
Graphics and
Image Processing

James Foley*
Editor

Computer Rendering of
Stochastic Models
Alain Fournier
University of Toronto
Don Fussell
The University of Texas at Austin
Loren Carpenter
Lucasfilm

the techniques used to implement the model. We intro-
duce a new algorithm that computes a realistic, visually
satisfactory approximation to fractional Brownian m o -

tion in faster time than with exact calculations. A major
advantage of this technique is that it allows us to compute
the surface to arbitrary levels of details without increas-
ing the database. Thus objects with complex appearances
can be displayed from a very small database. The char-
acter of the surface can be controlled by merely modify-
ing a few parameters. A similar change allows complex
motion to be created inexpensively.

CR Categories and Subject Descriptors: 1.3.3. [Com-
puter Graphics]: Picture/Image Generation--display
algorithms; 1.3.5. [Computer Graphics]: Computational
Geometry and Object Modeling--curve, surface, solid,
and object representation;I.3.7 [Computer Graphics]:
Three Dimensional Graphics and Realism--color, shad-
ing, shadowing, and texture.

General Term: Algorithms
Additional Key Words and Phrases: fractals, terrain

models, stochastic models

A recurrent problem in generating realistic pictures
by computers is to represent natural irregular objects
and phenomena without undue time or space overhead.
We develop a new and powerful solution to this computer
graphics problem by modeling objects as sample paths of
stochastic processes. Of particular interest are those
stochastic processes which previously have been found
to be useful models of the natural phenomena to be
represented. One such model applicable to the represen-
tation of terrains, known as "fractional Brownian mo-
tion," has been developed by Mandelbrot.

The value of a new approach to object modeling in
computer graphics depends largely on the efficiency of

B. Mandelbrot, on whose work this paper is based, has raised
certain objections which will be published in a subsequent issue.

This paper reports the results of two independent research ef-
fo r t s -one by Carpenter and the other by Fournier and Fussell. They
both submitted papers to the 1980 SIGGRAPH conference, and
through the conference to CA CM. Both papers were accepted for
CA CM with the understanding that the authors would consolidate
their work into a single integrated and definitive piece.--J. Foley.

* Former editor of Graphics and Image Processing. Robert Har-
alick is the current editor of this department, which has recently been
renamed Image Processing and Computer Vision (see April '82 Com-
munications, pp 311-312.)

Alain Fournier and Don Fussell's work was performed at The
University of Texas at Dallas, and was partially supported by NSF
Grant MCS-79-01168 and facilitated by the use of the Theory Net,
NSF Grant MCS-78-01689. Loren Carpenter's work was performed
while at Boeing Computer Services.

Authors' Present Addresses: A. Fournier, Computer Systems Re-
search Group, 121 St Joseph St, University of Toronto, Toronto,
Ontario M5S IAI; D. Fussell, Department of Computer Science, The
University of Texas at Austin, Austin, Texas 78712; L. Carpenter,
Lucasfilm, P. O. Box 2009, San Rafael, California 94912.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
© 1982 ACM 0001-0782/82/0600-0371 $00.75,

371

1. Introduction

Traditional modeling techniques used in computer
graphics have been based on the assumption that objects
are essentially a collection of smooth surfaces which can
be mathematically described by deterministic functions.
The simplest such technique assumes that objects are
collections of polygons whose surfaces are obviously
described by linear functions. Greater flexibility is
achieved by the use of surfaces which are described by
higher-order polynomials, as with Bezier [1] or B-spline
surface patches [12].

These techniques have been quite successful in ren-
dering realistic images of artificial objects, with their
relatively simple macroscopic characteristics and their
regularly periodic surface features. Natural objects, such
as stones, clouds, trees, terrain, etc. are characterized in
general by no such regular features or simple macro-
scopic structures, and these methods have been less
effective in modeling them.

Macroscopic features of natural objects are often
represented explicitly using large amounts of data. In the
case of terrain, the information is usually obtained from
contour maps, and in some fashion transformed into a
surface represented by a large number of polygons
[11]. Similarly, smoke has been modeled as volumes
containing very large numbers of points distributed ac-
cording to certain theoretical functions used in the study
of smoke formation [8]. In both cases, capturing the
macroscopic features to be modeled involves significant
time and/or space requirements and the use of special-
ized techniques that are not generally applicable to other
types of natural featui'es. The problem is that these
conceptually simple objects require a large number of

Communications June 1982
of Volume 25
the ACM Number 6

modeling primitives (points, polygons, or patches) be-
cause they are visually quite complex. On the other hand,
a conceptually or technologically complex object, like an
airplane, can be very effectively modeled with a smaller
number of such primitives.

Using a completely different approach, small-scale
textures of natural objects have generally been modeled
by some single repetitive texture function mapped onto
all patches comprising such an object. However, the
regularity of the effect detracts considerably from a
natural appearance.

A fundamental limitation of these approaches is that
objects are modeled at a predetermined, fLxed scale
regardless of its suitability for any particular viewing
distance. Thus, from sufficiently far away, all but the
most large-scale changes in terrain modeled by a fLxed
set of polygons may be invisible, rendering a large por-
tion of the database and the processing required to
display it superfluous. Likewise, a view of such terrain
from very close up may reveal no more than a fiat,
featureless portion of a polygon, lacking any cues that it
does indeed represent terrain. The latter problem may
be alleviated somewhat by texture mapping, but with the
usual static texture definitions it is still possible to get
too close for the resolution of the texture pattern.

In many applications in which natural phenomena
are to be represented, one is primarily interested in
achieving sufficient realism in the representation of the
objects for their nature to be easily recognizable. The
specific features of any such objects on all but the most
macroscopic scale are of secondary importance. For
example, in a computer-generated animated sequence
we may wish to have a mountain range which is ob-
viously a mountain range but which is not intended to
correspond to any particular real-world mountains. In
such a case, we are interested only in the general size,
shape, and position of the mountain range as specific
features to be modeled explicitly. In order to make such
an "object" recognizable as a mountain range, we would
like to generate the macroscopic features that any typical
mountain range would have. It would be advantageous
to have a technique that would allow us to do this
without the use of a large database to represent the
object. In applications where one wishes to display real-
world data, the addition of suitable information at var-
ious scales may be used to enhance realism. For example,
in flight simulators, various types of terrain are repre-
sented by a few large polygons whose color, shape, and
position provide vague cues as to their nature. If a
pseudo-random rocky texture could be added to surfaces
representing mountainous terrain, much more realistic
images could be generated. The use of an extremely
large, detailed database for such purposes would be
prohibitive, while the use of traditional, deterministic
texture mapping techniques would not be fully satisfac-
tory.

The representation of motion in computer graphics
systems has suffered, less obviously, from a similar lira-

372

itation. Previous attempts to represent turbulent motion
have been limited by the apparent complexity of the
task. An effective means of generating an irregular sur-
face with an irregular motion in a flexible way will allow
the solution of such problems as realistically modeling a
waterfall, rapids, or ocean waves, all of which present
serious challenges to computer graphics researchers
[19], [24].

All of the drawbacks mentioned above result primar-
ily because most traditional models of real-world phe-
nomena in computer graphics are totally deterministic in
philosophy. There have been some exceptions, however.
Early work by Mezei et al. [20] generated textures and
irregular shapes by random techniques, and Blinn [2]
improved the realism of previous shading methods by
using a model based on probabilistic assumptions. Also,
research in image analysis and pattern recognition has
produced a body of results on the statistical analysis of
texture as well as some interesting examples of image
synthesis using stochastic techniques [10], [23], [21].

We propose to extend the flexibility of the mathe-
matical modeling techniques in computer graphics by
generalizing the assumptions made about the character-
istics of an object's surface and of its motion. Our basic
approach is to model both primitives and their motion
as a combination of both deterministic and stochastic
features. Thus the surface of an object may be a poly-
nomial function of a set of predetermined locations, or
it may be a stochastic function of those locations, or
both. Likewise, the motion of an object may be described
as a smooth function interpolating its initial and final
positions, or it may vary irregularly along the way. In
this paper, we introduce simple and efficient techniques
for rendering a large class of stochastic models which
can be used to represent a variety of natural phenomena.

2. Stochastic Models

In a traditional graphics system, the modeling system
is the part where the objects are defmed in terms of the
basic building blocks: the modeling primitives. The
modeling primitives mainly used have been points, lines,
polygons, and parametric patches. We define here a new
kind of modeling primitive.

A stochastic model of an object (or more generally of
a phenomenon, to extend the concept of an object to
include possibly a time parameter), is defined to be a
model where the object is represented by a sample path
(a realization) of some stochastic process of one of more
variables.

Stochastic objects can be made from several stochas-
tic modeling primitives just as traditional deterministic
objects are built from, for example, polygons or para-
metric patches. Also, since the class of stochastic pro-
cesses properly includes the deterministic functions, the
definition of stochastic models includes all previously
used primitives.

Communications June 1982
of Volume 25
the ACM Number 6

Table I. Possible Applications of Stochastic Models.
Dimension of Stochastic Process

(number of parameters)
Dimension of

Primitive One-D Process Two-D Process Three-D Process Four-D Process
1 Intensity on a line, Intensity Scalar field Intensity in 3-D space Intensity in 3-D space in time

in time
2 Direction on a plane, Surface 2-D vector on a surface

in time
3 Direction in space in time, Normal to a surface, Color

Color in time on a surface

Intensity and altitude on a
surface

Color in space, Vector field
in 3-D space

Intensity and altitude on a
surface in time

Color in space in time, Mov-
ing vectors

At the level of resolution normally used, the natural
objects to be modeled can be taken to be continuous and
will need continuous stochastic processes to model them.
Since ultimately the models will be used for display on
discrete devices, it is very convenient to have a means of
computing a discrete sample of the continuous model at
the rate required by the resolution of the image. This
would usually correspond to the Nyquist rate, but if anti-
aliasing is needed the rate of sampling can be chosen to
be higher.

It is now clear that the three elements required for
stochastic modeling are: (1) an appropriate object (phe-
nomenon) to be modeled; (2) a stochastic process to
model it with; (3) an algorithm to compute the sample
paths of this process.

Objects that have features with stochastic properties
that are strong enough so that appreciable savings in
both storage and processing are obtained by replacing
the stored values for the stochastic features by the few
parameters needed by the definition of the stochastic
process are likely to be represented most effectively using
stochastic models. To use signal processing terminology,
an object which has a high noise/signal ratio is a good
candidate. It should be noted, however, that the stochas-
tic process might model what at first appears to be signal,
as will be seen in the example given below.

The stochastic process to be used can have two kinds
of origin.

- - I t can be a legitimate mathematical model of the phe-
nomenon to be modeled. A model in computer graphics is
not normally required to be a mathematical model, but, of
course, it does not hurt if it is. The example given for
terrain falls into this category.
- -The stochastic process can be empirically chosen, with
the parameters determined to fit a particular application.
Techniques need to be developed which employ some sort
of canonical stochastic processes, to be used in stochastic
approximation the same way power functions, for example,
are used in curve fitting.

Since the stochastic process used can be analytically
defined, many traditional algorithmic techniques can be
considered as means to compute the sample paths. One
of the most effective for display purposes is the recursive
subdivision technique, introduced by Catmull [5] for
parametric patches, and most notably used by Clark [7]
and Lane et al. [13]. The same technique can be used in
the context o f stochastic modeling, and the advantages

373

are even more important here.
- -The depth of the recursion will be controlled by the on-
screen resolution, giving two important benefits. We never
run out of details, since the process can always generate
new data as we close in. We never produce more details
than necessary, therefore the computational effort is always
commensurate with the on-screen image complexity.
- -The basic computational step in the recursive subdivision
uses an interpolation formula. Interpolation formulas are
in general much easier to compute than incremental ones,
especially those for midpoint interpolation, therefore fur-
ther lowering the computational cost.

Depending upon the phenomenon being modeled,
the stochastic process will have dimensions from 1-4,
and the computed sample path, or more exactly the
stochastic element computed from the sample path will
have dimensions from 1-3. The various possibilities are
in Table I, and some of the applications are indicated.
Since in addition the stochastic element can be composed
with various deterministic modeling primitives, the de-
velopment of a wide range of new modeling techniques
will be required, and some new computational issues will
be raised.

The following sections address these issues in the
context of one particularly useful and interesting sto-
chastic model.

3. Fractals: A Stochastic Terrain Model

Perhaps the most common natural phenomenon to
be represented in current applications of computer
graphics is terrain. Since terrain is generally character-
ized by randomly distributed features that are recogniz-
able by their overall properties as opposed to specific
macroscopic features (as in the case of the mountain
range example), its strong stochastic properties make it
a good choice for the application of a stochastic model.

As noted above, we require a stochastic process that
is appropriate for modeling terrain and an algorithm for
computing sample paths of the process. In the following
section we describe a suitable process for modeling ter-
rains as well as a variety of other natural phenomena.
We will then proceed in the subsequent section to de-
velop new techniques for rendering the sample paths and
for the construction of stochastic primitives which are
especially suited for use in computer graphics.

Communications June 1982
of Volume 25
the ACM Number 6

3.1 Fractional Brownian Motion

In 1968, Mandelbrot and van Ness introduced the
term "fractional Brownian motion" (which will be ab-
breviated to fBm) to denote a family of one-dimensional
Gaussian stochastic processes which provide useful
models for many natural time series [14]. Since then,
multidimensional extensions of fBm have been studied
by Mandelbrot as models of a wide range of natural
phenomena, including in particular terrains (in two di-
mensions) and the isosurfaces (positions in space at
which some parameter has equal value) of turbulent
fluids [16].

We give a brief description of fBm. Let u be a real
parameter such that -oo < u < o% and let w be the set of
all values of a random function taken from a sample
space W. Ordinary Brownian motion, B(u, w) is a real
random function with independent Gaussian increments
such that B(u + A, w) -- B(u, w) has mean zero and
variance o ~ and B(u~, w) - B(u~, w) is independent of
B(u4, w) - B(ua, w) whenever the intervals (Ul, u~) and
(ua, u4) do not overlap. Let H be a real parameter such
that 0 < H < 1 and let b0 be an arbitrary real number.
The random function Bn(u, w), called reduced fractional
Brownian motion, is defined by

B~(0, w) = b0

Bn(u, w) - B,(0, w) = [I / F (H + 0.5)]

{F=[(u-s)~-°~-(-s)~-°.~]a~(s,w)
+ L'(u- s)'-°.~ d~(s, w)}

Thus Bn(u, w) is a moving average of B(u, w)
weighted by (u - s) ~/-°5. Note that Bo.~(u, w) = B(u, w),
so when H = 0.5 we obtain ordinary Brownian motion.
Thus we have a family of random functions whose values
at any value of u depend upon all past values of u.

As for ordinary Brownian motion, the increments of
fBm are stationary. Typical sample paths for H = 0.5
(ordinary Brownian motion), H --- 0.3, and H = 0.7 are
given in Figs. 1, 2, and 3.

A Fourier analysis of samples of such functions shows
no dominant frequency, but rather a range of frequencies
at all orders of magnitude. Fractional Brownian motions
are members of the class of " l ' f noises" [14], that is,
those signals in which the contribution of each frequency
to the power spectrum is nearly inversely proportional to
the frequency. Additionally, the increments of fBm are
statistically self-similar. This means formally that BH(u
+ Au, w) - B~(u, w) and h-H[Bt-i(u + hAu, w) - BH(u,
w)] have the same finite joint distribution functions.
Intuitively these features of fBm indicate that we may
observe a sample of one of these functions at any scale
and perceive identical statistical features. A surface gen-
erated using fBm would thus possess macroscopic fea-
tures up to the order of magnitude of the overall surface

Fig. 1. Ordinary Brownian Motion (H = 0.5).

A e ' ' \

Fig. 2. Fract ional Brownian Motion (H = 0.3).

,,:I,
,~ dJd*,hl i I" ~!~k

, , , , , ,

~ '! l,,~i I r

Fig. 3. Fract ional Brownian Motion (H = 0.7).

~ - , j J -
fJ"v~~'. X %. r.7 ~ ' .P/

,~-X_,/~'J "% / " ¢ ~ . J

generated, corresponding to the lowest possible frequen-
cies in the Fourier spectrum of the sample, as well as
arbitrarily small surface detail, corresponding to the
higher frequencies in the Fourier spectrum.

3.2 Algorithms For Realizing Models Based On FBm

3.2.1 Algorithmic Requirements
In order for fractional Brownian motion to be gen-

erally useful for modeling in computer graphics, appro-
priate algorithms for computing its sample paths must
be found. Since high quality images of complex scenes
typically require that on the order of 10 6 sample points
be generated, the efficiency of any such algorithm is
obviously of critical importance. Not only should the
asymptotic complexity of the algorithm be linear in the
number of sample points generated, but the amount of
computation involved in generating each sample point
must also be as small as possible.

Although it is important, efficiency alone is not suf-
ficient to make a sample path generating algorithm
appropriate for use in graphics. In order to achieve the
flexibility of deterministic models used in graphics, ob-
jects should be modeled piecewise as collections of sto-
chastic primitives. Any modeling primitives in computer
graphics must have two properties in order to be useful.
The first of these, which we call internal consistency, is
the reproducibility of the primitive at any position in an
appropriate coordinate space and at any level of detail.
That is, a modeling primitive should be rendered in such
a way that its features do not depend on its position or
orientation in space. In addition, the features visible
when the primitive is rendered at high magnification
should be consistent with those rendered at a coarser

374 Communica t ions June 1982
of Volume 25
the A C M N u m b e r 6

scale. For deterministic primitives of any type, scale
consistency is easily maintained on smooth curves or
surfaces. Likewise, positional consistency (modulo the
aliasing problem) is easy to maintain for primitives such
as points, lines, or polygons, and for higher-order curves
and surfaces has been achieved through the use of par-
ametric definitions. Internal consistency of either type is,
however, more difficult to maintain for stochastic sample
paths and requires more care in the design of generating
algorithms.

The other crucial property of modeling primitives is
what we term external consistency. This refers to the
continuity properties of adjacent modeling primitives. If
modeling primitives are intended to share a common
boundary, it must be possible to ensure that they are
indeed continuous across this boundary at any scale at
which they may be rendered. Additional consistency
constraints such as derivative or higher-order surface
continuity may be required in some cases, and other
properties such as color may be subject to consistency
constraints across primitives. As with internal consis-
tency, this property has been easily maintained in the
rendering of first-order primitives, although it has pre-
sented a serious research concern in the design of effi-
cient algorithms for rendering higher-order deterministic
curves and surfaces [7], [13]. Again, the problem of
maintaining external consistency promises to be an even
more serious concern in the design of algorithms for
rendering stochastic primitives.

Let us again note here that when rendering any
continuous analytically defined curve or surface, we are
actually calculating a discrete set of sample points from
the surface. These points are generally only approxima-
tions to the surface since even for deterministic functions
the limited word size of a computer allows only for
approximate representation of arbitrary real numbers. In
computing sample paths of stochastic functions, it is
often the case that only approximations can be calculated
efficiently or at all, even leaving aside the numerical
problems just mentioned. Nevertheless, such approxi-
mations are acceptable provided they are sufficiently
good, which in computer graphics means that they meet
visual criteria of indistinguishability from the actual
sample paths. Indeed, since the process we are applying
is a good model of terrain only on the basis of empirical
statistical tests and not because they are derived from a
theoretical model of terrain formation, any approxima-
tion which is sufficiently good to pass our visual test may
itself be likely to be an equally good model by these
statistical tests. In any case, visual acceptability as op-
posed to statistical criteria will be the basis on which we
judge the quality of an approximation algorithm for
graphical use.

3.2.2 Previous Algorithms
Mandelbrot has published a number of methods for

calculating discrete approximations to fBm in various
dimensions. These involve three basic approaches: a

shear displacement process, a modified Markov process,
and an inverse Fourier transformation.

The first uses the fact that fBm is the limit of a
fractional Poisson field [17]. A fractional Poisson field
in n-dimensions is a scalar field where at each point P
the value of F (P) is the sum of an infinite collection of
steps (in the case of terrain, these steps can be seen as
straight faults) whose directions, locations, and ampli-
tudes are three sequences of mutually independent ran-
dom variables. This method was used by Mandelbrot to
generate the first computer simulation of a fractional
Brownian surface. While it has solid theoretical foun-
dations and has been used to produce striking pictures,
it is not suitable for our applications, both for its O(N 3)
time complexity for surfaces, and for the fact that it is
not clear that it could be adapted to our boundary
constraints.

The second method is based on an algorithm to
compute an approximation to discrete fractional Gaus-
sian noise, which is the increment of fBm [15]. The
algorithm computes what Mandelbrot called fast frac-
tional Gaussian noise (ffGn) as a sum of a low frequency
term and a high frequency term. The high frequency
term is a Markov-Gauss process. The low frequency
term is a weighted sum of M Markov-Gauss processes,
M being a number proportional to log(N). The fast
fractional Gaussian noise algorithm represents a consid-
erable improvement in the computation of linear fBm,
since its time complexity is O(Nlog(N)) and its param-
eters can be adjusted to suit the observed time series if it
is to be used in statistical analysis. Although some objec-
tion to the use of a two-dimensional extension to this
method may be made on the grounds that its time
complexity is greater than linear, a much more serious
objection is that it appears that there is no valid extension
of the method to two dimensions. Also, there seems to
be no obvious method to adjust the computation to the
needed resolution while maintaining any consistency.

The third approach, which also gives an O(Nlog(N))
time complexity involves the generation of Gaussian
white noise, in which all frequencies are equally repre-
sented, and then filtering it using fast Fourier transform
techniques in order to force the different frequencies to
fall off as required by the value of the parameter H for
the particular fractional Gaussian noise desired. Fourier
techniques were used by R. Voss to illustrate [18].

Each of the methods discussed above has its own
theoretical and practical advantages. However, they have
in common the drawbacks that their time complexity is
greater than linear and that the basic operations involved
in their computation are costly (involving transcendental
functions). We will now present our own method for
computing an approximation to fBm which avoids these
drawbacks.

3.2.3 A Recursive Subdivision Algorithm
We have noted above the three basic requirements

that an approximation algorithm appropriate for sto-

375 Communications June 1982
of Volume 25
the ACM Number 6

chastic mode l ing must meet , and we have discussed the
advan tages o f the recursive subdivision algori thms for
render ing models o f any type in compu te r graphics. We
now present such a recursive a lgor i thm for generat ing
approx imat ions to the sample pa ths o f one-d imens ional
IBm.

In order to be able to use this type o f algori thm, the
crucial r equ i rement is that the distr ibution o f the process
for which samples are to be compu ted can be interpo-
la ted f rom the b o u n d a r y points o f the sample. Since one
o f the features o f f B m is an infinite span o f in te rdepend-
ence, it is not a priori obvious that such an approach
would be successful. However , two facts help design an
app rox ima t ion algori thm.

- - F r a c t i o n a l Brownian mot ion is self-similar. This
means, as stated above, that the increments of Bn(u) (for
s implici ty o f notat ion, we will hencefor th use Bn(u)
instead o f Bn(u, w)) are such that BH(u + Au) - Bn(u)
and Brl(U + hAu) - Bn(u) have the same distr ibution i f
the lat ter is rescaled by a factor o f h -n , H being the self-
s imilari ty pa ramete r .
- - A fo rmula exists [14] for the condi t ional expecta t ion
o f B/~(u), 0 _< u _< 1, knowing BH(O) = 0 and BH(I) = 1:
E[Bn(u) l Bn(1)] = V2(u 2n + 1 -- l u -- I 12"). When u =
~/2, the right-hand side becomes I/2 independently of H.

These two prope~ies give an estimate of the expected
value and the variance of the increment of the process,
which is all that is needed, since the process is Gauss ian .

An a lgor i thm designed using these propert ies is given
below in Pascal. The funct ion GAUSS(seed , index) re-
turns a Gauss i an r a n d o m var iable with zero m e a n and
unit variance. It uses the var iable "seed" as its seed.
Explicit control over this seed is given in order to allow
for external consistency as discussed below.
Declarations in main program:

type result = array [0..maxsize] of real;
var maxlevel, seed, i:integer; scale, h:real; Fh:result;

Procedure called:
procedure fractal (maxlevel, seed:integer; h, scale:real);
var first, last :integer;

ratio, std: real;
procedure subdivide (fl, t2 :integer; std: real);

var fmid :integer; stmid: real;
begin

fmid:= (fl + t2) div 2;
if (fmid <> fl) & (fmid<> 12) then

begin
Fh [fmid] := (Fh [fl] + Fh [t2])/2.0 + gauss (seed, fmid)*

std;
stdmid :~ std * ratio;
subdivide (fl, fmid, stdmid);
subdivide (fmid, 12, stdmid)
end

end;/* subdivide */
begin

first := 0;
last := 2)'maxlevel;
Fh [first] := gauss (seed, first) * scale;
Fh [last] := gauss (seed, last) * scale;
ratio := 21' - h;
std := scale * ratio;
subdivide (first, last, std)

end;/* fractal */

376

Fig. 4. Computation of a Scalar Value by Subdivision.

Fh'

fl f~id f2 index

T h e a lgor i thm recursively subdivides the in terval
[first, last] and genera tes a scalar value at the midpo in t
which is p ropor t iona l to the current s tandard devia t ion
t imes the scale or "rot fghness" factor (see Fig, 4). h is a
p a r a m e t e r which de termines the "fracta l d imens ion" o f
the sequence ou tpu t by the algori thms. (For a defmi t ion
and discussion o f fractal d imension, see [18].) It is equiv-
alent to the H o f f B m and can take on values be tween
0 and 1. Maxleve l de te rmines the level o f recursion
needed. This a lgor i thm is suitable for pa ramet r i c appl i -
cat ions since the recurs ion subdivides a p a r a m e t e r space
into equa l intervals. A s imilar a lgor i thm which opera tes
direct ly in a two-d imens iona l object space is given below.
This a lgor i thm is par t icular ly suited for nonpa rame t r i c
subdivision.

procedure fractal(t 1, t2, epsilon, h, scale: real; seed :integer);
var fl, 12, ratio, std: real;
procedure subdivide (fl, 12, t 1, t2, std:real);

vat tmid, fmid: real;
begin

if(t2 - tl) > epsilon then
begin

tmid := (t 1 + t2)/2.0;
fmid := (fl + 12)/2.0

+ std*gauss(seed, tmid);
std := std*ratio;
subdivide (fl, fmid, tl, tmid, std);
subdivide(fmid, fl, tmid, t I, std)

end
else output (fl, tl, 12, t2)

end/* subdivide */
begin

fl := gauss(seed, tl) scale;
t2 := gauss(seed, t2) scale;
ratio :-- 2 t - h;
std := scale*ratio;
subdivide (fl, 12, tl, t2, std)

end;/* fractal */

T h e sequence o f scalar d isp lacements genera ted gives
an a p p r o x i m a t e sample pa th o f one-d imens iona l f B m o f
p a r a m e t e r R. Unl ike fBm, this app rox ima t ion is ne i ther
s ta t ionary, isotropic, nor self-similar, as po in ted out by
B. Mande lbro t . This sample pa th can be used to create

Communications June 1982
of Volume 25
the ACM Number 6

Fig. 5. Typical Curve Obtained at Two Resolutions. h = 0.8, 17, and
257 sample points.

I ' ; ~ - - ~ }.,., ,

r"', .~S J '':S "..'-,..S " ~ °

stochastic primitives as needed, as discussed in the fol-
lowing section. The graphs of Fig. 5 show typical samples
at two resolutions for h = 0.6 and for 257 and 17 sample
points. The two graphs are then from the same sample
paths, but sampled by computation at different rates.
This ability of the algorithm to generate discrete sample
paths only at the rate needed makes it ideal for the
purposes of stochastic modeling.

It is easy to see that the number of steps in the
algorithm is a linear function of N, the number of sample
points computed. Moreover, the amount of computation
required to generate each sample point is small, requiring
in the second case only 4 real additions, 1 subtraction, 3
real multiplications, and two divisions by 2 in addition
to the generation of the pseudo-random variable. This
makes it superior to the methods discussed above in
terms of efficiency. By tying the random numbers gen-
erated at the endpoints to the values of t 1 and t2, external
consistency can be ensured since any adjacent sample
paths generated with this algorithm would have the same
endpoints. Internal consistency with respect to scale is
assured by tying the seeds of the random number gen-
erator to the positions of the points calculated. Of course,
internal consistency with respect to position is violated
in this case unless t 1 and t2 are assumed to be parametric
variables and hence not subject to positional change.
This can be avoided by using point-specific indices to
compute the seed instead of the position, and using t 1, t2
only for recursion control.

4. Applications of the Model

4.1 Creation of Stochastic Primitives

The most generally useful application of a stochastic
model in graphics is in the construction of stochastic
modeling primitives, which can be used for piecewise
construction of objects with stochastic features. We de-
scribe in this section the construction of one and two-
dimensional modeling primitives based on our recursive
fBm sample path generator. We also discuss appropriate
applications for these primitives and give examples.

4.1.1 One-Dimensional Primitives
The algorithm given in Sec. 3 for generating our

approximations to fBm can be viewed as the construction
of a "fractal polyline" primitive from an initial deter-
ministic line segment. Of course, all displacements gen-
erated can either be viewed as offset vectors in the y
direction of a two-dimensional coordinate system as

377

Fig. 6. Using the Scalar Value to Compute a Curve in the Plane.
J

Fh

fmid

f2

f l

. I

I I
I I
I I
I t
I I
t I
I I
I I
I I
I I

t l trnid t2
1 = s td * gauss(seed, t raid)

t ~

t

indicated in Fig. 4 or simply as scalar displacements as
mentioned above. In the former case, rather unsatisfac-
tory primitives are generated since displacements are tied
to the coordinate system rather than the line segment
from which the displacement occurs. To eliminate this
coordinate system dependency, it is better to take the
scalar displacement of the midpoint at each step in the
recursion, and use it as an offset from that midpoint
along a vector normal to the original line segment. This
construction is illustrated in Fig. 6. The only inherent
directionality in the resulting curve is that imparted by
the slope of the original line segment at the highest level
of detail. Figure 7 shows a typical curve resulting from
such a procedure, with h = 0.5, with 2, 5, and 257 points.

In order to construct continuous curves from these
fractal polylines the displacements of the endpoints of

Fig. 7. Typical Curve Obtained. h = 0.5, 0, 3, and 255 interpolated
points.

Communications June 1982
of Volume 25
the ACM Number 6

Fig. 8. Construction for a Parametric Curve.
f7

~,T fmid

~ r n i d ~ f2

S(tZ)~ 2 -

,%
the initial line segment should be fixed at 0. This makes
it trivial to guarantee the zero-order continuity of the
curve produced. Higher orders of continuity of the fractal
surface are meaningful only in a statistical sense since
fBm has no derivative at any point [14]. It may be
desirable to construct fractal curves based on smooth
curves rather than the perimeters of polygons. In this
case, the initial curve can be constructed piecewise, for
instance, from either interpolating or approximating
splines [12]. In this way, various statistical orders of
continuity can be assured for this curve with derivative
continuity being the most interesting. The scalar se-
quence generated by the subdivision process can be
considered as displacements along vectors normal to the
base curve at the appropriate midpoints in parameter
space of the curve, as shown in Fig. 8. A more expensive
alternative is to let the original spline curve be subdivided
into two new spline curves with the original midpoint in
parameter space becoming their common boundary and
a new set of control points being generated. This com-
mon point is then displaced the generated random scalar
distance along the common normal to the two curves at
their boundary by displacing the adjacent end control
points of the curves appropriately.

Any of the fractal polyline primitives constructed in
these ways can be combined in arbitrary ways to con-
struct representations of natural phenomena. For in-
stance, the course of an imaginary river as it appears on
a map could be generated using an appropriate value of
h and level of scale. The instantaneous configuration of
a bolt of lightning is also an appropriate candidate, as
illustrated in the film Vol Libre [4]. An imaginary coast-
line on a map can also be created from fractal polylines
like those of Fig. 7.

A more interesting application allows fractal primi-
tives based on real data to be constructed using a tech-
nique we will call "stochastic interpolation." For in-
stance, consider the polygon of Fig. 9 whose 8 vertices
are sample points digitized from a map of Australia. The
polygon is obtained as a linear interpolation of the
positions of adjacent pairs of endpoints. However, it is

Fig. 9. Australia: 8 Sample Points.

/

Fig. 10. Stochastic Interpolation. 8 original points and 8 x 127 inter-
polated points (h = 0.5).

,-.?

Fig. 11. Stochastic Interpolation. (h = 0.7).

y

well known that the coastline of Australia is very irreg-
ular when viewed at most any magnification, and so the
regular polygon, although maybe recognizable as Aus-
tralia by its overall shape, is not very realistic and looks
nothing like the representation of the coastline presented
on any reasonably accurate map. Moreover, empirical
data suggests that the stochastic characteristics of Aus-
tralia's coastline are nearly identical to those of one-
dimensional fBm with H = 0.87 [18], [22]. Figures 10-
13 show fractal polylines generated from the line seg-
ments of Fig. 9, with various values of h. All of them are
much more realistic than Fig. 9, and Fig. 12 looks so
real that those of us ignorant in geography would have
difficulty arguing that this is not in fact the coastline of
Australia traced from a map. Note that h in Fig. 12 is
very close to the empirically measured value.

The visual evidence just cited provides a very strong
argument that coastlines are best represented by curves

378 Communications June 1982
of Volume 25
the ACM Number 6

Fig. 12. Stochastic Interpolation. (h = 0.87).

Fig. 13. Stochastic Interpolation (h = 1 . 0) .

\
, /

with matching stochastic properties. All the real data
obtained by digitizing the map is present in all of Figs.
9-13 since the endpoints of the line segments are not
displaced in any case, but the stochastic interpolated
curves give a much truer picture of Australia's coastline
than a polygon does. In general, for natural phenomena
with random, irregular characteristics, it can be argued
that the quality of an interpolation between real sample
points obtained from that phenomenon should be judged
by the correspondence of its stochastic properties with
those of the real sample itself.

4.1.2 Two-Dimensional Primitives
One of the most useful applications of a stochastic

model in a three-dimensional environment is the repre-
sentation of irregular surfaces, in this case, terrains. As
in one-dimensional modeling, we wish to define a surface
which is stochastic rather than deterministic, which at
the same time maintains all the nice properties of the
surface models currently most useful in computer graph-
ics. We present two somewhat different approaches to
the construction of two-dimensional fractal surface prim-
itives. The first is based on a subdivision of polygons to
create "fractal polygons" similar to the fractal polylines
described above. The second is to define a stochastic
parametric surface.
4.1.2.1 Polygon Subdivision. Consider a scene in which
all surfaces consist of triangles. This type of model is
very commonly used to represent real-world data which
has been acquired automatically [11]. Each triangle can
be subdivided into four smaller triangles by connecting

379

the midpoints of the sides of the triangles. If the positions
in three-space of these midpoints is obtained by a fractal
polyline subdivision step given above, a single step in the
rendering of a "fractal triangle" is obtained. These sub-
divisions can be continued until a level of scale is reached
in which no triangle has a side exceeding a specified
length. The original triangle is now a fractal triangle
whose irregular surface consists of many small triangular
facets.

A quadrilateral can be subdivided in a slightly more
complex way. Generate the midpoint of each of the four
sides using fractal polyline subdivision. For each of the
two pairs of opposed midpoints, displace the midpoint
of the line connecting them using the same procedure.
The midpoint of the line connecting these two
"midpoints" becomes the center point of the quadrila-
teral subdivision and four smaller quadrilaterals are
generated. This process is continued as with triangles
until the desired resolution is obtained, resulting in a
fractal quadrilateral whose surface is composed of many
quadrilateral facets.

If a scene is modeled by a mesh of triangles or
quadrilaterals which are to be rendered as stochastic
primitives using polygon subdivision, some care must be
taken to ensure internal and external consistency. Inter-
nal consistency with respect to position requires that the
seeds of the random number generator be indexed by
some sort of invariant point identifiers rather than by
functions dependent on the positions of the points. In-
ternal consistency with respect to scale requires that the
same random numbers be generated in the same order
at each level of the subdivision, as before. External
consistency is a bit trickier. Since adjacent polygons
share a common boundary which must be subdivided,
this subdivision must generate the same points on that
boundary for both polygons. An obvious requirement is
that the same random displacements must be generated
on each boundary, which can be accomplished again by
tying the seeds of the random number generator to
identifers of points on the boundary, making certain that
the same identifiers are assigned to the corresponding
points in the representation of each polygon's boundary.
However, if these displacements are allowed to be in a
direction normal to the surface of the original polygon,
problems arise when the adjacent polygons are not co-
planar, as is generally the case. This is illustrated in Fig.
14. A solution is to calculate the normal of each point in
the mesh as the average of the normals of the polygons
containing it. Points randomly displaced along these
normals will coincide when calculated for adjacent po-
lygons, as desired. Of course, a similar problem exists for
every new point calculated in the subdivision, even those
completely internal to an original polygon. This can
either be solved the same way, calculating the normals
during the subdivision, or, less expensively, by letting all
displacements be in a direction normal to the original
polygon instead of averaging the normals of adjacent
polygons created by subdivision.

Communications June 1982
of Volume 25
the ACM Number 6

Fig. 14. Gap Created by Tangent Discontinuity at the Boundary Be-
tween Two Polygons (0 original points, × interpolated points).

Fig. 15. Surface Produced Using the Stochastically Interpolated Points
as Control Points for a B-spline Surface.

The primary advantage to this approach is the speed
with which calculations can be done since only linear
functions need be used. It does generate a surface which
is self-similar within the range of scale covered by the
subdivision and which does have a fractal dimension
when carried to the limit. Thus its statistical properties
are similar to those of two-dimensional fBm [14], al-
though a better method for approximating fBm is given
below. One important difference is that the surface gen-
erated in the limit is Markovian (for two-dimensional
continuous processes, this means the values of opposite
sides of an arbitrary boundary are independent given the
boundary), while fBm, in which all sample points are
correlated with all others, is not Markovian. As we have
stated, however, our primary criterion is visual, and these
methods can produce striking pictures of many terrains.
The foreground of the cover picture, for instance, was
produced using triangle subdivision. The most serious
pitfall in using this method to produce good pictures is
that derivative discontinuities across adjacent polygons
can be annoyingly obvious in pictures that are not
smooth shaded if the roughness factor used in the sub-
division is not carefully chosen. (Note that smooth shad-
ing pictures of rugged terrain has a tendency to destroy
the character of the surface.) The Markovian nature of
the process, with no correlation between non-neighbor-
ing points, also tends to lead to the occasional generation
of new polygons with radically divergent normals relative
to other neighboring polygons during the subdivision
process unless the random number generator is carefully
constrained. Another way to obtain smooth surfaces is
to use the computed stochastic points as control points
of parametric patches, as was done to produce Fig. 15.
4.1.2.2 Stochastic Parametric Surfaces. Stochastic surface
primitives can be created by extending deterministic
parametric primitives as well as by polygon subdivision.
In this case, we wish to define a surface description
which is stochastic in nature rather than deterministic,
which at the same time maintains the nice properties of
the models currently most useful to represent complex
objects in computer graphics. It is natural then, to con-
sider functions of the form X(u, v) = P(u, v) + R(u, v, w),

where P(u, v) is a vector-valued polynomial in u and v,
and R(u, v, w) is a vector-valued random function on the
sample space space W, w e W. Thus X(u, v) is a two-
dimensional stochastic process which we call a stochastic
surface function. Intuitively, P(u, v) provides a way of
defming the overall position of the surface while R(u, v,
w) causes a stochastic variation in that position over the
range of the parameters u and v.

P(u, v) can be any deterministic parametric function
of two dimensions such as a bicubic or bilinear patch.
R(u, v, w) is a vector normal to P(u, v) whose length is a
random scalar r(u, v, w). The calculation of P(u, v) and
its normal are well-understood procedures for many
surfaces which are useful in graphics [l], [5], [12]. We
are interested in methods for generating R(u, v, w) as a
two-dimensional extension of our fBm approximation
algorithm.

The most straightforward approach is to use a
method identical to the quadrilateral subdivision given
above. This retains the drawbacks of that method, with
the exception that normal averaging is unnecessary for
those deterministic functions that assure derivative con-
tinuity across patch boundaries. I f we compute the vector
normal along with each subdivision, what is really
needed is a non-Markovian approach which provides a
better approximation to fBm across the surface of a
patch. Of course, since we compute each patch sepa-
rately, the overall surface cannot be strictly a fBm sur-
face. If the parametric surface definition of the object
has the proper stochastic properties globally, however,
the approximation of the stochastic surface to fBm will
be reasonable. An alternative would be to generate the
entire stochastic surface at once, but this is impractical
in most situations. Note that this difficulty, caused by
the nonlocal character of fBm, does not arise in other
stochastic processes of interest, making such computa-
tions easier.

To introduce the needed interdependence between
points in the two-dimensional approximations to fBm,
we will use the following scheme. First we compute the

380 Communications June 1982
of Volume 25
the ACM Number 6

Fig. 16. Order of Computation for Grid in Two Dimensions. (Order
is 0, la, lb, 2a, 2b, • • .) * indicates points interpolated from boundary
values only.

Q 2b*
"~x s S

2b*

.4

~ D

I 2b* 2a

I I 0 _ _ 2 b *

Q 2b* 0

y--I J 2b 2b*

~ , .~_ "

2b ~ 2b*

I I T !b* 2b* 0

boundary of the patch, using the one-dimensional ver-
sion of the algorithm to the level desired. We then fill
the square for each level, computing the centers, then the
sides, using at each step the four neighbors (diagonally
for the centers, horizontally and vertically for the sides).
At each step the new point is computed as a Gaussian
pseudo-random variable, whose expected value is the
mean of the four neighbors at this level, and whose
standard deviation is c -~/~, with ~ the level, H the self-
similarity parameter, and c a constant to be adjusted to
fit the application (see illustration in Fig. 16).

Figures 17-19 show a planet that has been generated
with this technique using l0 bicubic Bezier patches. The
"land" is made of patches with stochastic surfaces and
the "sea" is made of the same patches with no stochastic
component. The "coastlines" are then the zerosets of the
two-dimensional fBm generated. Note that we used a
depth-buffer algorithm to compute these intersections,
but we could just as well have added the texture only
Fig. 18. Planets at Different World Space Resolutions but Similar
Screen Space Resolutions.

Fig. 17. Planets at Different Resolutions (coastlines are from depth-
buffer computations).

where the displacement is positive and obtained the same
"coastlines." The value of h has been chosen to be 0.6
since it is close to the empirical value obtained from
actual measurements of geographic features [22]. The
altitude has been exaggerated to give a more dramatic
effect (the altitude of the highest peaks is about 10
percent of the radius of the planet). The subdivision has
been stopped at a fairly low resolution, to illustrate the
properties of the method, and the patches are actually
processed as polygons (triangles to be specific) by the
display system.

Figure 17 shows different resolutions for the planet
at the same screen coordinate size, with the level of
recursion being 2, 3, 4, and 5. At this on-screen size,
though the overall appearance is similar, details, espe-
Fig. 19. Zooming in to the Planet.

381 Communications June 1982
of Volume 25
the ACM Number 6

cially for coastlines, are obviously different. This is due
to the fact that the screen coordinate distance between
computed points on the surface is much more than one
pixel (about 20 pixels for the first planet of Fig. 17), and
at the next level of computation the midpoint can be
above or below sea level, changing locally the appearance
of the coast. Features whose size is about the distance
between points (in screen coordinates) can be signifi-
cantly altered. For this reason in normal practice this
distance should be kept at or below the size of a pixel.

Figure 18 shows the four objects together at sizes
such that the on-screen resolution is the same. Observe
that even though we are still above the pixel level (the
average distance between computed points is about 2
pixels), the quality of the picture is satisfactory, and there
are no noticeable differences in the appearance of the
four planets. Considering that the whole database for the
planet consists of only 90 three-dimensional points (de-
fining the 10 Bezier patches), the comparison with a
picture produced from a real terrain database which
could require several 10,000 triangles for a comparable
visual complexity is highly favorable. Of course, if the
reproduction of a specific set of surface features obtained
from cartographic data, for example, were required, it
would still be necessary to model these features deter-
ministically to the level of detail desired, and the data-
base would grow accordingly.

Figure 19 illustrates how the process can be continued
to zoom in to the surface to any desired level of detail,
while keeping the same on-screen resolution. On the
upper left is an easily recognizable part (the lower left
corner) of the planet. On each of the other views, the
central area is enlarged about twice. The main features
of each view carry over to the next one, while new details
appear. Here the average distance between computed
points is about 6 pixels. This process can be continued
further, still with no modification of the database, until
we are arbitrarily close to the surface. Care has to be
taken, however, because as the differences between two
neighboring points become very small, the computation
of the surface normals and the comparisons of the depth
values in the Z-buffer can become inaccurate. The zoom-
ing in and out process can be repeated as often as desired
since the particular stochastic surface generated is fixed
and reproducible.

Parametric techniques will generally require some-
what more computation than polygon subdivision since
the nonlinear deterministic functions involved require
more computation for the rendering of points. In addi-
tion, since the recursive subdivision is done in parameter
space, it is difficult to tie the depth of the recursion to
the final distances apart in world or screen coordinates
of the sample points generated. On the other hand, most
of the difficulties cited for polygon subdivision are solved
using this method. In particular, a surface is generated
which has non-Markovian properties very close to those
of fBm, and thus provides a much closer approximation.
As a result, the value of h in the subdivision corresponds

382

closely to H of fBm, so that empirical determinations of
this value can be directly employed to generate terrain
representations with characteristics similar to the mea-
sured surface, alleviating much experimental "twid-
dling" of parameters. Also, the higher correlations be-
tween points on the patch eliminate the need for tight
control of the random number generator to avoid the
glitches mentioned above.

The cost of the computation of the surface is a linear
function of the number of points displayed. The cost of
computation of the stochastic variables can be lowered
using table lookup techniques (note that the numbers
used do not need to pass very stringent tests for random-
ness). This indicates that the increase in computational
cost will be small relative to the cost of the usual trans-
formations and shading algorithms.

These algorithms share the general advantages of
subdivision algorithms. They allow continuing the com-
putation of the texture down to the pixel level, or even
the subpixel level if some anti-aliasing is needed, while
at the same time keeping the level of surface details
constant as the object gets larger or smaller in screen
space.

At the other end of the range in screen space, if the
object is much larger than the screen size, the texture
should be computed to the highest level of detail only
for the portion of the patch or polygon that is not clipped
out. Since such a subpatch or subpolygon cannot be
computed solely on the basis of local information, some
points outside of the displayed area are needed. It can
be shown [9] that the total number of sample points to
be computed is bounded by a linear function of the
number of points to be displayed. So this algorithm
allows "zooming" in and out on the surface, keeping the
same displayed level of complexity (within one binary
order of magnitude), while the time and space complexity
grows only linearly as a function of the number of points
actually displayed. This is then an implementation of a
truly hierarchical approach to surface modeling, the
importance of which was pointed out by Clark [6].

Another interesting feature of the algorithm for prac-
tical applications is that it is easy to change the value of
the parameter h at any level of the computation. There-
fore a terrain that looks very rugged from a distance (a
low value of h), can become rather smooth at a higher
scale (a high value of h). This models what happens if
valleys are filled with sediments, for instance. This is a
particular example of a general technique, namely
changing the characteristic of the stochastic process, or
even the stochastic process itself, according to the recur-
sion level.

In our planet example, the nonstochastic components
of the stochastic surface are the patches defining a close
approximation of the sphere. As a result, the macroscopic
features of the land masses are not predetermined. In
most applications, however, the macroscopic features
would be known, and some points of the surface would
have the actual measured coordinates. In this case, it is

Communications June 1982
of Volume 25
the ACM Number 6

better (and easy) to force the stochastic component to be
zero at these points. Thus the stochastic surface will
interpolate these points, and we have a method for
stochastic interpolation in two dimensions. Of course,
the polygon subdivision methods generate no displace-
ments at the original vertices and thus always produce
stochastic interpolations of these vertices.

Fig. 20. Motion by Variation of h(h = 0.3, 0.5, 0.7, 0.9).

5. Further Applications of the Model

5.1 Other Stochastic Surface Properties

We have thus far only considered the application of
fBm and other stochastic models to the creation of
primitives whose surface position has stochastic charac-
teristics. Other properties of a surface, such as its color,
might also be allowed to vary stochastically. For instance,
another instance of two-dimensional fBm with a high
value of H and a low roughness factor could be used to
determine the color of the surface of the planet. Of
course, this property should also be continuous across
patch boundaries. Another technique for color variation
which can be used with polygon subdivision requires
that a color be initially assigned to each vertex of the
polygon to be subdivided. When a midpoint is computed
for a side of the polygon, its color becomes that of one
of the endpoints of the side. Which endpoint is chosen
is decided according to a Boolean random function.
When the subdivision is complete, the color of each
facet's surface can simply be taken as the average of the
colors of its vertices. This technique was used in gener-
ating the color variations and snow cap on the mountain
range in the foreground of the cover picture.

5.2 Motion

Although various effective techniques have been de-
veloped for creating a series of images of a scene in
which smooth, continuous motions of objects in the scene
are depicted, these tend not to be very effective in
handling complex irregular motions such as the path of
a lightning bolt or the motion of a leaf in the wind.
Stochastic techniques can provide powerful means of
modeling motion which would have been difficult or
impossible to represent otherwise. Consider, for instance,
the action of unfolding a crumpled piece of paper. Figure
20 is four frames from a sequence representing such an
action. These frames were generated using Bezier
patches mapped with approximations to fBm with vary-
ing values ofh . As h is changed from 0.3 to 0.9, the patch
is rescaled to keep its surface area constant. 1 Thus a
complex motion that would have been very expensive to
generate previously is modeled very easily with stochastic

~Note that a real fBm surface has infinite area, although our
discrete approximations to it are, of course, finite. See [18].

383

techniques. Another example is the motion of a simple
lightning bolt. The path of the lightning bolt can be
represented as a fBm function from one dimension into
three, like Brownian motion of a molecule in three-space.
By simply changing the random numbers generated,
while keeping the endpoint displacements fixed at 0, a
sequence of instantaneous positions of the lightning bolt
is created. Generating the same number of sample points
in each instance, and allowing the motion of each sample
point to interpolate the positions of that point in each of
the "key frames" generated above, the motion of the
lightning can be generated. Note that the interpolated
path of each sample point can be created using either a
deterministic or a stochastic technique. The lightning in
the film Vol Libre [4] was generated in this way.

6. Conclusion

We suggest that recognition of the importance of the
stochastic properties of the real world will lead to greatly
increased flexibility in the modeling techniques used in
computer graphics, just as probabilistic models have
contributed significantly to the development of several
related disciplines. We have applied Mandelbrot's fBm
model for terrain and other natural phenomena and have
developed efficient and appropriate sample path gener-
ating algorithms. We have shown several methods for
creating stochastic modeling primitives of one and two-
dimensions based on these algorithms and have dem-
onstrated the use of stochastic interpolation of real sam-
pled data points to create realistic representations of
sampled phenomena. These methods constitute very nat-
ural and compact hierarchical object descriptions which
are applicable to the modeling of various natural phe-
nomena at a small fraction of the cost of deterministic
methods of comparable quality, when these exist at all.

The techniques presented here barely scratch the
surface of the possibilities of the stochastic approach to
modeling. The most immediate extensions of this work
are to use the same techniques to modify surface char-

Communications June 1982
of Volume 25
the ACM Number 6

acteristics other than position, for example, to create
stochastic color patterns as has subsequently been done
in the movie Peak by Mark Snilily, or to render small
scale texture by stochastic variation of surface normals
analogous to Blinn's method [3]. In contrast to these one
and two-dimensional stochastic methods, the study of
three and four-dimensional stochastic models should
lead to interesting techniques for the representation of
complex volumes and motions.

As indicated above, there are two general sources of
stochastic models that may be of use in graphics. Al-
though in this paper we have illustrated a mathematical
model useful in representing terrain, there might be
many natural objects for which it is unlikely that one
will find a suitable mathematical model. Techniques
which allow the empirical determination of parameters
of a flexible canonical stochastic model which fit specific
natural objects would be very useful in this regard.
Research in the development of such techniques holds
the promise of rich rewards for computer graphics.

Acknowledgments. The first two authors would like
to thank Zvi Kedem for his many helpful suggestions
and overall support, and Henry Fuchs, who taught them
how to make pictures with computers. We thank Benoit
Mandelbrot for providing inspiration through his book,
and for his kindness and encouragement: We also thank
Martin Tuori and Martin Taylor of DCIEM in Toronto,
who helped in producing Figures 17 to 20.

Received 3/80; revised 12/81; accepted 2/82.

References
1. Bezier, P. Mathematical and practical possibilities of UNISURF.
In Barnhill, R.E. and Riesenfeld, R.F. (Eds.). Computer Aided
Geometric Design, Academic, (1974).
2. Blinn, J.F. Models of light reflection for computer synthesized
pictures. In Proceedings of SIGGRAPH '77. Also published as
Comput. Graphics, 11, 2, (Aug. 1977), 192-198.
3. Blinn, J.F. Simulation of wrinkled surfaces. In Proceedings of
SIGGRAPH "77. Also published as Comput. Graphics, 12, 3, (Aug.
1978), 286-292.
4. Carpenter, L.C. Vol Libre. Computer generated animated movie.

First Showing at SIGGRAPH '80 (July 1980).
5. CatmuU, E. Computer display of curved surfaces. In Proc. IEEE
Conference on Computer Graphics, Pattern Recognition and Data
Structure. (May 1975).
6. Clark, J.H. Hierarchical geometric models for visible surface
algorithms. Comm. A CM, 19, 10, (Oct. 1976), 547-554.
7. Clark, J.H. A fast algorithm for rendering parametric surfaces. In
Proceedings of SIGGRAPH "79. Also published as Computer
Graphics, 13, 2 (Aug. 1979), 174.
8. Csuri, C., Hackathorn, R., Parent, R, Carlson, W., and Howard,
M. Toward an interactive high visual complexity animation system.
In Proceedings of S1GGRAPH "79. Also published as Comput.
Graphics, 13, 2, (Aug. 1979), 289-299.
9. Fournier, A. Stochastic Modeling in Computer Graphics. Ph.D.
Dissertation, University of Texas at Dallas, (1980).
10. Fu, K.S. Syntactic image modeling using stochastic tree
grammars. Computer Graphics and Image Processing, 12, (1980),
136-152.
I1. Fuchs, H., Kedem, Z.M., and Uselton, S.P. Optimal surface
reconstruction from planar contours. Comm. ACM, 20, 10, (Oct.
1977), 693-702.
12. Gordon, W.J. and Riesenfeld, R.F. B-spline curves and surfaces.
In Barnhill, R.E. and Riesenfeld, R.F. (Eds.), Computer Aided
Geometric Design, Academic, (1974).
13. Lane, J.M., Carpenter, L.C., Whitted, T., and Blinn, J. Scan-line
methods for displaying parametrically defined surfaces. Comm.
ACM, 23, 1, (Jan. 1980), 23-34.
14. Mandelbrot, B.B. and Van Ness, J.W. Fractional Brownian
motions, fractional noises and applications. SlAM Review, 10, 4,
(Oct. 1968), 422-437.
15. Mandelbrot, B.B.. A fast fractional Gaussian noise generator.
Water Resources Research, 7, 3, (June 1971), 543-553.
16. Mandelbrot, B.B. On the geometry of homogeneous turbulence,
with stress on the fractal dimension of iso-surfaces of scalars. J. Fluid
Mechanics, 72, 2, (1975), 401-416.
17. Mandelbrot, B.B. Stochastic models for the earth's relief, the
shape and fractal dimension of coastlines, and the number area rule
for islands. Proc. Nat. Acad. Sci. USA, 72, 10, (Oct. 1975),
2825-2828.
18. Mandelbrot, B.B. Fractals: Form, Chance and Dimension.
Freeman, San Francisco, (1977).
19. Max, N. Vectorized procedural models for natural terrains:
Waves and islands in the sunset. In Proceedings of SIGGRAPH "81.
Also published as Comput. Graphics, 15, 3, (Aug. 1981), 317-324.
20. Mezei, L., Puzin, M., and Conroy, P. Simulation of patterns of
nature by computer graphics. Information Processing 74, 52-56.
21. Modestino, J.W., Fries, R.W., and Vickers, A.L. Stochastic image
models generated by random tessellations in the plane. Computer
Graphics and Image Processing, 12, (1980), 74--98.
22. Richardson, L.F. The problem of statistics of deadly quarrels.
General Systems Yearbook, 6, (1961), 139-187.
23. Schachter, B. and Ahuja, N. Random pattern generation process.
Computer Graphics and Image Processing, 10, (1979), 95-114.
24. Schachter, B. Long crested wave models. Computer Graphics and
Image Processing, 12, (1980), 187-201.

384 Communications June 1982
of Volume 25
the ACM Number 6

