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the techniques used to implement the model. We intro- 
duce a new algorithm that computes a realistic, visually 
satisfactory approximation to fractional Brownian m o -  

tion in faster time than with exact calculations. A major 
advantage of this technique is that it allows us to compute 
the surface to arbitrary levels of details without increas- 
ing the database. Thus objects with complex appearances 
can be displayed from a very small database. The char- 
acter of the surface can be controlled by merely modify- 
ing a few parameters. A similar change allows complex 
motion to be created inexpensively. 

CR Categories and Subject Descriptors: 1.3.3. [Com- 
puter Graphics]: Picture/Image Generation--display 
algorithms; 1.3.5. [Computer Graphics]: Computational 
Geometry and Object Modeling--curve, surface, solid, 
and object representation;I.3.7 [Computer Graphics]: 
Three Dimensional Graphics and Realism--color, shad- 
ing, shadowing, and texture. 

General Term: Algorithms 
Additional Key Words and Phrases: fractals, terrain 

models, stochastic models 

A recurrent problem in generating realistic pictures 
by computers is to represent natural irregular objects 
and phenomena without undue time or space overhead. 
We develop a new and powerful solution to this computer 
graphics problem by modeling objects as sample paths of 
stochastic processes. Of particular interest are those 
stochastic processes which previously have been found 
to be useful models of the natural phenomena to be 
represented. One such model applicable to the represen- 
tation of terrains, known as "fractional Brownian mo- 
tion," has been developed by Mandelbrot. 

The value of a new approach to object modeling in 
computer graphics depends largely on the efficiency of 
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1. Introduction 

Traditional modeling techniques used in computer 
graphics have been based on the assumption that objects 
are essentially a collection of smooth surfaces which can 
be mathematically described by deterministic functions. 
The simplest such technique assumes that objects are 
collections of polygons whose surfaces are obviously 
described by linear functions. Greater flexibility is 
achieved by the use of surfaces which are described by 
higher-order polynomials, as with Bezier [ 1] or B-spline 
surface patches [ 12]. 

These techniques have been quite successful in ren- 
dering realistic images of artificial objects, with their 
relatively simple macroscopic characteristics and their 
regularly periodic surface features. Natural objects, such 
as stones, clouds, trees, terrain, etc. are characterized in 
general by no such regular features or simple macro- 
scopic structures, and these methods have been less 
effective in modeling them. 

Macroscopic features of natural objects are often 
represented explicitly using large amounts of data. In the 
case of terrain, the information is usually obtained from 
contour maps, and in some fashion transformed into a 
surface represented by a large number of polygons 
[11]. Similarly, smoke has been modeled as volumes 
containing very large numbers of points distributed ac- 
cording to certain theoretical functions used in the study 
of smoke formation [8]. In both cases, capturing the 
macroscopic features to be modeled involves significant 
time and/or space requirements and the use of special- 
ized techniques that are not generally applicable to other 
types of natural featui'es. The problem is that these 
conceptually simple objects require a large number of 
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modeling primitives (points, polygons, or patches) be- 
cause they are visually quite complex. On the other hand, 
a conceptually or technologically complex object, like an 
airplane, can be very effectively modeled with a smaller 
number of  such primitives. 

Using a completely different approach, small-scale 
textures of  natural objects have generally been modeled 
by some single repetitive texture function mapped onto 
all patches comprising such an object. However, the 
regularity of the effect detracts considerably from a 
natural appearance. 

A fundamental limitation of  these approaches is that 
objects are modeled at a predetermined, fLxed scale 
regardless of  its suitability for any particular viewing 
distance. Thus, from sufficiently far away, all but the 
most large-scale changes in terrain modeled by a fLxed 
set of  polygons may be invisible, rendering a large por- 
tion of  the database and the processing required to 
display it superfluous. Likewise, a view of such terrain 
from very close up may reveal no more than a fiat, 
featureless portion of a polygon, lacking any cues that it 
does indeed represent terrain. The latter problem may 
be alleviated somewhat by texture mapping, but with the 
usual static texture definitions it is still possible to get 
too close for the resolution of  the texture pattern. 

In many applications in which natural phenomena 
are to be represented, one is primarily interested in 
achieving sufficient realism in the representation of  the 
objects for their nature to be easily recognizable. The 
specific features of any such objects on all but the most 
macroscopic scale are of  secondary importance. For 
example, in a computer-generated animated sequence 
we may wish to have a mountain range which is ob- 
viously a mountain range but which is not intended to 
correspond to any particular real-world mountains. In 
such a case, we are interested only in the general size, 
shape, and position of the mountain range as specific 
features to be modeled explicitly. In order to make such 
an "object" recognizable as a mountain range, we would 
like to generate the macroscopic features that any typical 
mountain range would have. It would be advantageous 
to have a technique that would allow us to do this 
without the use of  a large database to represent the 
object. In applications where one wishes to display real- 
world data, the addition of suitable information at var- 
ious scales may be used to enhance realism. For example, 
in flight simulators, various types of terrain are repre- 
sented by a few large polygons whose color, shape, and 
position provide vague cues as to their nature. If  a 
pseudo-random rocky texture could be added to surfaces 
representing mountainous terrain, much more realistic 
images could be generated. The use of an extremely 
large, detailed database for such purposes would be 
prohibitive, while the use of traditional, deterministic 
texture mapping techniques would not be fully satisfac- 
tory. 

The representation of motion in computer graphics 
systems has suffered, less obviously, from a similar lira- 
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itation. Previous attempts to represent turbulent motion 
have been limited by the apparent complexity of the 
task. An effective means of generating an irregular sur- 
face with an irregular motion in a flexible way will allow 
the solution of such problems as realistically modeling a 
waterfall, rapids, or ocean waves, all of which present 
serious challenges to computer graphics researchers 
[19], [24]. 

All of  the drawbacks mentioned above result primar- 
ily because most traditional models of  real-world phe- 
nomena in computer graphics are totally deterministic in 
philosophy. There have been some exceptions, however. 
Early work by Mezei et al. [20] generated textures and 
irregular shapes by random techniques, and Blinn [2] 
improved the realism of previous shading methods by 
using a model based on probabilistic assumptions. Also, 
research in image analysis and pattern recognition has 
produced a body of  results on the statistical analysis of 
texture as well as some interesting examples of image 
synthesis using stochastic techniques [10], [23], [21]. 

We propose to extend the flexibility of the mathe- 
matical modeling techniques in computer graphics by 
generalizing the assumptions made about the character- 
istics of  an object's surface and of  its motion. Our basic 
approach is to model both primitives and their motion 
as a combination of both deterministic and stochastic 
features. Thus the surface of  an object may be a poly- 
nomial function of  a set of  predetermined locations, or 
it may be a stochastic function of those locations, or 
both. Likewise, the motion of an object may be described 
as a smooth function interpolating its initial and final 
positions, or it may vary irregularly along the way. In 
this paper, we introduce simple and efficient techniques 
for rendering a large class of stochastic models which 
can be used to represent a variety of  natural phenomena. 

2. Stochastic Models 

In a traditional graphics system, the modeling system 
is the part where the objects are defmed in terms of  the 
basic building blocks: the modeling primitives. The 
modeling primitives mainly used have been points, lines, 
polygons, and parametric patches. We define here a new 
kind of  modeling primitive. 

A stochastic model of  an object (or more generally of  
a phenomenon, to extend the concept of  an object to 
include possibly a time parameter), is defined to be a 
model where the object is represented by a sample path 
(a realization) of  some stochastic process of  one of more 
variables. 

Stochastic objects can be made from several stochas- 
tic modeling primitives just as traditional deterministic 
objects are built from, for example, polygons or para- 
metric patches. Also, since the class of  stochastic pro- 
cesses properly includes the deterministic functions, the 
definition of  stochastic models includes all previously 
used primitives. 
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Table I. Possible Applications of Stochastic Models. 
Dimension of Stochastic Process 

(number of parameters) 
Dimension of 

Primitive One-D Process Two-D Process Three-D Process Four-D Process 
1 Intensity on a line, Intensity Scalar field Intensity in 3-D space Intensity in 3-D space in time 

in time 
2 Direction on a plane, Surface 2-D vector on a surface 

in time 
3 Direction in space in time, Normal to a surface, Color 

Color in time on a surface 

Intensity and altitude on a 
surface 

Color in space, Vector field 
in 3-D space 

Intensity and altitude on a 
surface in time 

Color in space in time, Mov- 
ing vectors 

At the level of  resolution normally used, the natural 
objects to be modeled can be taken to be continuous and 
will need continuous stochastic processes to model them. 
Since ultimately the models will be used for display on 
discrete devices, it is very convenient to have a means of  
computing a discrete sample of  the continuous model at 
the rate required by the resolution of  the image. This 
would usually correspond to the Nyquist rate, but if  anti- 
aliasing is needed the rate of  sampling can be chosen to 
be higher. 

It is now clear that the three elements required for 
stochastic modeling are: (1) an appropriate object (phe- 
nomenon)  to be modeled; (2) a stochastic process to 
model  it with; (3) an algorithm to compute the sample 
paths of  this process. 

Objects that have features with stochastic properties 
that are strong enough so that appreciable savings in 
both storage and processing are obtained by replacing 
the stored values for the stochastic features by the few 
parameters  needed by the definition of  the stochastic 
process are likely to be represented most effectively using 
stochastic models. To use signal processing terminology, 
an object which has a high noise/signal ratio is a good 
candidate. It should be noted, however, that the stochas- 
tic process might model what at first appears to be signal, 
as will be seen in the example given below. 

The stochastic process to be used can have two kinds 
of  origin. 

- - I t  can be a legitimate mathematical model of the phe- 
nomenon to be modeled. A model in computer graphics is 
not normally required to be a mathematical model, but, of 
course, it does not hurt if it is. The example given for 
terrain falls into this category. 
- -The  stochastic process can be empirically chosen, with 
the parameters determined to fit a particular application. 
Techniques need to be developed which employ some sort 
of canonical stochastic processes, to be used in stochastic 
approximation the same way power functions, for example, 
are used in curve fitting. 

Since the stochastic process used can be analytically 
defined, many  traditional algorithmic techniques can be 
considered as means to compute the sample paths. One 
of  the most effective for display purposes is the recursive 
subdivision technique, introduced by Catmull  [5] for 
parametric patches, and most notably used by Clark [7] 
and Lane et al. [13]. The same technique can be used in 
the context o f  stochastic modeling, and the advantages 
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are even more important  here. 
- -The  depth of the recursion will be controlled by the on- 
screen resolution, giving two important benefits. We never 
run out of details, since the process can always generate 
new data as we close in. We never produce more details 
than necessary, therefore the computational effort is always 
commensurate with the on-screen image complexity. 
- -The  basic computational step in the recursive subdivision 
uses an interpolation formula. Interpolation formulas are 
in general much easier to compute than incremental ones, 
especially those for midpoint interpolation, therefore fur- 
ther lowering the computational cost. 

Depending upon the phenomenon being modeled, 
the stochastic process will have dimensions from 1-4, 
and the computed sample path, or more exactly the 
stochastic element computed from the sample path will 
have dimensions from 1-3. The various possibilities are 
in Table I, and some of  the applications are indicated. 
Since in addition the stochastic element can be composed 
with various deterministic modeling primitives, the de- 
velopment  of  a wide range of  new modeling techniques 
will be required, and some new computational  issues will 
be raised. 

The following sections address these issues in the 
context of  one particularly useful and interesting sto- 
chastic model. 

3. Fractals: A Stochastic Terrain Model 

Perhaps the most common natural phenomenon to 
be represented in current applications of  computer  
graphics is terrain. Since terrain is generally character- 
ized by randomly distributed features that are recogniz- 
able by their overall properties as opposed to specific 
macroscopic features (as in the case of  the mountain 
range example), its strong stochastic properties make it 
a good choice for the application of  a stochastic model. 

As noted above, we require a stochastic process that 
is appropriate for modeling terrain and an algorithm for 
computing sample paths of  the process. In the following 
section we describe a suitable process for modeling ter- 
rains as well as a variety of  other natural phenomena.  
We  will then proceed in the subsequent section to de- 
velop new techniques for rendering the sample paths and 
for the construction of  stochastic primitives which are 
especially suited for use in computer  graphics. 
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3.1 Fractional Brownian Motion 

In 1968, Mandelbrot and van Ness introduced the 
term "fractional Brownian motion" (which will be ab- 
breviated to fBm) to denote a family of  one-dimensional 
Gaussian stochastic processes which provide useful 
models for many natural time series [14]. Since then, 
multidimensional extensions of  fBm have been studied 
by Mandelbrot as models of  a wide range of  natural 
phenomena, including in particular terrains (in two di- 
mensions) and the isosurfaces (positions in space at 
which some parameter has equal value) of  turbulent 
fluids [ 16]. 

We give a brief description of  fBm. Let u be a real 
parameter such that -oo  < u < o% and let w be the set of  
all values of  a random function taken from a sample 
space W. Ordinary Brownian motion, B(u, w) is a real 
random function with independent Gaussian increments 
such that B(u + A, w) -- B(u, w) has mean zero and 
variance o ~ and B(u~, w) - B(u~, w) is independent of  
B(u4, w) - B(ua, w) whenever the intervals (Ul, u~) and 
(ua, u4) do not overlap. Let H be a real parameter such 
that 0 < H < 1 and let b0 be an arbitrary real number. 
The random function Bn(u, w), called reduced fractional 
Brownian motion, is defined by 

B~(0, w) = b0 

Bn(u, w) - B,(0,  w) = [ I / F ( H  + 0.5)] 

{F=[(u-s)~-°~-(-s)~-°.~]a~(s,w) 
+ L'(u- s)'-°.~ d~(s, w)} 

Thus Bn(u, w) is a moving average of  B(u, w) 
weighted by (u - s) ~/-°5. Note that Bo.~(u, w) = B(u, w), 
so when H = 0.5 we obtain ordinary Brownian motion. 
Thus we have a family of  random functions whose values 
at any value of  u depend upon all past values of  u. 

As for ordinary Brownian motion, the increments of  
fBm are stationary. Typical sample paths for H = 0.5 
(ordinary Brownian motion), H --- 0.3, and H = 0.7 are 
given in Figs. 1, 2, and 3. 

A Fourier analysis of  samples of  such functions shows 
no dominant frequency, but rather a range of  frequencies 
at all orders of  magnitude. Fractional Brownian motions 
are members of  the class of  " l ' f  noises" [14], that is, 
those signals in which the contribution of  each frequency 
to the power spectrum is nearly inversely proportional to 
the frequency. Additionally, the increments of  fBm are 
statistically self-similar. This means formally that BH(u 
+ Au, w) - B~(u, w) and h-H[Bt-i(u + hAu, w) - BH(u, 
w)] have the same finite joint distribution functions. 
Intuitively these features of  fBm indicate that we may 
observe a sample of  one of  these functions at any scale 
and perceive identical statistical features. A surface gen- 
erated using fBm would thus possess macroscopic fea- 
tures up to the order of  magnitude of  the overall surface 

Fig. 1. Ordinary Brownian Motion ( H  = 0.5). 

A e '  ' \  

Fig. 2. Fract ional  Brownian Motion ( H  = 0.3). 
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Fig. 3. Fract ional  Brownian  Motion ( H  = 0.7). 
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generated, corresponding to the lowest possible frequen- 
cies in the Fourier spectrum of  the sample, as well as 
arbitrarily small surface detail, corresponding to the 
higher frequencies in the Fourier spectrum. 

3.2 Algorithms For Realizing Models Based On FBm 

3.2.1 Algorithmic Requirements 
In order for fractional Brownian motion to be gen- 

erally useful for modeling in computer graphics, appro- 
priate algorithms for computing its sample paths must 
be found. Since high quality images of  complex scenes 
typically require that on the order of  10 6 sample points 
be generated, the efficiency of  any such algorithm is 
obviously of  critical importance. Not only should the 
asymptotic complexity of  the algorithm be linear in the 
number  of  sample points generated, but the amount of  
computation involved in generating each sample point 
must also be as small as possible. 

Although it is important, efficiency alone is not suf- 
ficient to make a sample path generating algorithm 
appropriate for use in graphics. In order to achieve the 
flexibility of  deterministic models used in graphics, ob- 
jects should be modeled piecewise as collections of  sto- 
chastic primitives. Any modeling primitives in computer 
graphics must have two properties in order to be useful. 
The first of  these, which we call internal consistency, is 
the reproducibility of  the primitive at any position in an 
appropriate coordinate space and at any level of  detail. 
That  is, a modeling primitive should be rendered in such 
a way that its features do not depend on its position or 
orientation in space. In addition, the features visible 
when the primitive is rendered at high magnification 
should be consistent with those rendered at a coarser 
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scale. For deterministic primitives of  any type, scale 
consistency is easily maintained on smooth curves or 
surfaces. Likewise, positional consistency (modulo the 
aliasing problem) is easy to maintain for primitives such 
as points, lines, or polygons, and for higher-order curves 
and surfaces has been achieved through the use of  par- 
ametric definitions. Internal consistency of  either type is, 
however, more difficult to maintain for stochastic sample 
paths and requires more care in the design of  generating 
algorithms. 

The other crucial property of  modeling primitives is 
what we term external consistency. This refers to the 
continuity properties of  adjacent modeling primitives. If  
modeling primitives are intended to share a common 
boundary, it must be possible to ensure that they are 
indeed continuous across this boundary at any scale at 
which they may be rendered. Additional consistency 
constraints such as derivative or higher-order surface 
continuity may be required in some cases, and other 
properties such as color may be subject to consistency 
constraints across primitives. As with internal consis- 
tency, this property has been easily maintained in the 
rendering of  first-order primitives, although it has pre- 
sented a serious research concern in the design of  effi- 
cient algorithms for rendering higher-order deterministic 
curves and surfaces [7], [13]. Again, the problem of  
maintaining external consistency promises to be an even 
more serious concern in the design of  algorithms for 
rendering stochastic primitives. 

Let us again note here that when rendering any 
continuous analytically defined curve or surface, we are 
actually calculating a discrete set of  sample points from 
the surface. These points are generally only approxima- 
tions to the surface since even for deterministic functions 
the limited word size of  a computer allows only for 
approximate representation of  arbitrary real numbers. In 
computing sample paths of  stochastic functions, it is 
often the case that only approximations can be calculated 
efficiently or at all, even leaving aside the numerical 
problems just mentioned. Nevertheless, such approxi- 
mations are acceptable provided they are sufficiently 
good, which in computer graphics means that they meet 
visual criteria of  indistinguishability from the actual 
sample paths. Indeed, since the process we are applying 
is a good model of  terrain only on the basis of  empirical 
statistical tests and not because they are derived from a 
theoretical model of  terrain formation, any approxima- 
tion which is sufficiently good to pass our visual test may 
itself be likely to be an equally good model by these 
statistical tests. In any case, visual acceptability as op- 
posed to statistical criteria will be the basis on which we 
judge the quality of  an approximation algorithm for 
graphical use. 

3.2.2 Previous Algorithms 
Mandelbrot has published a number of  methods for 

calculating discrete approximations to fBm in various 
dimensions. These involve three basic approaches: a 

shear displacement process, a modified Markov process, 
and an inverse Fourier transformation. 

The first uses the fact that fBm is the limit of  a 
fractional Poisson field [17]. A fractional Poisson field 
in n-dimensions is a scalar field where at each point P 
the value of  F (P)  is the sum of  an infinite collection of  
steps (in the case of  terrain, these steps can be seen as 
straight faults) whose directions, locations, and ampli- 
tudes are three sequences of  mutually independent ran- 
dom variables. This method was used by Mandelbrot to 
generate the first computer simulation of  a fractional 
Brownian surface. While it has solid theoretical foun- 
dations and has been used to produce striking pictures, 
it is not suitable for our applications, both for its O(N 3) 
time complexity for surfaces, and for the fact that it is 
not clear that it could be adapted to our boundary 
constraints. 

The second method is based on an algorithm to 
compute an approximation to discrete fractional Gaus- 
sian noise, which is the increment of  fBm [15]. The 
algorithm computes what Mandelbrot called fast frac- 
tional Gaussian noise (ffGn) as a sum of  a low frequency 
term and a high frequency term. The high frequency 
term is a Markov-Gauss  process. The low frequency 
term is a weighted sum of  M Markov-Gauss processes, 
M being a number proportional to log(N). The fast 
fractional Gaussian noise algorithm represents a consid- 
erable improvement in the computation of  linear fBm, 
since its time complexity is O(Nlog(N))  and its param- 
eters can be adjusted to suit the observed time series if it 
is to be used in statistical analysis. Although some objec- 
tion to the use of  a two-dimensional extension to this 
method may be made on the grounds that its time 
complexity is greater than linear, a much more serious 
objection is that it appears that there is no valid extension 
of  the method to two dimensions. Also, there seems to 
be no obvious method to adjust the computation to the 
needed resolution while maintaining any consistency. 

The third approach, which also gives an O(Nlog(N)) 
time complexity involves the generation of Gaussian 
white noise, in which all frequencies are equally repre- 
sented, and then filtering it using fast Fourier transform 
techniques in order to force the different frequencies to 
fall off  as required by the value of  the parameter H for 
the particular fractional Gaussian noise desired. Fourier 
techniques were used by R. Voss to illustrate [ 18]. 

Each of  the methods discussed above has its own 
theoretical and practical advantages. However, they have 
in common the drawbacks that their time complexity is 
greater than linear and that the basic operations involved 
in their computation are costly (involving transcendental 
functions). We will now present our own method for 
computing an approximation to fBm which avoids these 
drawbacks. 

3.2.3 A Recursive Subdivision Algorithm 
We have noted above the three basic requirements 

that an approximation algorithm appropriate for sto- 
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chastic mode l ing  must  meet ,  and  we have discussed the 
advan tages  o f  the recursive subdivision algori thms for  
render ing models  o f  any  type in compu te r  graphics.  We  
now present  such a recursive a lgor i thm for  generat ing 
approx imat ions  to the sample  pa ths  o f  one-d imens ional  
IBm.  

In  order  to be able to use this type o f  algori thm, the 
crucial  r equ i rement  is that  the distr ibution o f  the process 
for  which samples  are to be compu ted  can be interpo-  
la ted f rom the b o u n d a r y  points  o f  the sample.  Since one 
o f  the features  o f  f B m  is an infinite span  o f  in te rdepend-  
ence, it is not  a priori obvious  that  such an  approach  
would  be successful. However ,  two facts help  design an 
app rox ima t ion  algori thm. 

- - F r a c t i o n a l  Brownian  mot ion  is self-similar. This  
means,  as stated above,  that  the increments  of Bn(u)  (for 
s implici ty o f  notat ion,  we will hencefor th  use Bn(u)  
instead o f  Bn(u, w)) are such that  BH(u + Au) - Bn(u)  
and  Brl(U + hAu)  - Bn(u)  have  the same distr ibution i f  
the lat ter  is rescaled by  a factor  o f  h -n ,  H being the self- 
s imilari ty pa ramete r .  
- - A  fo rmula  exists [14] for  the condi t ional  expecta t ion 
o f  B/~(u), 0 _< u _< 1, knowing  BH(O) = 0 and  BH(I )  = 1: 
E[Bn(u) l Bn(1)] = V2(u 2n + 1 -- l u -- I 12"). When u = 
~/2, the right-hand side becomes I/2 independently of H. 

These two prope~ies give an estimate of the expected 
value and the variance of the increment of the process, 
which is all that  is needed,  since the process is Gauss ian .  

An  a lgor i thm designed using these propert ies  is given 
below in Pascal.  The  funct ion GAUSS(seed ,  index) re- 
turns a Gauss i an  r a n d o m  var iable  with zero m e a n  and  
unit  variance.  It uses the var iable  "seed"  as its seed. 
Explicit  control  over  this seed is given in order  to allow 
for  external  consistency as discussed below. 
Declarations in main program: 

type result = array [0..maxsize] of real; 
var maxlevel, seed, i:integer; scale, h:real; Fh:result; 

Procedure called: 
procedure fractal (maxlevel, seed:integer; h, scale:real); 
var first, last :integer; 

ratio, std: real; 
procedure subdivide (fl, t2 :integer; std: real); 

var fmid :integer; stmid: real; 
begin 

fmid:= (fl + t2) div 2; 
if (fmid <> fl) & (fmid<> 12) then 

begin 
Fh [fmid] := (Fh [fl] + Fh [t2])/2.0 + gauss (seed, fmid)* 

std; 
stdmid :~ std * ratio; 
subdivide (fl, fmid, stdmid); 
subdivide (fmid, 12, stdmid) 
end 

end;/* subdivide */ 
begin 

first := 0; 
last := 2)'maxlevel; 
Fh [first] := gauss (seed, first) * scale; 
Fh [last] := gauss (seed, last) * scale; 
ratio := 21' - h; 
std := scale * ratio; 
subdivide (first, last, std) 

end;/* fractal */ 
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Fig. 4. Computation of a Scalar Value by Subdivision. 
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T h e  a lgor i thm recursively subdivides  the in terval  
[first, last] and  genera tes  a scalar  value at the midpo in t  
which  is p ropor t iona l  to the current  s tandard  devia t ion  
t imes the scale or  "rot fghness"  factor  (see Fig, 4). h is a 
p a r a m e t e r  which  de termines  the "fracta l  d imens ion"  o f  
the sequence  ou tpu t  by  the algori thms.  (For  a defmi t ion  
and  discussion o f  fractal  d imension,  see [ 18].) It  is equiv-  
alent  to the H o f  f B m  and  can  take on  values  be tween  
0 and  1. Maxleve l  de te rmines  the level o f  recursion 
needed.  This  a lgor i thm is suitable for  pa ramet r i c  appl i -  
cat ions since the recurs ion subdivides  a p a r a m e t e r  space 
into equa l  intervals.  A s imilar  a lgor i thm which opera tes  
direct ly in a two-d imens iona l  object  space is given below. 
This  a lgor i thm is par t icular ly  suited for  nonpa rame t r i c  
subdivision.  

procedure fractal(t 1, t2, epsilon, h, scale: real; seed :integer); 
var fl, 12, ratio, std: real; 
procedure subdivide (fl, 12, t 1, t2, std:real); 

vat tmid, fmid: real; 
begin 

if(t2 - tl) > epsilon then 
begin 

tmid := (t 1 + t2)/2.0; 
fmid := (fl + 12)/2.0 

+ std*gauss(seed, tmid); 
std := std*ratio; 
subdivide (fl, fmid, tl, tmid, std); 
subdivide(fmid, fl, tmid, t I, std) 

end 
else output (fl, tl, 12, t2) 

end/* subdivide */ 
begin 

fl := gauss(seed, tl) scale; 
t2 := gauss(seed, t2) scale; 
ratio :-- 2 t - h; 
std := scale*ratio; 
subdivide (fl, 12, tl, t2, std) 

end;/* fractal */ 

T h e  sequence  o f  scalar  d isp lacements  genera ted  gives 
an  a p p r o x i m a t e  sample  pa th  o f  one-d imens iona l  f B m  o f  
p a r a m e t e r  R. Unl ike  fBm,  this app rox ima t ion  is ne i ther  
s ta t ionary,  isotropic, nor  self-similar,  as po in ted  out  by  
B. Mande lbro t .  This  sample  pa th  can be used to create  
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Fig. 5. Typical Curve Obtained at Two Resolutions. h = 0.8, 17, and 
257 sample points. 
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stochastic primitives as needed, as discussed in the fol- 
lowing section. The graphs of  Fig. 5 show typical samples 
at two resolutions for h = 0.6 and for 257 and 17 sample 
points. The two graphs are then from the same sample 
paths, but sampled by computation at different rates. 
This ability of  the algorithm to generate discrete sample 
paths only at the rate needed makes it ideal for the 
purposes of  stochastic modeling. 

It is easy to see that the number of steps in the 
algorithm is a linear function of  N, the number of  sample 
points computed. Moreover, the amount of  computation 
required to generate each sample point is small, requiring 
in the second case only 4 real additions, 1 subtraction, 3 
real multiplications, and two divisions by 2 in addition 
to the generation of  the pseudo-random variable. This 
makes it superior to the methods discussed above in 
terms of efficiency. By tying the random numbers gen- 
erated at the endpoints to the values of  t 1 and t2, external 
consistency can be ensured since any adjacent sample 
paths generated with this algorithm would have the same 
endpoints. Internal consistency with respect to scale is 
assured by tying the seeds of  the random number gen- 
erator to the positions of  the points calculated. Of course, 
internal consistency with respect to position is violated 
in this case unless t 1 and t2 are assumed to be parametric 
variables and hence not subject to positional change. 
This can be avoided by using point-specific indices to 
compute the seed instead of the position, and using t 1, t2 
only for recursion control. 

4. Applications of the Model 

4.1 Creation of Stochastic Primitives 

The most generally useful application of  a stochastic 
model in graphics is in the construction of stochastic 
modeling primitives, which can be used for piecewise 
construction of objects with stochastic features. We de- 
scribe in this section the construction of one and two- 
dimensional modeling primitives based on our recursive 
fBm sample path generator. We also discuss appropriate 
applications for these primitives and give examples. 

4.1.1 One-Dimensional Primitives 
The algorithm given in Sec. 3 for generating our 

approximations to fBm can be viewed as the construction 
of  a "fractal polyline" primitive from an initial deter- 
ministic line segment. Of  course, all displacements gen- 
erated can either be viewed as offset vectors in the y 
direction of  a two-dimensional coordinate system as 
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Fig. 6. Using the Scalar Value to Compute a Curve in the Plane. 
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indicated in Fig. 4 or simply as scalar displacements as 
mentioned above. In the former case, rather unsatisfac- 
tory primitives are generated since displacements are tied 
to the coordinate system rather than the line segment 
from which the displacement occurs. To eliminate this 
coordinate system dependency, it is better to take the 
scalar displacement of the midpoint at each step in the 
recursion, and use it as an offset from that midpoint 
along a vector normal to the original line segment. This 
construction is illustrated in Fig. 6. The only inherent 
directionality in the resulting curve is that imparted by 
the slope of  the original line segment at the highest level 
of  detail. Figure 7 shows a typical curve resulting from 
such a procedure, with h = 0.5, with 2, 5, and 257 points. 

In order to construct continuous curves from these 
fractal polylines the displacements of  the endpoints of 

Fig. 7. Typical Curve Obtained. h = 0.5, 0, 3, and 255 interpolated 
points. 
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Fig. 8. Construction for a Parametric Curve. 
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the initial line segment should be fixed at 0. This makes 
it trivial to guarantee the zero-order continuity of  the 
curve produced. Higher orders of  continuity of  the fractal 
surface are meaningful only in a statistical sense since 
fBm has no derivative at any point [14]. It may be 
desirable to construct fractal curves based on smooth 
curves rather than the perimeters of  polygons. In this 
case, the initial curve can be constructed piecewise, for 
instance, from either interpolating or approximating 
splines [12]. In this way, various statistical orders of 
continuity can be assured for this curve with derivative 
continuity being the most interesting. The scalar se- 
quence generated by the subdivision process can be 
considered as displacements along vectors normal to the 
base curve at the appropriate midpoints in parameter 
space of  the curve, as shown in Fig. 8. A more expensive 
alternative is to let the original spline curve be subdivided 
into two new spline curves with the original midpoint in 
parameter space becoming their common boundary and 
a new set of  control points being generated. This com- 
mon point is then displaced the generated random scalar 
distance along the common normal to the two curves at 
their boundary by displacing the adjacent end control 
points of  the curves appropriately. 

Any of  the fractal polyline primitives constructed in 
these ways can be combined in arbitrary ways to con- 
struct representations of  natural phenomena. For in- 
stance, the course of  an imaginary river as it appears on 
a map could be generated using an appropriate value of  
h and level of  scale. The instantaneous configuration of  
a bolt of  lightning is also an appropriate candidate, as 
illustrated in the film Vol Libre [4]. An imaginary coast- 
line on a map can also be created from fractal polylines 
like those of  Fig. 7. 

A more interesting application allows fractal primi- 
tives based on real data to be constructed using a tech- 
nique we will call "stochastic interpolation." For in- 
stance, consider the polygon of  Fig. 9 whose 8 vertices 
are sample points digitized from a map of  Australia. The 
polygon is obtained as a linear interpolation of  the 
positions of  adjacent pairs of  endpoints. However, it is 

Fig. 9. Australia: 8 Sample Points. 

/ 

Fig. 10. Stochastic Interpolation. 8 original points and 8 x 127 inter- 
polated points (h = 0.5). 

,-.? 

Fig. 11. Stochastic Interpolation. (h = 0.7). 

y 

well known that the coastline of  Australia is very irreg- 
ular when viewed at most any magnification, and so the 
regular polygon, although maybe recognizable as Aus- 
tralia by its overall shape, is not very realistic and looks 
nothing like the representation of  the coastline presented 
on any reasonably accurate map. Moreover, empirical 
data suggests that the stochastic characteristics of  Aus- 
tralia's coastline are nearly identical to those of  one- 
dimensional fBm with H = 0.87 [18], [22]. Figures 10- 
13 show fractal polylines generated from the line seg- 
ments of  Fig. 9, with various values of  h. All of  them are 
much more realistic than Fig. 9, and Fig. 12 looks so 
real that those of  us ignorant in geography would have 
difficulty arguing that this is not in fact the coastline of  
Australia traced from a map. Note that h in Fig. 12 is 
very close to the empirically measured value. 

The visual evidence just cited provides a very strong 
argument that coastlines are best represented by curves 

378 Communications June 1982 
of Volume 25 
the ACM Number 6 



Fig. 12. Stochastic Interpolation. (h = 0.87). 

Fig. 13. Stochastic Interpolation (h = 1 . 0 ) .  

\ 
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with matching stochastic properties. All the real data 
obtained by digitizing the map is present in all of Figs. 
9-13 since the endpoints of the line segments are not 
displaced in any case, but the stochastic interpolated 
curves give a much truer picture of Australia's coastline 
than a polygon does. In general, for natural phenomena 
with random, irregular characteristics, it can be argued 
that the quality of an interpolation between real sample 
points obtained from that phenomenon should be judged 
by the correspondence of its stochastic properties with 
those of the real sample itself. 

4.1.2 Two-Dimensional Primitives 
One of the most useful applications of a stochastic 

model in a three-dimensional environment is the repre- 
sentation of irregular surfaces, in this case, terrains. As 
in one-dimensional modeling, we wish to define a surface 
which is stochastic rather than deterministic, which at 
the same time maintains all the nice properties of the 
surface models currently most useful in computer graph- 
ics. We present two somewhat different approaches to 
the construction of two-dimensional fractal surface prim- 
itives. The first is based on a subdivision of polygons to 
create "fractal polygons" similar to the fractal polylines 
described above. The second is to define a stochastic 
parametric surface. 
4.1.2.1 Polygon Subdivision. Consider a scene in which 
all surfaces consist of triangles. This type of model is 
very commonly used to represent real-world data which 
has been acquired automatically [11]. Each triangle can 
be subdivided into four smaller triangles by connecting 
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the midpoints of the sides of the triangles. If  the positions 
in three-space of these midpoints is obtained by a fractal 
polyline subdivision step given above, a single step in the 
rendering of a "fractal triangle" is obtained. These sub- 
divisions can be continued until a level of  scale is reached 
in which no triangle has a side exceeding a specified 
length. The original triangle is now a fractal triangle 
whose irregular surface consists of many small triangular 
facets. 

A quadrilateral can be subdivided in a slightly more 
complex way. Generate the midpoint of each of the four 
sides using fractal polyline subdivision. For each of  the 
two pairs of opposed midpoints, displace the midpoint 
of the line connecting them using the same procedure. 
The midpoint of the line connecting these two 
"midpoints" becomes the center point of the quadrila- 
teral subdivision and four smaller quadrilaterals are 
generated. This process is continued as with triangles 
until the desired resolution is obtained, resulting in a 
fractal quadrilateral whose surface is composed of many 
quadrilateral facets. 

If  a scene is modeled by a mesh of triangles or 
quadrilaterals which are to be rendered as stochastic 
primitives using polygon subdivision, some care must be 
taken to ensure internal and external consistency. Inter- 
nal consistency with respect to position requires that the 
seeds of the random number generator be indexed by 
some sort of invariant point identifiers rather than by 
functions dependent on the positions of the points. In- 
ternal consistency with respect to scale requires that the 
same random numbers be generated in the same order 
at each level of the subdivision, as before. External 
consistency is a bit trickier. Since adjacent polygons 
share a common boundary which must be subdivided, 
this subdivision must generate the same points on that 
boundary for both polygons. An obvious requirement is 
that the same random displacements must be generated 
on each boundary, which can be accomplished again by 
tying the seeds of the random number generator to 
identifers of  points on the boundary, making certain that 
the same identifiers are assigned to the corresponding 
points in the representation of each polygon's boundary. 
However, if these displacements are allowed to be in a 
direction normal to the surface of the original polygon, 
problems arise when the adjacent polygons are not co- 
planar, as is generally the case. This is illustrated in Fig. 
14. A solution is to calculate the normal of each point in 
the mesh as the average of the normals of the polygons 
containing it. Points randomly displaced along these 
normals will coincide when calculated for adjacent po- 
lygons, as desired. Of course, a similar problem exists for 
every new point calculated in the subdivision, even those 
completely internal to an original polygon. This can 
either be solved the same way, calculating the normals 
during the subdivision, or, less expensively, by letting all 
displacements be in a direction normal to the original 
polygon instead of averaging the normals of adjacent 
polygons created by subdivision. 
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Fig. 14. Gap Created by Tangent Discontinuity at the Boundary Be- 
tween Two Polygons (0 original points, × interpolated points). 

Fig. 15. Surface Produced Using the Stochastically Interpolated Points 
as Control Points for a B-spline Surface. 

The primary advantage to this approach is the speed 
with which calculations can be done since only linear 
functions need be used. It does generate a surface which 
is self-similar within the range of  scale covered by the 
subdivision and which does have a fractal dimension 
when carried to the limit. Thus its statistical properties 
are similar to those of  two-dimensional fBm [14], al- 
though a better method for approximating fBm is given 
below. One important difference is that the surface gen- 
erated in the limit is Markovian (for two-dimensional 
continuous processes, this means the values of  opposite 
sides of  an arbitrary boundary are independent given the 
boundary), while fBm, in which all sample points are 
correlated with all others, is not Markovian. As we have 
stated, however, our primary criterion is visual, and these 
methods can produce striking pictures of  many terrains. 
The foreground of  the cover picture, for instance, was 
produced using triangle subdivision. The most serious 
pitfall in using this method to produce good pictures is 
that derivative discontinuities across adjacent polygons 
can be annoyingly obvious in pictures that are not 
smooth shaded if the roughness factor used in the sub- 
division is not carefully chosen. (Note that smooth shad- 
ing pictures of  rugged terrain has a tendency to destroy 
the character of  the surface.) The Markovian nature of  
the process, with no correlation between non-neighbor- 
ing points, also tends to lead to the occasional generation 
of  new polygons with radically divergent normals relative 
to other neighboring polygons during the subdivision 
process unless the random number generator is carefully 
constrained. Another way to obtain smooth surfaces is 
to use the computed stochastic points as control points 
of  parametric patches, as was done to produce Fig. 15. 
4.1.2.2 Stochastic Parametric Surfaces. Stochastic surface 
primitives can be created by extending deterministic 
parametric primitives as well as by polygon subdivision. 
In this case, we wish to define a surface description 
which is stochastic in nature rather than deterministic, 
which at the same time maintains the nice properties of  
the models currently most useful to represent complex 
objects in computer graphics. It is natural then, to con- 
sider functions of  the form X(u, v) = P(u, v) + R(u, v, w), 

where P(u, v) is a vector-valued polynomial in u and v, 
and R(u, v, w) is a vector-valued random function on the 
sample space space W, w e W. Thus X(u, v) is a two- 
dimensional stochastic process which we call a stochastic 
surface function. Intuitively, P(u, v) provides a way of  
defming the overall position of  the surface while R(u, v, 
w) causes a stochastic variation in that position over the 
range of  the parameters u and v. 

P(u, v) can be any deterministic parametric function 
of  two dimensions such as a bicubic or bilinear patch. 
R(u, v, w) is a vector normal to P(u, v) whose length is a 
random scalar r(u, v, w). The calculation of  P(u, v) and 
its normal are well-understood procedures for many 
surfaces which are useful in graphics [l], [5], [12]. We 
are interested in methods for generating R(u, v, w) as a 
two-dimensional extension of  our fBm approximation 
algorithm. 

The most straightforward approach is to use a 
method identical to the quadrilateral subdivision given 
above. This retains the drawbacks of  that method, with 
the exception that normal averaging is unnecessary for 
those deterministic functions that assure derivative con- 
tinuity across patch boundaries. I f  we compute the vector 
normal along with each subdivision, what is really 
needed is a non-Markovian approach which provides a 
better approximation to fBm across the surface of  a 
patch. Of  course, since we compute each patch sepa- 
rately, the overall surface cannot be strictly a fBm sur- 
face. If  the parametric surface definition of  the object 
has the proper stochastic properties globally, however, 
the approximation of  the stochastic surface to fBm will 
be reasonable. An alternative would be to generate the 
entire stochastic surface at once, but this is impractical 
in most situations. Note that this difficulty, caused by 
the nonlocal character of  fBm, does not arise in other 
stochastic processes of  interest, making such computa- 
tions easier. 

To introduce the needed interdependence between 
points in the two-dimensional approximations to fBm, 
we will use the following scheme. First we compute the 
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Fig. 16. Order of  Computation for Grid in Two Dimensions. (Order 
is 0, la, lb, 2a, 2b, • • .) * indicates points interpolated from boundary 
values only. 

Q 2b* 
"~x s S 

2b* 

.4 

~ D  

I 2b* 2a 

I I 0 _ _ 2 b *  

Q 2b* 0 

y--I J 2b 2b* 

~ , .~_  " 

2b ~ 2b* 

I I T !b* 2b* 0 

boundary of the patch, using the one-dimensional ver- 
sion of the algorithm to the level desired. We then fill 
the square for each level, computing the centers, then the 
sides, using at each step the four neighbors (diagonally 
for the centers, horizontally and vertically for the sides). 
At each step the new point is computed as a Gaussian 
pseudo-random variable, whose expected value is the 
mean of the four neighbors at this level, and whose 
standard deviation is c -~/~, with ~ the level, H the self- 
similarity parameter, and c a constant to be adjusted to 
fit the application (see illustration in Fig. 16). 

Figures 17-19 show a planet that has been generated 
with this technique using l0 bicubic Bezier patches. The 
"land" is made of patches with stochastic surfaces and 
the "sea" is made of the same patches with no stochastic 
component. The "coastlines" are then the zerosets of the 
two-dimensional fBm generated. Note that we used a 
depth-buffer algorithm to compute these intersections, 
but we could just as well have added the texture only 
Fig. 18. Planets at Different World Space Resolutions but Similar 
Screen Space Resolutions. 

Fig. 17. Planets at Different Resolutions (coastlines are from depth- 
buffer computations). 

where the displacement is positive and obtained the same 
"coastlines." The value of h has been chosen to be 0.6 
since it is close to the empirical value obtained from 
actual measurements of geographic features [22]. The 
altitude has been exaggerated to give a more dramatic 
effect (the altitude of the highest peaks is about 10 
percent of the radius of the planet). The subdivision has 
been stopped at a fairly low resolution, to illustrate the 
properties of the method, and the patches are actually 
processed as polygons (triangles to be specific) by the 
display system. 

Figure 17 shows different resolutions for the planet 
at the same screen coordinate size, with the level of 
recursion being 2, 3, 4, and 5. At this on-screen size, 
though the overall appearance is similar, details, espe- 
Fig. 19. Zooming in to the Planet. 
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cially for coastlines, are obviously different. This is due 
to the fact that the screen coordinate distance between 
computed points on the surface is much more than one 
pixel (about 20 pixels for the first planet of  Fig. 17), and 
at the next level of  computation the midpoint can be 
above or below sea level, changing locally the appearance 
of  the coast. Features whose size is about the distance 
between points (in screen coordinates) can be signifi- 
cantly altered. For this reason in normal practice this 
distance should be kept at or below the size of a pixel. 

Figure 18 shows the four objects together at sizes 
such that the on-screen resolution is the same. Observe 
that even though we are still above the pixel level (the 
average distance between computed points is about 2 
pixels), the quality of  the picture is satisfactory, and there 
are no noticeable differences in the appearance of the 
four planets. Considering that the whole database for the 
planet consists of  only 90 three-dimensional points (de- 
fining the 10 Bezier patches), the comparison with a 
picture produced from a real terrain database which 
could require several 10,000 triangles for a comparable 
visual complexity is highly favorable. Of  course, if the 
reproduction of  a specific set of surface features obtained 
from cartographic data, for example, were required, it 
would still be necessary to model these features deter- 
ministically to the level of  detail desired, and the data- 
base would grow accordingly. 

Figure 19 illustrates how the process can be continued 
to zoom in to the surface to any desired level of  detail, 
while keeping the same on-screen resolution. On the 
upper left is an easily recognizable part (the lower left 
corner) of  the planet. On each of  the other views, the 
central area is enlarged about twice. The main features 
of  each view carry over to the next one, while new details 
appear. Here the average distance between computed 
points is about 6 pixels. This process can be continued 
further, still with no modification of  the database, until 
we are arbitrarily close to the surface. Care has to be 
taken, however, because as the differences between two 
neighboring points become very small, the computation 
of  the surface normals and the comparisons of  the depth 
values in the Z-buffer can become inaccurate. The zoom- 
ing in and out process can be repeated as often as desired 
since the particular stochastic surface generated is fixed 
and reproducible. 

Parametric techniques will generally require some- 
what more computation than polygon subdivision since 
the nonlinear deterministic functions involved require 
more computation for the rendering of  points. In addi- 
tion, since the recursive subdivision is done in parameter 
space, it is difficult to tie the depth of  the recursion to 
the final distances apart in world or screen coordinates 
of the sample points generated. On the other hand, most 
of  the difficulties cited for polygon subdivision are solved 
using this method. In particular, a surface is generated 
which has non-Markovian properties very close to those 
of  fBm, and thus provides a much closer approximation. 
As a result, the value of  h in the subdivision corresponds 
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closely to H of  fBm, so that empirical determinations of  
this value can be directly employed to generate terrain 
representations with characteristics similar to the mea- 
sured surface, alleviating much experimental "twid- 
dling" of  parameters. Also, the higher correlations be- 
tween points on the patch eliminate the need for tight 
control of  the random number generator to avoid the 
glitches mentioned above. 

The cost of  the computation of  the surface is a linear 
function of  the number of  points displayed. The cost of  
computation of the stochastic variables can be lowered 
using table lookup techniques (note that the numbers 
used do not need to pass very stringent tests for random- 
ness). This indicates that the increase in computational 
cost will be small relative to the cost of  the usual trans- 
formations and shading algorithms. 

These algorithms share the general advantages of 
subdivision algorithms. They allow continuing the com- 
putation of  the texture down to the pixel level, or even 
the subpixel level if some anti-aliasing is needed, while 
at the same time keeping the level of  surface details 
constant as the object gets larger or smaller in screen 
space. 

At the other end of  the range in screen space, if the 
object is much larger than the screen size, the texture 
should be computed to the highest level of detail only 
for the portion of  the patch or polygon that is not clipped 
out. Since such a subpatch or subpolygon cannot be 
computed solely on the basis of  local information, some 
points outside of the displayed area are needed. It can 
be shown [9] that the total number of sample points to 
be computed is bounded by a linear function of  the 
number of  points to be displayed. So this algorithm 
allows "zooming" in and out on the surface, keeping the 
same displayed level of complexity (within one binary 
order of  magnitude), while the time and space complexity 
grows only linearly as a function of the number of  points 
actually displayed. This is then an implementation of a 
truly hierarchical approach to surface modeling, the 
importance of  which was pointed out by Clark [6]. 

Another interesting feature of the algorithm for prac- 
tical applications is that it is easy to change the value of  
the parameter h at any level of  the computation. There- 
fore a terrain that looks very rugged from a distance (a 
low value of  h), can become rather smooth at a higher 
scale (a high value of  h). This models what happens if 
valleys are filled with sediments, for instance. This is a 
particular example of  a general technique, namely 
changing the characteristic of the stochastic process, or 
even the stochastic process itself, according to the recur- 
sion level. 

In our planet example, the nonstochastic components 
of  the stochastic surface are the patches defining a close 
approximation of  the sphere. As a result, the macroscopic 
features of the land masses are not predetermined. In 
most applications, however, the macroscopic features 
would be known, and some points of  the surface would 
have the actual measured coordinates. In this case, it is 
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better (and easy) to force the stochastic component to be 
zero at these points. Thus the stochastic surface will 
interpolate these points, and we have a method for 
stochastic interpolation in two dimensions. Of  course, 
the polygon subdivision methods generate no displace- 
ments at the original vertices and thus always produce 
stochastic interpolations of  these vertices. 

Fig. 20. Motion by Variation of h(h = 0.3, 0.5, 0.7, 0.9). 

5. Further Applications of the Model  

5.1 Other Stochastic Surface Properties 

We have thus far only considered the application of  
fBm and other stochastic models to the creation of  
primitives whose surface position has stochastic charac- 
teristics. Other properties of  a surface, such as its color, 
might also be allowed to vary stochastically. For instance, 
another instance of  two-dimensional fBm with a high 
value of  H and a low roughness factor could be used to 
determine the color of  the surface of  the planet. Of  
course, this property should also be continuous across 
patch boundaries. Another technique for color variation 
which can be used with polygon subdivision requires 
that a color be initially assigned to each vertex of the 
polygon to be subdivided. When a midpoint is computed 
for a side of  the polygon, its color becomes that of one 
of  the endpoints of  the side. Which endpoint is chosen 
is decided according to a Boolean random function. 
When the subdivision is complete, the color of each 
facet's surface can simply be taken as the average of  the 
colors of  its vertices. This technique was used in gener- 
ating the color variations and snow cap on the mountain 
range in the foreground of  the cover picture. 

5.2 Motion 

Although various effective techniques have been de- 
veloped for creating a series of  images of  a scene in 
which smooth, continuous motions of objects in the scene 
are depicted, these tend not to be very effective in 
handling complex irregular motions such as the path of  
a lightning bolt or the motion of a leaf in the wind. 
Stochastic techniques can provide powerful means of  
modeling motion which would have been difficult or 
impossible to represent otherwise. Consider, for instance, 
the action of unfolding a crumpled piece of  paper. Figure 
20 is four frames from a sequence representing such an 
action. These frames were generated using Bezier 
patches mapped with approximations to fBm with vary- 
ing values ofh .  As h is changed from 0.3 to 0.9, the patch 
is rescaled to keep its surface area constant. 1 Thus a 
complex motion that would have been very expensive to 
generate previously is modeled very easily with stochastic 

~Note that a real fBm surface has infinite area, although our 
discrete approximations to it are, of course, finite. See [18]. 
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techniques. Another example is the motion of a simple 
lightning bolt. The path of  the lightning bolt can be 
represented as a fBm function from one dimension into 
three, like Brownian motion of  a molecule in three-space. 
By simply changing the random numbers generated, 
while keeping the endpoint displacements fixed at 0, a 
sequence of  instantaneous positions of  the lightning bolt 
is created. Generating the same number of  sample points 
in each instance, and allowing the motion of  each sample 
point to interpolate the positions of  that point in each of  
the "key frames" generated above, the motion of  the 
lightning can be generated. Note that the interpolated 
path of each sample point can be created using either a 
deterministic or a stochastic technique. The lightning in 
the film Vol Libre [4] was generated in this way. 

6. Conclusion 

We suggest that recognition of  the importance of  the 
stochastic properties of the real world will lead to greatly 
increased flexibility in the modeling techniques used in 
computer graphics, just as probabilistic models have 
contributed significantly to the development of several 
related disciplines. We have applied Mandelbrot's fBm 
model for terrain and other natural phenomena and have 
developed efficient and appropriate sample path gener- 
ating algorithms. We have shown several methods for 
creating stochastic modeling primitives of  one and two- 
dimensions based on these algorithms and have dem- 
onstrated the use of  stochastic interpolation of  real sam- 
pled data points to create realistic representations of 
sampled phenomena. These methods constitute very nat- 
ural and compact hierarchical object descriptions which 
are applicable to the modeling of  various natural phe- 
nomena at a small fraction of  the cost of deterministic 
methods of comparable quality, when these exist at all. 

The techniques presented here barely scratch the 
surface of the possibilities of  the stochastic approach to 
modeling. The most immediate extensions of this work 
are to use the same techniques to modify surface char- 
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acteristics other than position, for example, to create 
stochastic color patterns as has subsequently been done 
in the movie Peak by Mark Snilily, or to render small 
scale texture by stochastic variation of surface normals 
analogous to Blinn's method [3]. In contrast to these one 
and two-dimensional stochastic methods, the study of 
three and four-dimensional stochastic models should 
lead to interesting techniques for the representation of 
complex volumes and motions. 

As indicated above, there are two general sources of 
stochastic models that may be of use in graphics. Al- 
though in this paper we have illustrated a mathematical 
model useful in representing terrain, there might be 
many natural objects for which it is unlikely that one 
will find a suitable mathematical model. Techniques 
which allow the empirical determination of parameters 
of a flexible canonical stochastic model which fit specific 
natural objects would be very useful in this regard. 
Research in the development of such techniques holds 
the promise of rich rewards for computer graphics. 
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