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ABSTRACT 

Although modeling natural phenomena is recognized as one of the 
greatest challenges of computer graphics, relatively little time has 
been spent on modeling ocean waves. The model presented in this 
paper is suitable for the rendering and animation of waves 
approaching and breaking on a sloping beach. Wavefonns consist 
of a phase function which correctly produces wave refraction and 
other depth effects, and a wave profile which changes according to 
wave steepness and water depth. Particle systems are used m 
model the spray produced by wave breaking and collisions with 
obstacles. A scanline algorithm for displaying the wave surface is 
presented, along with a method of integrating separately rendered 
particle systems with other surfaces. Hidden surface removal for 
both waves and particles is done using a novel variation of the A- 
buffer technique. Methods of implementing the model are 
presented and compared with previous rendering techniques. 

CR Categories and Subject Descriptors: 1.3.3 [Computer  
Graphics]:  Picture/Image Generation; 1.3.5 [Computer  
Graphics]:  Computational Geometry and Object Modeling; 1.3.7 
[Computer  Graphics]:  Three-Dimensional Graphics and Realism. 

Additional Key Words and Phrases: A-buffer, clamping, particle 
systems, stochastic modeling, surf, water, wave refraction, waves. 

1. I n t r o d u c t i o n  

Modeling natural phenomena has always been among the most 
challenging problems in computer graphics, because natural 
phenomena have an inherent complexity far beyond that of most 
man-made objects. Significant progress has been made in 
modeling a variety of phenomena, including terrain [5], clouds [7], 
fire [14, 17], trees [1, 18, 19], and grass [18]. Relatively little time 
has been spent in modeling the appearance and behavior of the 
oceans. 

Turner Whitted, in his film "The Compleat Angler",  was among 
the first to attempt to render waves in water. Using ray tracing [21] 
Whitted animated realistic reflections from ripples in a small pool. 
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The ripples were created by bump mapping the fiat pool surface, 
perturbing the surface normal according to a single sinusoidal 
function [221. Another early effort was the Pyramid Films leader 
produced by Information International in 1981, which used a 
similar technique with cycloidal waveforms. More recently, Ken 
Perlin [14] has used bump mapping with a richer texture map to 
convincingly simulate the appearance of the ocean surface as one 
might see it from an aircraft well out to sea. Perlin used a set of 20 
cycloidal waveforms, each radiating in a circular fashion from a 
randomly placed center point. 

Although bump mapping is inexpensive and has been effectively 
used to simulate waves in the cases cited above, bump mapping is 
not sufficient to simulate waves in general. Since the actual surface 
is fiat, bump mapped waves do not exhibit realistic silhouette edges 
or intersections with other surfaces. Another limitation of bump 
mapped waves is that they cannot shadow one another or cast 
shadows on other surfaces. 

To avoid these shortcomings, Nelson Max [10] used a "height 
field" algorithm to render explicitly modeled wave surfaces for his 
film "Carla 's  Island". His wave model consisted of several 
superimposed linear sinusoidal waves simulating ocean waves of 
low amplitude. 

In this paper we present a model of ocean waves which is capable 
of simulating the appearance and behavior of waves as they 
approach a sloping beach, steepening, breaking, and producing a 
spray of water droplets from the crests of the waves. Wavefronts 
are correctly refracted by the transition to shallow water, so that 
they align themselves parallel to the beach. The model is also 
capable of simulating spray resulting from the collision of waves 
with partially submerged obstacles. To our knowledge, no 
computer graphics model of these phenomena has previously been 
presented, although Fournier and Reeves [6] are involved in similar 
research. 

2. W a v e  F u n d a m e n t a l s  

A rich body of theory and observation exists concerning the 
behavior of waves in general, and water waves in particular [9, 11, 
20]. There are several classes of water waves observed in the 
ocean: 

• the tides, which have very long wavelengths and periods. 

• seismic waves (tsunamis) 

• internal waves 

• surface gravity waves 

• capillary (surface tension) waves, which have very short 
wavelengths and periods 
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Surface gravity waves and capillary waves generally result from 
the action of wind on the surface of the water, so they are 
collectively called "wind waves". Since our goal is to produce 
realistic pictures of waves and surf as they might be seen from the 
beach, we will deal only with surface gravity waves, which are 
usually the most noticeable waves on the beach during any short 
period of  observation. (Small capillary wave ripples may be bump 
mapped on the wave surface for additional detail.) 

The simplest surface gravity wave in water is a sinusoidal function 
of the form: 

(1) f ( x , t )=A  cos( 2n(x -C t ) )  
L 

where x is the distance from an origin point, A is the amplitude of 
the wave, L is the wavelength, C is the propagation speed, and t is 
the rime. The period, T, is the time between successive crests of 
the wave passing a particular point. The wavelength, period, and 
speed are related by the equation C =L/T. The frequency of the 
wave is lIT. The wave number of the wave, which is the spatial 
analog of the frequency, is 1¢ = 2~IL. The magnitude of  a water 
wave is often specified in terms of its height, H, rather than its 
amplitude, where H = 2.4 for the simple sine wave. The steepness 
of a wave is the ratio S =HIL. 

The motion of the wave must be distinguished from the motion of 
the water through which the wave is propagating. While the wave 
moves past a given point, the water at that point moves in a circular 
or elliptical orbit as shown in Figure 1. The water in the crest of 
the wave moves in the same direction as the wave, while the water 
in the trough of  the wave moves in the opposite direction. The net 
motion of the water is zero in an ideal sinusoidal wave. The water 
must complete one orbit in the same time that it takes for a 
complete wavelength of the wave to pass a given point, namely the 
period of  the wave, T. Since the diameter of  the orbit is H, the 
average orbital speed of the water is: 

x//  ~.HC 
(2) Qa,s - T L = ~SC 

A wave breaks at the crest when the orbital speed Q of the water at 
the crest exceeds the speed C of the wave itself. This limits the 
steepness of a stable wave, since Q grows as S grows. Typical 
values for the steepness of ocean waves have been observed to be 
between 0.05 and 0.1. 

Various hydrodynamic models of wave motion have been 
constructed by assuming that sea water is a perfectly nonviscous, 
incompressible fluid. The general model is nonlinear and has no 
convenient solutions [20]. Therefore, many simplified or idealized 
models are used for various situations. One of the more commonly 
used hydrodynamic models is the Airy model of sinusoidal waves 
of small (negligible) amplitude. The Airy model is linear, and 

,t,v~V~ ,~,,fo 7'7oM 

Fioure 1: Orbital motion 

predicts that the propagation speed and wavelength of a wave will 
depend on the depth of the water, d, as follows: 

(3a) C = q ~ tanh(Kd)= ~ 2~ t a n h ( ~ )  

(3b) L = CT 
where g is the acceleration of gravity at sea level, 9.81 m/see 2. In 
deep water, tanh(Kd) approaches 1, so C approaches gL/2~. In 
shallow water, tanh(rrd) approaches rd ,  so C approaches g ~ .  To 
achieve five percent accuracy in these approximations, it is 
sufficient for "deep"  to mean d >_ L/4 and for "shallow" to mean 
d _<LI20 [9]. 

As surface gravity waves are driven to large amplitudes by the 
wind, their shapes change, with the crests becoming more sharply 
peaked and the troughs becoming shallower and flatter. The 
Gerstner/Rankine wave model [9] gives an exact solution to the 
hydrodynamic equations for a wave of non-negligible amplitude in 
deep water. This model predicts a trochoidal or cycloidal 
waveform, approaching sinusoidal shape when the wave steepness 
is small. Another popular model is the Stokes wave model [9, 20] 
which is an infinite Fourier series which resembles the troehoidal 
wave up to the third order terms. The Stokes model predicts a 
slight dependence of wave speed on steepness, and a maximum 
wave steepness of 0.142. Nelson Max [10] used only the first-order 
term of the Stokes model for most of his waves, and used the first 
and second-order terms for the wave with the largest amplitude. 

As waves approach the shore from deep water, the crests of the 
waves tend to become parallel to the shoreline regardless of their 
initial orientation. This is a result of wave refraction, a bending of 
the waves due to the dependence of propagation speed on the depth 
of the water. Since waves move more slowly in shallower water, 
the part of a wave which enters shallow water first will be retarded, 
and the remainder of the wave which is still in deeper water will 
move faster. This tends to turn the wave crest to be parallel to the 
line of transition to shallower water. Wave models which ignore 
refraction may produce "impossible" situations, such as the wave 
crests running perpendicular to the beach in [10]. 

Although the speed and wavelength of a wave are reduced as it 
enters shallower water, the period remains constant and the 
amplitude remains the same or increases slightly. The orbital 
speed of the water, which is directly related to the period and 
amplitude of the waves, stays the same even as the wave speed 
declines. This leads to a change in the shape of the waves, with the 
front of  the crests becoming steeper and eventually breaking when 
the speed of the wave drops below the orbital speed of  the water. 
When breaking occurs, droplets of water moving faster than the 
wave leave the wave surface in the form of  spray. The existing 
hydrodynamic wave models do not adequately describe the 
breaking of waves. 

3. A Model of Waves and Surf for Computer Graphics 

The goal of our model of waves and surf is to allow us to 
synthesize convincing images of ocean waves as they might be 
seen on a beach. Moreover, the model must be suitable for 
animation, since it is the motion of  waves and spray which give the 
strongest impression of realism to the viewer. Since no existing 
hydrodynamic model can claim to fully and realistically describe 
the behavior of  any real ocean waves, we will not attempt to use 
such a model directly. However, we will depend on the predictions 
of the Airy model for the relationship between the depth of the 
water and the speed and wavelength of waves (even though many 
of our waves are neither sinusoidal nor of small amplitude). 
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3.1 Bas ic  M o d e l  

We represent the ocean surface as a single-valued function of three 
variables: 

y = f ( x , z , t )  

where ( x , y , z )  is the usual 3D Cartesian modeling space with the Y 
axis directed upwards, and t is the time, which is advanced for each 
successive frame of  an animation. The use of a single-valued 
height function for the wave model means that we are prevented 
from producing waves whose crests actually curl forward. On the 
other hand, this representation of the surface permits us to easily 
combine numerous waves into one surface by superposition 
(simply adding together the heights of the individual wave 
components). 

Our wave function f is a sum of several long-crested linear 
waveforms W~ with amplitudes A i propagating in various directions 
from various origin points: 

n 
(4) f ( x , z , t ) =  ~Ai~'Vi(x,~',l) 

i = 1  

Instead of using W~ directly, we prefer to split Wi into a 
composition of two functions: 

Wi (x , z , t ) = w~ (fraction [ O~ (x , z , t )] ) 

The functions w i are called w a v e  profiles, and are single-valued 
periodic functions of one parameter with a value between 0 and 1. 
This parameter value is the fractional part of the phase  function, 
0 i (x, z, t). The separation of W i into a wave profile and a phase 
function makes it easier to describe and change the wave profile to 
give different wave shapes. It also allows us to address phase- 
related problems without concern for the final shape of the 
waveform. We discuss the phase function in the next section, and 
delay the discussion of wave profiles until section 3.3. 
Each wave component can be completely characterized by giving 
its period Ti, its amplitude Ai, its origin, and its direction. Since 
each component may have a different origin and direction, the 
phase functions 01 have a simpler form if expressed in a per- 
component coordinate system in which the wave starts at the 
coordinate system origin and propagates in the +X direction. A 
simple 2D transformation may he used to convert the coordinates 
of the point (x, z) into the corresponding coordinates (~/, ~/) in the 
coordinate system of  component i. 

3.2 T h e  P h a s e  Function 
The phase function has a very simple dependence on the time t. 
Just as each wave component has the same constant period T~ at all 
points in space, it is also true that the wave component has the 
same constant rate of phase change at all points in space, namely 
the frequency: 

001 1 
~t T~ 

(The negative sign of the derivative is necessary to make the waves 
propagate in the direction of increasing phase values.) If we know 
the phase at a particular time 0i (x, z, to) for all points (x, z ), we can 
compute the phase for any frame of an animation by using the rule: 

t - - I  0 
(5) 0 i (x, z, ,) = 01 (x, z, '0) - 

We will ignore the time-dependence of 0i in the following 
discussion, and describe the phase at a fixed time to, assuming that 

the phase is 0 at the component origin point at time t o (which we 
can arrange, if  necessary, by moving the origin point). 

Unfortunately, the dependence of the phase on (x, z) is not nearly 
so tractable. It is necessary for our graphics model to include the 
effects of depth on wavelength and speed, in order to produce 
realistic wave refraction effects, such as the alignment of crests 
parallel to the beach, and in order to accurately depict the motion 
of the waves in shallow water. The implication of the dependence 
of wavelength and speed on depth is that the phase function 
depends on the cumulative effects of the depth of the water 
between the wave origin and the point of interest. In general, there 
is no simple expression for the phase function in water of varying 
depth. If the depth of the water is constant, then according to the 
Airy model (equation 3) the wavelength and speed are also 
constant. In this case, the phase function (expressed in the per- 
component coordinate system) is simply: 

(6) 0 , ( ~ , ~ ) =  L-j- 

Since the wavelength L i is variable in water of varying depth, it 
appears that the phase function must be evaluated as an integral of 
a depth-dependent phase-change function over the distance from 
the origin to the point of interest. In one-dimensional terms: 

(7) 0R~) = S0/(u) du 
0 

In the constant-depth case, the derivative is: 

_L =__L_ 
(8) 0~'(u)= Li CiTi 

where C~ or Li may be computed from the Airy model of  equation 
3. Note that this equation may be obtained by differentiating 
equation 6. 

Without justification, we use the same derivative (phase-change 
function) in water of varying depth. We must integrate this 
function as suggested by equation 7 in order to obtain a phase 
function will which give us the wave refraction effects we want  
We numerically integrate from the origin of each component along 
the direction of propagation in deep water to obtain a grid of phase 
values. The grid for each component is stored in a file and is 
loaded during rendering of the wave surface in order to look up 
phase values for the component. Bilinear interpolation among grid 
values is used to produce phase values between grid points. This 
interpolation procedure does not seem to produce objectionable 
artifacts in the final images, because the interpolated phase is not 
rendered directly, but rather is used as the parameter of the wave 
profile function. Of  course, a time adjustment for the particular 
frame being rendered must be subtracted from the phase (equation 
5). It should be emphasized that the expensive numerical 
integration of the phase function for each component is done only 
once, not once for each frame. 

3.3 W a v e  Prof i les  

The wave profile functions introduced in section 3.1 are single- 
valued periodic functions of one parameter: 

wi(u),O_<u < I  

The values of w i are interpreted as vertical displacements of  the 
ocean surface from the rest position. In order for the wave 
amplitude A i to have its desired effect, it is normally required that 
the values of  w~ range over the interval [-1, 1]. The crest of  the 
wave is conventionally located at u = 0, so w~ (0) = 1. In order that 
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the wave surface be continuous, it is required that the function be 
continuous on [0,1) and that: 

lira w i ( u )  = w i (0) = 1 ,,--,1 
The simplest method of  handling wave profiles is to use a fixed 
function for all wi in all situations. For example, the function 
w i ( u ) = c o s ( 2 n u )  meets all of the requirements for a wave profile 
and will give a simple sinusoidal wave shape. 

For greater realism, the wave profile function is changed according 
to the wave steepness, S, and the ratio, 5, between the depth of the 
water and the deep-water wavelength L~ u't'. 

L~*~ = gTi 2 
2~ 

d 5 =  
Ly* 

The steepness controls a linear blending between a sinusoidal 
function (when the steepness is small) and a sharp-crested 
quadratic function (when the steepness is large). The sharp-crested 
function is: 

wi(U) =S lU  -- V212- l 

This function superficially resembles a cycloid; we do not use an 
actual cycloid because it has no convenient formulation as an 
explicit function of the phase. The change of the wave profile as a 
function of steepness produces a realistic change in appearance 
from long smooth swell with rounded crests to short choppy waves 
with sharp crests. 

The depth ratio, fi, controls the asymmetry of the wave profile. 
When fi is large, the wave profile is evaluated normally. When 8 is 
smal l  the parameter u is exponentiated to shift its values toward 
the low end of  the interval [0, 1). This has the effect of  steepening 
the front of the wave crest and stretching out the back of the crest. 
Similar asymmetry in wave profiles is easily observed as waves 
enter the shallow water near a beach and approach the breaking 
point. Figure 2 illustrates the different wave profiles produced by 
this model. 

Since waves break and dissipate much of their energy as they enter 
very shallow water, our wave model reduces the amplitude of each 
wave component so that the vertical displacement of the ocean 
surface never exceeds the depth of the water. This reduction only 
takes effect when the depth of the water is comparable to the sum 
of the various amplitudes Ai. 

3.4 S p r a y  

Spray from breaking waves and from the collision of waves with 
partially submerged obstacles is an important aspect of modeling 
waves and surf. Particle systems [17] are a natural mechanism to 

sinusoid 

quadratic ~ ~  

P.a e I I I 
0 1/2 1 

use to simulate the behavior of the population of water droplets 
which make up the spray. 

As mentioned earlier, waves break when the speed of circular 
motion of the water in the crest of the wave exceeds the speed of 
the wave itself. Based on the assumption of uniform circular 
motion, breaking would occur when Q~, > C. From equation 2, 
Qavg = nSC, so the condition becomes n,S > 1 or S > 1/n. Clearly 
the assumption of uniform circular motion is incorrect, since the 
maximum steepness actually observed is much smaller, in the 
neighborhood of 0.1. The water in a steep wave moves faster in the 
crest than would be predicted by the uniform motion assumption. 
A "corrected" particle speed Q is computed by multiplying Q ~  
by the factor 1DtSma x where Smax is the desired maximum steepness 
at the breaking point. 

Generation of the particle system for a given breaking wave crest is 
relatively straightforward. The initial position of each particle is at 
the crest of  the wave. The initial velocity of the particle is in 
approximately the same direction as the wave motion, with a speed 
of Q. A stochastic perturbation with a Gaussian distribution is 
added to the particle velocity to avoid excessively uniform particle 
behavior. An increasing number of particles is generated as the 
speed differential between the wave speed and Q increases. 

Notice that the criterion for the generation of  spray due to breaking 
is entirely dependent on wave steepness and not on the depth of the 
water. Usually breaking will result from the reduction in 
wavelength and consequent steepening when a wave enters shallow 
water. In this case, the generation of  spray will be accompanied by 
an asymmetric wave profile as described in the previous section. 
However, it is also possible for waves to break in deep water when 
the amplitude becomes sufficiently large (storm conditions). In 
this case, the wave profiles will be symmetrical and sharp-crested, 
approximating a cycloid. 

A similar particle system model is used to simulate the spray 
resulting from waves striking obstacles (rocks, piers, etc.) along the 
beach. Particles are generated when the crest of a wave is near the 
seaward face of  the obstacle. The crest is the relevant part of the 
wave for spray generation because the water in the crest is moving 
toward the beach with its maximum speed, and therefore generates 
the most spectacular spray. 

The rate of particle generation increases from zero at a time 
slightly before the crest meets the obstacle, to a maximum v a l u e  
when the crest is at the obstacle, and then falls back toward zero as 
the crest passes the obstacle. The initial positions of the particles 
lie approximately on the curve along which the wave surface 
intersects the obstacle. The initial velocities of the particles are 
chosen stochastically, with a magnitude that is a constant fraction 
of the speed Q at which the water is striking the obstacle, and a 
direction which is the reflection direction for an ideal elastic 
collision, plus a Gaussian perturbation (Figure 3). 

Reflected Particle ,t~,~,, Normal vector 

O b ~ d e n t  Particle 

Figure 2: Wave profiles Figure 3: Obstacle impact 
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Once a particle has been generated as a result of wave breaking or 
obstacle impact, its behavior is simulated according to gravitational 
kinematics as described in section 4.3. 

3.5 Des ign ing  the  Beach  

Since so much of the wave and spray model depends on the depth 
of the water at a given point, the final images are greatly affected 
by the shape of the terrain which makes up the beach, and 
especially by the submarine contours of the terrain. The images in 
this paper are based on a hypothetical beach called "Babbage 
Beach".  Figure 4 is a topographic map of Babbage Beach with 
yellow indicating high cliffs, green indicating low beach, white and 
light blue indicating shallow water, and darker blue indicating deep 
water. The water at the top of the map averages 10 meters deep. 
Adjacent lines of the black grid are 100 meters apart. The red 
bands indicate the crests of a wave component with a period of six 
seconds. Wave refraction effects are clearly visible in the shape of 
these bands. Figure 5 is a perspective view of the terrain without 
water. 

The Babbage Beach terrain was entered as a coarse grid of 
manually generated elevations. This data was smoothed and 
interpolated with some stochastic variation to produce a much finer 
grid of elevations. At present, the resulting terrain is rendered as a 
collection of triangles with the grid points as vertices. Bilinear 
interpolation is used to determine the elevation at an arbitrary point 
for use by the wave and spray model. Alternatively, an 
interpolating spline surface could be passed through the grid points 
for smoother interpolation and a more realistic appearance. 

If a beach is to be designed without simply digitizing a contour 
map of a real beach, some study of coastal geomorphology [ 15] is 
useful in determining realistic landforms and submarine contours. 
The slope of the beach depends on the type of sand particles or 
rocks which make up the beach. Larger particles lead to steeper 
beaches; a slope between 1:10 and 1:30 is typical for sandy 
beaches, while beaches made of stones or slate-like "shingle"  can 
be as steep as 1:2 or 1:3. The nature of the beach also depends on 
the steepness of the large waves which strike it. Steep winter storm 
waves tend to erode the above-water part of the beach while 
building up underwater sand bars. The lower waves of the summer 
season move the sand landward and build up an above-water hill 
called a "berrn".  

4. R e n d e r i n g  

The model described in section 3 has been implemented as part of 
two image synthesis systems, a ray tracing system called 
"Portray" [13] and an A-buffer-like system called "Pixie" .  The 
ray tracing implementation does not include the particle system 
model of spray. 

4.1 Ray  T r a c i n g  W a v e f o r m s  

In the Portray ray tracing system, a modified regulafalsi iterative 
root-finding technique was used to solve the ray-surface 
intersection equation directly. The advantage of ray tracing as a 
means of rendering the wave surface is that it easily and correctly 
handles the images of the sky and of objects reflected in the water. 
However, these reflections usually can be simulated by the use of 
reflection environment maps in non-ray tracing systems. The 
surface of the ocean is usually so rough that reflections cannot be 
seen very clearly, and an approximation to the correct reflection 
will suffice. The disadvantages of ray tracing are its immense cost 
(nearly 30 CPU hours on a Pyramid 90x for some wave surfaces), 
the difficulty of rendering complex procedural models such as 
particle systems, and the tendency for aliasing to arise from point 
sampling distant waves near the horizon. Stochastic sampling is a 
possible, but expensive, solution to the latter problem. 

Figure 4: Topographic map of Babbage Beach 

Figure 5: Beach terrain without water 

4.2 Scanline Rendering of Waveforms 
Because ray tracing is expensive and inconvenient for rendering 
complex ocean phenomena, we would like to develop a hidden 
surface technique more suited to the task. The Z-buffer hidden 
surface technique [3] seems to offer the greatest modeling freedom, 
since any element o f  a model may be rendered at any convenient 
time. Unfortunately, the Z-buffer technique requires a great deal of 
memory and is very prone to aliasing. 

The A-buffer technique has been proposed [2] as an anti-aliased 
alternative to the Z-buffer. Unfortunately, the A-buffer does not 
really offer the same degree of rendering freedom as the Z-buffer. 
A pixel of the A-buffer is equivalent to a pixel of the Z-buffer 
when the pixel is entirely covered by an opaque surface. However, 
when a pixel is only partially covered or the covering surface is not 
opaque, the A-buffer stores the sub-pixel information as an 
arbitrarily long linked list of "fragment" structures, each of which 
is 28 bytes long in the original implementation. If the model being 
rendered produces a large number of such complex pixels, the 
memory consumption of the A-buffer may become prohibitive, and 
the paging of virtual memory may severely impact performance. 
To alleviate these problems, the A-buffer system pages the pixel 
array in software and renders surfaces in "approximately scanline 
order". 
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Sincce it is necessary to render in approximately scanline order to 
make practical use of the A-buffer, we decided to build an A- 
buffer-like system, Pixie, in which rendering takes place in strictly 
scanline order. Although the basic A-buffer techniques are still 
used at each pixel, our approach has a number of advantages. 
Instead of a buffer array with one entry per image pixel, we need 
only a single row buffer with one entry per image column. The 
vastly reduced storage requirements eliminate any need to page the 
A-buffer in software, and free us to store more information per 
pixel. In particular, there is no need to use the smaller 8-byte per 
pixel Z-buffer-like data structure for completely covered pixels. 
Even pixels which are covered by a single opaque surface are 
represented as a fragment list. This simplifies the algorithms and 
allows us to maintain 12 bits of color resolution and both minimum 
and maximum Z values for all pixels. An 8x8 bit pixel mask is 
used instead of the 4x8  mask originally proposed. The buffer itself 
is simply an array of  fragment list pointers, with a NULL pointer 
indicating an empty pixel. When all rendering for the current 
scanline has been completed, an output routine is called to pack the 
fragment list (if any) at each pixel of the scaniine, write the final 
color and coverage information out to the image files, and reclaim 
the fragment storage, setting the buffer fragment list pointers back 
to NULL. 

Given the design of  the Pixie rendering system, it was necessary to 
develop a scanline display algorithm for rendering wave surfaces. 
The algorithm is an adaptation of the general Lane/Carpenter 
parametric surface subdivision algorithm [8]. Our wave model 
may be viewed (in the appropriate coordinate system) as a function 
y = f ( x , z )  at a particular time t. The form of this function is 
described in section 3. A suitable parametric representation of the 
surface in terms of parameters (u, v ) is: 

x (u , v )=u  

y ( u , v ) = f ( u , v )  

z ( u , v ) = v  

The algorithm maintains a set of polygons to be rendered and a set 
of wave surface patches to be rendered. Each set consists of a 
linked list for each scardine. The algorithm begins with thex and z 
coordinates of the initial wave surface in the modeling coordinate 
system. This initial wave patch is inserted in the linked list for the 
scanline on which the patch is first visible. As each scanline is 
reached, the algorithm checks each patch in the list for the scanline 
to see whether it can be accurately represented by a single polygon. 
If so, the patch is discarded and the appropriate polygon is inserted 
in the polygon display list to be rendered by an anti-aliased 
polygon scan conversion algorithm. If the patch is still too large to 
render as a polygon, the patch is subdivided into four subpatches, 
and each of these patches is inserted in the linked list for the 
scanline on which it first appears. Subdivision of the patch is done 
according to the perspective projection of the patch into screen 
space, in such a way that each of the four subpatcbes covers an 
approximately equal area on the screen. A patch is rendered as a 
polygon only when the patch covers approximately one plxel or 
less. 

To implement the Lane/Carpenter scanline display algorithm 
requires that we are able to determine a fairly tight lower bound on 
the screen space Y coordinate of a given surface patch (assuming 
the Y coordinates increase going down the screen beginning with 
scanline 0 at the top). For any wave surface patch, a lower bound 
on the screen Y coordinate (scanline number) of the visible part of 
the patch may be found by transforming the modeling space 
coordinates (x~, A, z~ ) into screen space for each patch comer (x~, zl). 

This is true because the amplitude A gives an upper bound on the 
height of the wave function. Assuming the camera (eyepoiut) is 
located above the plane y = A in modeling space, the screen Y 
coordinate of  the point (xi,f(xi,zi),zi) c a n n o t  be less than the 
screen Y coordinate of (x i, A, z i ). 

Aliasing of distant waves is prevented by a form of  "c lamping"  
[12] which reduces the amplitude of  waves which ate very short 
relative to the pixel diameter. Waves shorter than two pixel 
diameters are completely ignored (their amplitude is zero). 

It is interesting to compare this wave rendering algorithm to the 
"height  field" algorithm used by Max [10] and originally proposed 
by Fishman and Schachter [4]. The height field algorithm renders a 
single-valued function of two variables by scanning columns of  the 
image from bottom to top. Thus the algorithm would not be 
directly applicable to a scardine-oriented rendering system such as 
Pixie. A more serious problem is that the permissible viewing 
geometry is quite restricted with the height field algorithm. The 
camera must be above the top of the waves (maximum height field 
value), the viewing direction must lie in a horizontal (y = k )  plane 
(the camera cannot be pointed somewhat upward or downward), 
and the camera must be upright (cannot be tilted from side to side). 
Our algorithm, as an adaptation of the general Lane/Carpenter 
technique, has no such viewing restrictions. However, a slightly 
more complex scaniine bounding test must be used when the 
camera lies below the y =A plane or is tilted very sharply to one 
side. 

4.3 R e n d e r i n g  S p r a y  

Our model of spray consists of the particle systems described in 
section 3.4. It is very difficult to directly render particle systems in 
scartline order. Instead, the particle systems are simulated by a 
separate program which contains the same wave model as the main 
Pixie rendering program. This program outputs a file of pixel 
information in scanline order which is used by Pixie to combine 
particles with the other elements of the scene and determine which 
surfaces are visible in each pixel. 

The particle program advances through time in steps of 1/z-frame 
(1/48th second). At each step, new particles are generated 
according to the rules for wave breaking and obstacle impact. A 
data structure is allocated for each new particle to store its current 
position, its previous position, and its velocity. Each old particle is 
moved aecolding to its average velocity during the step, and the 
velocity is updated so that the particle accelerates downward with 
the correct acceleration of gravity. Particles are deleted if  they 
drop below the lower bound of the wave surface. No attempt is 
made to determine the actual wave level in the vicinity of the 
particle, since hidden surface removal will later be done by Pixie. 

The particle population usually stabilizes after about 1A second, so 
that the number of new particles being generated is roughly equal 
to the number of particles being deleted. In older to ensure that all 
particles that could appear in the image have been generated, it is 
necessary to start the model far enough back in time that a particle 
generated in the initial step with the maximum upward velocity 
will have fallen below the lower bound of  the wave surface by the 
time of  the image. 

When the particle population at the time of the desired frame has 
been generated, the particles are clipped to the viewing volume and 
transformed into screen space using exactly the same perspective 
projection used in Pixie to render the other elements of the scene. 
Each particle is drawn as an anti-aliased line segment joining its 
positions at the beginning and end of the V2-frame interval. This 
effectively provides temporal anti-aliasing (motion blur) for the 
particles, which are the fastest moving objects in each image. (The 
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waves move and change relatively slowly and smoothly so 
temporal aliasing is not a serious problem.) 

The particles are drawn into a "sparse Z-buffer" in the particles 
program. The sparse Z-buffer consists of  a linked list of pixel 
structures for each scardine of the image. When some particle is 
drawn in a given pixel, the appropriate scanline list is searched for 
the pixel, mad a new pixel is added to the list if no other particle has 
previously been drawn into that pixel. In practice, the particles 
cover a relatively small portion of the entire image, so only about 
10% of the total image pixels appear in the sparse Z-buffer. 
Because space consumption is quite small, it is possible to keep the 
color, coverage, and maximum and minimum screen Z value 
(perspective depth) for each pixel. Pixel data which overlap in Z 
value are stored in the same pixel structure; data with disjoint 
depths are stored in separate structures even if they appear in the 
same scanline and column of the image. Coverages of particles are 
determined from the distance to the particle and its velocity. The 
coverages of all particles in a pixel are added together subject to a 
maximum value of 1. The colors of  particles are combined using a 
sum weighted by their coverages. Finally, the maximum and 
minimum Z values are updated according to each new particle in 
the pixel. 

When all particles have been drawn into the sparse Z-buffer, the 
contents of the buffer are written into a temporary file. This file is 
read by Pixie during the rendering of the other elements of the 
scene. Since the particle file is in scanline order, Pixie can easily 
read the information (if any) which is relevant to the scanline 
currently being rendered. Each pixel in the particle file is passed to 
the A.buffer hidden surface routines, using the color, coverage 
(opacity), and maximum and minimum Z values which were 
determined by the particles program. Using this information, Pixie 
can determine whether the particles obscure or are obscured by 
other surfaces in the scene, such as the wave surface or the surface 
of  an obstacle. 

In the original work on particle systems [17], the particles were 
rendered by a separate program which produced color and coverage 
information for each image pixel in the form of an RGBct image 
[16]. This image was combined with other image elements using a 
digital compositing scheme. For images of waves and surf, it 
would be very difficult to determine clear depth relationships 
between particles and the surfaces in the scene, so that compositing 
of images could be used. The combination of particle information 
with other surface information in the A-buffer at the time of 
rendering solves this problem by automatically determining where 
surfaces or particles are visible. 

Our current illumination model for spray particles is quite 
primitive. Particles are treated as small white spheres. Since it is 
prohibitively expensive to determine which particles are in the 
shadow of the waves or other particles, all of the particles are 
shaded the same color. To achieve a more realistic appearance, a 
random component is used to vary the shade a little. A slight 
darkening of the particles based on the magnitude of  their 
downward velocity is used to simulate the shadowing of the 
particles by other particles and objects. This trick has worked 
fairly well, but clearly it would be easy to construct counter- 
examples where the effect would be quite unrealistic. 

5. E x a m p l e s  

Figures 6 through 10 were produced using Pixie and the wave and 
surf model described in section 3. Figure 6 shows a group of  
moderately high waves approaching the beach. Figure 7 shows a 
similar group of waves with a three times larger amplitude. The 
increased amplitude makes these waves steep enough to break and 

Figure 6: Waves on Babbage Beach 

Figure 7: Breaking waves 

generate spray when the wavelength is reduced in shallow water. 
Figure 8 is the same as Figure 7, with the addition of an pyramid- 
shaped rock as an obstacle. A small plume of spray is produced 
from the impact of  a wave with the obstacle. Figures 9 and 10 
show a sunward view of the beach in the late afternoon and at 
sunset. 

These examples were produced using only three wave components, 
the main waves with a period of 6 seconds and two secondary 
components with periods of 2 and 2.5 seconds. Realism would be 
enhanced by the addition of a time-dependent bump-mapped 
texture pattern of small ripples. 

Each of the examples was generated in approximately one hour of 
CPU time on a Pyramid 90x computer (comparable to a VAX- 
11/785 FPA). The implementation has not yet been carefully tuned 
or optimized. The simulation and rendering of  the particle systems 
took approximately 10 CPU minutes with 2.5 megabytes of virtual 
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Figure 8: Breaking waves with obstacle 

memory to simulate an acUve population of 56000 particles from a 
total of 95000 particles that were generated. Pixie took about 40 
CPU minutes and 3 megabytes of virtual memory to render the 
wave surface and terrain, and to determine the visible surfaces at 
each pixel, including the particle coverage and depth informafon 
supplied by the particle program. The generation of  the 
numerically integrated phase function table for each wave 
component consumed from 2 to 5 CPU minutes. 

6. C o n c l u s i o n s  a n d  F u t u r e  R e s e a r c h  Di rec t ions  

We have presented a graphical model of waves and surf which is 
capable of rendering and animating realistic images of these ocean 
phenomena. This is one of the first attempts to model breaking 
waves and surf in the field of image synthesis. In our model the 
shapes of waves change as they approach the shore, with the fronts 
of the waves steepening markedly as the depth of  the water 
decreases. When the waves break, spray is simulated by a particle 
system in order to give the appearance of "whitecaps".  Particle 
system spray is also used to model the impact of waves on 
obstacles. Wave refraction effects and the change of speed and 
wavelength in shallow water are simulated using a numerically 
integrated phase function which need only he computed once for a 
given wave component, even if many frames of animation are 
generated. 

The rendering of the wave model is done by an adaptation of the 
Lane/Carpenter subdivision algorithm for parametric surfaces to 
the particular case of single-valued functions of two variables. 
This is a scanline algorithm, and does not suffer from the 
restrictions on viewing geometry inherent in Max's  height field 
algorithm. The wave rendering algorithm is incorporated in a 
novel implementation of the A-buffer, with performance and 
simplicity advantages over the original A-buffer scheme. Panicle 
systems are rendered by a separate program which produces a 
scardine sorted file of pixel information suitable for the A-buffer. 

This allows us to integrate particle systems with other surfaces at 
low cost and with greater flexibility than can be achieved using 
compositing techniques. 

This work has concentrated on modeling the geometry and motion 
of waves, surf, and spray. Further work on illumination models is 
needed, especially to approximate shadowing of spray particles, 
reffraetion of light from spray particles, and transmission of light 
through steep wave crests. Texturing of wave surfaces might be 
used to simulate foam, but care must be taken that such texture 
maps behave sensibly from frame to frame of animation. The 
effectiveness of particle systems in modeling spray suggests that 
they might be used to model fountains, waterfalls, and perhaps 
even rapids. 

In our model each wave component is long-crested and has a fixed 
amplitude. To more realistically model the ocean surface, it would 
be desirable to add the concept of "wave groups" to the model. A 
wave group would consist of a phase offset and an amplitude 
function which would produce a moving " b u m p "  of short-crested 
waves which could be out of phase with other wave groups of the 
same wave component. The wave group would move at one-half 
the wave speed as predicted by theory, in the same general 
direction as the waves themselves, Several wave groups could 
share a single phase function. 
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Figure 9: Sunset 

Figure 10: Late afternoon 
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