+1] (i = 0; � � � ;N � 1) as
illustrated in Figure 2, with s0 = 0 being the origin of the ray and
the si being points of ray/blob intersections.

Once the ordered list of blobs intersecting the ray is calculated,
the intensity of light C reaching the origin of the ray is computed
by shading the list from front to back [6]:

�total = 1
C = 0

s9s8s7s6s5s4s3s2s1s0 s10s11

Figure 2: Subdivision of ray into intervals

smin

si+1

si

distance

rays

rmin

Figure 3: Calculation of transparencies �i

for i = 1 to N � 2 do
C = C + �total(1� �i)Ci

�total = �total�i
end for
C = C + �totalCN ,

Here, �i is the transparency of the density distribution on interval Ii,
andCi is the intensity of light emitted on that interval by the density
distribution. These values are defined in Appendix B, in which we
also derive the illumination model. CN is the intensity returned
by the standard ray-tracer. In case the ray is cast to determine a
shadow, only �total has to be returned.

The transparency along an interval Ii due to a single blob is a
function only of the distance of the ray to the centre of the blob and
the endpoints si and si+1 of the interval as shown in Figure 3. The
exact relationship and an efficient way to compute them is given in
Appendix B. The transparency �i of the interval is then computed
by combining the transparency values calculated for each blob that
intersects the ray along that interval.

Instead of testing separately for an intersection of the ray with
each blob, we traverse a tree data structure of bounding spheres.
The tree is constructed prior to rendering a frame as follows. First
all the blobs are put in a linked list. The tree is then constructed by
the following algorithm:

while list has at least two elements do
for each blob b in the list do

search for blob b0 closest to b
remove b0 from list
create new blob b00 which bounds b and b0

set b and b0 to children of b00

replace b by b00 in list
end for

end while

There are some obvious optimizations that can be made to this
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brute-force algorithm, such as non-binary blob groupings and the
use of a k-d tree to accelerate the search, but the cost of ray tracing
overwhelms even brute-force preprocessing cost. On average, the
use of the tree data structure has reduced rendering times by an
order of magnitude. The tree can be thought of as a multi-scale
representation of the density distribution and hence could be used
to render the distribution at different levels of detail.

6 Interactive Field Modelling/Results
In our implementation, modelling wind fields and their effects
consists of several steps. First the energy spectrum for the spatial
component of the small-scale turbulence is specified by providing
numerical values for the rate � and the inertial frequency kinertial

of the Kolmogorov energy cascade. The standard deviation � for
the temporal component of the energy spectrum is also specified.
The overall energy spectrum (cf. Section 3.2) is the product of the
temporal and spatial (Kolmogorov) energy spectra. A 4-D vector
field is then generated (cf. Section 3.3) which can be placed in a
library (although its computation is swift).

We have developed an interactive animation system in which an
animator can design a complex wind field and visualize its effect on
a gas density. Complex wind fields are formed by the superposition
of small-scale turbulence with large-scale fields such as directional,
spherical, and exponentially decaying fields. The user is also able
to change the grid spacing of the small scale independently in each
component of space and time, allowing the specification of non-
homogeneous fields. This also permits the same prototypical small-
scale field to be given different behaviours in different contexts
(which is precisely what has been for the images shown below).

Our animation system also simulates the effect of a wind field
on a gas. A specific gaseous phenomenon is specified as a particle
system characterized by the following values: the region over
which blobs of particles are born, their birth rate, and the initial
standard deviation and the initial mass of each blob. During a
simulation, the system introduces blobs at the given rate, animates
their motion by advection, modifies the standard deviations by
diffusion and the masses by dissipation, as described in Section 4.
Additionally, particles can be given illumination parameters such as
a colour. In this modelling step the centre of each blob is depicted
(with intensity modulated by parameters such as duration), but
positions and other data can be piped into a high-quality renderer
for image synthesis. About 6; 000 particles can be animated in real
time on an SGI Indigo.

The parameters needed for rendering include (Appendix B):
the extinction coefficient �t, which describes the decay of light
in inverse proportion to distance; the albedo Ω 2 [0; 1], which
defines the proportion of light scattered at a given point; the phase
function p, giving the spherical distribution of scattered light; and
self-emissionQ, which is the amount of light emitted by a blob at a
given position. The illumination computation for gas densities at a
resolution of 640� 480 typically requires from one to ten minutes,
although 1-2 hour computations are possible when rendering scenes
of high optical complexity.

For the images presented below, we have assumed that the phase
function is constant and we have ignored shadows cast onto the
density distribution for all but one image sequence. In all simula-
tions the same statistical parameters were used for the small scale
component: � = 1, kinertial = 4 and � = 1.
Steam from a mug: One global directional wind field was used to
model the rising of the steam due to thermals. The particles were
generated uniformly on a disk.
Psychedelicsteam: Three trails of smoke of different colours were
combined. As for the steam we used a directional wind field, this
time tilted in the direction of the teapot spout. Particles were again
generated on small disks.
Cigarette smoke: Two smoke trails originating from the tip of a

cigarette are derived from the similar small-scale turbulence as the
steam with a directional heat source.
Interaction of a sphere with smoke: This simulation shows how
objects can interact with our wind field model. Instead of testing
for collision of particles with the objects, we define a repulsion field
around each object. We modelled the repulsion force by a radial
potential field. The sphere is moved along a path given by a spline
curve. Note that this image sequence depicts self-shadowing.
Three-dimensional morphing: The cylindrical range data of two
human heads was converted into two sets of blobs and input to
the animation system. The scene was illuminated by setting the
self-illumination parameter (Q in Eq. 24) of each blob to the
illumination given by the range data. The albedo was set to zero
and dissipation was set to a large value to allow rapid dissolution
of each set of blobs (with one run in reverse).

7 Conclusions and Extensions
We have presented a new model for the visual simulation of gaseous
phenomena in turbulent wind fields. Our model provides an ani-
mator with control over both the large-scale motion and the statis-
tical features of the small-scale turbulence. This model has been
successfully applied to the animation of gaseous phenomena. Our
model, however, can be applied to many other phenomenaresulting
from the interactions of objects with a wind field. For example, the
wind field model can be included in any existing physically-based
animation system. Our model can in fact generate a random vector
field of any dimension, not only three-dimensional vector fields
with a four dimensional domain. The derivation of the algorithm
can be adapted in a straightforward manner. Our fast rendering
algorithm can be used to visualize sparsely sampled data. The
rendering of the heads in the morphing animation is a good exam-
ple. Also our animation system could be used to visualize wind
fields calculated by direct numerical simulation for fluid dynamics
applications.

There are many other extensions to our model that we will
explore in future research. We have assumed that the large scale
motions of the wind do not modify the small turbulent scale. This
is implausible. One possible solution is to warp the domain of the
turbulent scale according to the large scales. We would require the
use of a global deformation algorithm. Also it is possible to use
a physical model for the large scales. A numerical technique in
computational fluid dynamics known as Large Eddie Simulation
(LES) solves the Navier-Stokes equations on a coarse grid using
a statistical model for the small scales [11]. However, a physical
simulation might not be relevant in computer graphics when a
specific behaviour is intended.

A Inverse FFT Method Derivation
A white noise velocity field has cross-spectral density functions
defined by:3

Φw
kl(k; !) = hŵ�k(k; !)ŵl(k; !)i = �kl: (17)

A random field with cross-spectral density functions Φij can be
obtained by cross-convolving this white noise with a set of deter-
ministic kernels hkl:

uk(x; t) =

3X
l=1

Z
R3

Z
1

�1

hkl(x� y; t� s)wl(y; s) ds dy;

(18)
which in the Fourier domain becomes

ûk(k; !) =

3X
l=1

ĥkl(k; !)ŵl(k; !): (19)

3All subscripted indices in this appendix take on the values 1 ; 2; 3.
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We obtain an equation for the transformed kernels ĥkl in terms of
the cross-spectral density functions Φij by inserting the expressions
for the Fourier velocity components ûi and ûj given by Eq. 19
into the definition of the cross-spectral density function Φij (see
Eq. 6).

Φij(k; !) = hû�i (k; !)ûj(k; !)i

=

3X
k=1

3X
l=1

ĥ�ik(k; !)ĥjk(k; !)Φw
kl(k; !)

=

3X
n=1

ĥ�in(k; !)ĥjn(k; !): (20)

We thus have 9 equations for the 9 kernels ĥkl in terms of the cross-
spectral density functions. Because of the symmetry of the cross-
spectral density functions (Φij = Φji), only 6 of these kernels are
independent and three kernels can be chosen arbitrarily. If we set
ĥ12 = ĥ13 = ĥ23 = 0, then the system of equations given by Eq.
20 becomes diagonal and can easily be solved as follows.

ĥ11 =
p

Φ11; ĥ21 =
Φ21

ĥ11

; ĥ31 =
Φ31

ĥ11

ĥ22 =

q
Φ22 � ĥ2

21; ĥ32 =
Φ32 � ĥ31ĥ21

ĥ22

ĥ33 =

q
Φ33 � ĥ2

31 � ĥ2
32: (21)

B Illumination Model
Consider a ray xs = O + sD, with origin O and direction D.
Let CN be the intensity of light reaching O along the ray from
point xb in the absence of a density distribution (i.e., given by a
conventional ray-tracer). If we ignore multiple scattering effects,
then the illumination C0 reaching point O along the ray for each
visible wavelength � is [3]

C�
0 =

Z b

0

��(0; s)�(xs)�
�
t C

�(xs)ds; (22)

where

��(s0; s00) = exp

 
���t

Z s00

s0

�(xs)ds

!
; (23)

C�(xs) = Ω�L�(xs) + (1�Ω�)Q�(xs); (24)

and �t is the extinction coefficient, and Ω is the albedo. The term
L(xs) is the contribution due to Nl light sources:

L�(xs) =

NlX
k=1

p�(cos�k(xs))Sk(xs)L
�
k ; (25)

where p is the phase function characterizing the scattering proper-
ties of the density distribution, the �k are the angles between the ray
and the vectors pointing to the light sources, Sk determines if the
light source is in shadow and Lk is the colour of the light source.
The term Q�(xs) accounts for self-emission and can be used to
approximate the effects of multiple scattering. If we assume that
C�(xs) = C�

i is constant on each interval Ii, which is reasonable
in the case of many small blobs, then Eq. 22 becomes

C�
0 =

N�1X
i=0

C�
i

Z si+1

si

��(0; s)�(xs)�
�
t ds

=

N�1X
i=0

C�
i

�
��(0; si)� ��(0; si+1)

�
: (26)

If we define ��i = ��(si; si+1) as the transparency along interval
Ii then the equation becomes

C�
0 =

N�1X
i=0

 
i�1Y
j=0

��j

!
C�
i

�
1� ��i

�
: (27)

We now show how the integral occurring in the calculations of
the transparencies ��i can be computed efficiently. Let us assume
that the blobs �j1 ; � � � ; �jni intersect the ray on interval Ii. The
transparency on interval Ii is then

��i = exp

 
���t

niX
k=1

Z si+1

si

�jk(xs)ds

!
: (28)

As we render for a particular frame in time we define �2
j = �2

0 +
�(t� tj) and mj = mj(t). Using these definitions, each integral
in Eq. 28 can be written as [8]:Z si+1

si

�j(xs)ds =
mj

(2�)
3
2�3

j

Z si+1

si

exp

�
�r2

min+(s�smin)
2

2�2
j

�
ds

=
mj

(2�)
3
2�2

j

exp

�
�r2

min

2�2
j

��
T

�
si+1�smin

�j

�
�T
�
si�smin

�j

��
:

The first equality results from the geometry of Figure 3. The
function T is the following integral:

T (s) =

Z s

0

exp

�
�u2

2

�
du; (29)

and can be precomputed and stored in a table for efficiency.
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A strange brew

Sphere interacting with a gas (note the shadowing)

7



The lonely cigarette

From David to Heidi
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