
Dallas, August 18-22 Volume 20, Number 4, 1986

M o d e l i n g W a v e s a n d S u r f

Darwyn R. Peachey
Department of Computational Science

University of Saskatchewan
Saskatoon, Canada

ABSTRACT

Although modeling natural phenomena is recognized as one of the
greatest challenges of computer graphics, relatively little time has
been spent on modeling ocean waves. The model presented in this
paper is suitable for the rendering and animation of waves
approaching and breaking on a sloping beach. Wavefonns consist
of a phase function which correctly produces wave refraction and
other depth effects, and a wave profile which changes according to
wave steepness and water depth. Particle systems are used m
model the spray produced by wave breaking and collisions with
obstacles. A scanline algorithm for displaying the wave surface is
presented, along with a method of integrating separately rendered
particle systems with other surfaces. Hidden surface removal for
both waves and particles is done using a novel variation of the A-
buffer technique. Methods of implementing the model are
presented and compared with previous rendering techniques.

CR Categories and Subject Descriptors: 1.3.3 [Computer
Graphics]: Picture/Image Generation; 1.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling; 1.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism.

Additional Key Words and Phrases: A-buffer, clamping, particle
systems, stochastic modeling, surf, water, wave refraction, waves.

1. I n t r o d u c t i o n

Modeling natural phenomena has always been among the most
challenging problems in computer graphics, because natural
phenomena have an inherent complexity far beyond that of most
man-made objects. Significant progress has been made in
modeling a variety of phenomena, including terrain [5], clouds [7],
fire [14, 17], trees [1, 18, 19], and grass [18]. Relatively little time
has been spent in modeling the appearance and behavior of the
oceans.

Turner Whitted, in his film "The Compleat Angler", was among
the first to attempt to render waves in water. Using ray tracing [21]
Whitted animated realistic reflections from ripples in a small pool.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1986 A C M 0 - 8 9 7 9 1 - I 9 6 - 2 / 8 6 / 0 0 8 / 0 0 6 5 $00.75

The ripples were created by bump mapping the fiat pool surface,
perturbing the surface normal according to a single sinusoidal
function [221. Another early effort was the Pyramid Films leader
produced by Information International in 1981, which used a
similar technique with cycloidal waveforms. More recently, Ken
Perlin [14] has used bump mapping with a richer texture map to
convincingly simulate the appearance of the ocean surface as one
might see it from an aircraft well out to sea. Perlin used a set of 20
cycloidal waveforms, each radiating in a circular fashion from a
randomly placed center point.

Although bump mapping is inexpensive and has been effectively
used to simulate waves in the cases cited above, bump mapping is
not sufficient to simulate waves in general. Since the actual surface
is fiat, bump mapped waves do not exhibit realistic silhouette edges
or intersections with other surfaces. Another limitation of bump
mapped waves is that they cannot shadow one another or cast
shadows on other surfaces.

To avoid these shortcomings, Nelson Max [10] used a "height
field" algorithm to render explicitly modeled wave surfaces for his
film "Carla 's Island". His wave model consisted of several
superimposed linear sinusoidal waves simulating ocean waves of
low amplitude.

In this paper we present a model of ocean waves which is capable
of simulating the appearance and behavior of waves as they
approach a sloping beach, steepening, breaking, and producing a
spray of water droplets from the crests of the waves. Wavefronts
are correctly refracted by the transition to shallow water, so that
they align themselves parallel to the beach. The model is also
capable of simulating spray resulting from the collision of waves
with partially submerged obstacles. To our knowledge, no
computer graphics model of these phenomena has previously been
presented, although Fournier and Reeves [6] are involved in similar
research.

2. W a v e F u n d a m e n t a l s

A rich body of theory and observation exists concerning the
behavior of waves in general, and water waves in particular [9, 11,
20]. There are several classes of water waves observed in the
ocean:

• the tides, which have very long wavelengths and periods.

• seismic waves (tsunamis)

• internal waves

• surface gravity waves

• capillary (surface tension) waves, which have very short
wavelengths and periods

65

S I G G R A P H '86

Surface gravity waves and capillary waves generally result from
the action of wind on the surface of the water, so they are
collectively called "wind waves". Since our goal is to produce
realistic pictures of waves and surf as they might be seen from the
beach, we will deal only with surface gravity waves, which are
usually the most noticeable waves on the beach during any short
period of observation. (Small capillary wave ripples may be bump
mapped on the wave surface for additional detail.)

The simplest surface gravity wave in water is a sinusoidal function
of the form:

(1) f (x , t)=A cos(2n(x -C t))
L

where x is the distance from an origin point, A is the amplitude of
the wave, L is the wavelength, C is the propagation speed, and t is
the rime. The period, T, is the time between successive crests of
the wave passing a particular point. The wavelength, period, and
speed are related by the equation C =L/T. The frequency of the
wave is lIT. The wave number of the wave, which is the spatial
analog of the frequency, is 1¢ = 2~IL. The magnitude of a water
wave is often specified in terms of its height, H, rather than its
amplitude, where H = 2.4 for the simple sine wave. The steepness
of a wave is the ratio S =HIL.

The motion of the wave must be distinguished from the motion of
the water through which the wave is propagating. While the wave
moves past a given point, the water at that point moves in a circular
or elliptical orbit as shown in Figure 1. The water in the crest of
the wave moves in the same direction as the wave, while the water
in the trough of the wave moves in the opposite direction. The net
motion of the water is zero in an ideal sinusoidal wave. The water
must complete one orbit in the same time that it takes for a
complete wavelength of the wave to pass a given point, namely the
period of the wave, T. Since the diameter of the orbit is H, the
average orbital speed of the water is:

x// ~.HC
(2) Qa,s - T L = ~SC

A wave breaks at the crest when the orbital speed Q of the water at
the crest exceeds the speed C of the wave itself. This limits the
steepness of a stable wave, since Q grows as S grows. Typical
values for the steepness of ocean waves have been observed to be
between 0.05 and 0.1.

Various hydrodynamic models of wave motion have been
constructed by assuming that sea water is a perfectly nonviscous,
incompressible fluid. The general model is nonlinear and has no
convenient solutions [20]. Therefore, many simplified or idealized
models are used for various situations. One of the more commonly
used hydrodynamic models is the Airy model of sinusoidal waves
of small (negligible) amplitude. The Airy model is linear, and

,t,v~V~ ,~,,fo 7'7oM

Fioure 1: Orbital motion

predicts that the propagation speed and wavelength of a wave will
depend on the depth of the water, d, as follows:

(3a) C = q ~ tanh(Kd)= ~ 2~ t a n h (~)

(3b) L = CT
where g is the acceleration of gravity at sea level, 9.81 m/see 2. In
deep water, tanh(Kd) approaches 1, so C approaches gL/2~. In
shallow water, tanh(rrd) approaches rd , so C approaches g ~ . To
achieve five percent accuracy in these approximations, it is
sufficient for "deep" to mean d >_ L/4 and for "shallow" to mean
d _<LI20 [9].

As surface gravity waves are driven to large amplitudes by the
wind, their shapes change, with the crests becoming more sharply
peaked and the troughs becoming shallower and flatter. The
Gerstner/Rankine wave model [9] gives an exact solution to the
hydrodynamic equations for a wave of non-negligible amplitude in
deep water. This model predicts a trochoidal or cycloidal
waveform, approaching sinusoidal shape when the wave steepness
is small. Another popular model is the Stokes wave model [9, 20]
which is an infinite Fourier series which resembles the troehoidal
wave up to the third order terms. The Stokes model predicts a
slight dependence of wave speed on steepness, and a maximum
wave steepness of 0.142. Nelson Max [10] used only the first-order
term of the Stokes model for most of his waves, and used the first
and second-order terms for the wave with the largest amplitude.

As waves approach the shore from deep water, the crests of the
waves tend to become parallel to the shoreline regardless of their
initial orientation. This is a result of wave refraction, a bending of
the waves due to the dependence of propagation speed on the depth
of the water. Since waves move more slowly in shallower water,
the part of a wave which enters shallow water first will be retarded,
and the remainder of the wave which is still in deeper water will
move faster. This tends to turn the wave crest to be parallel to the
line of transition to shallower water. Wave models which ignore
refraction may produce "impossible" situations, such as the wave
crests running perpendicular to the beach in [10].

Although the speed and wavelength of a wave are reduced as it
enters shallower water, the period remains constant and the
amplitude remains the same or increases slightly. The orbital
speed of the water, which is directly related to the period and
amplitude of the waves, stays the same even as the wave speed
declines. This leads to a change in the shape of the waves, with the
front of the crests becoming steeper and eventually breaking when
the speed of the wave drops below the orbital speed of the water.
When breaking occurs, droplets of water moving faster than the
wave leave the wave surface in the form of spray. The existing
hydrodynamic wave models do not adequately describe the
breaking of waves.

3. A Model of Waves and Surf for Computer Graphics

The goal of our model of waves and surf is to allow us to
synthesize convincing images of ocean waves as they might be
seen on a beach. Moreover, the model must be suitable for
animation, since it is the motion of waves and spray which give the
strongest impression of realism to the viewer. Since no existing
hydrodynamic model can claim to fully and realistically describe
the behavior of any real ocean waves, we will not attempt to use
such a model directly. However, we will depend on the predictions
of the Airy model for the relationship between the depth of the
water and the speed and wavelength of waves (even though many
of our waves are neither sinusoidal nor of small amplitude).

66

Dallas, August 18-22 Volume 20, Number 4, 1986
I I II

3.1 Bas ic M o d e l

We represent the ocean surface as a single-valued function of three
variables:

y = f (x , z , t)

where (x , y , z) is the usual 3D Cartesian modeling space with the Y
axis directed upwards, and t is the time, which is advanced for each
successive frame of an animation. The use of a single-valued
height function for the wave model means that we are prevented
from producing waves whose crests actually curl forward. On the
other hand, this representation of the surface permits us to easily
combine numerous waves into one surface by superposition
(simply adding together the heights of the individual wave
components).

Our wave function f is a sum of several long-crested linear
waveforms W~ with amplitudes A i propagating in various directions
from various origin points:

n
(4) f (x , z , t) = ~Ai~'Vi(x,~',l)

i = 1

Instead of using W~ directly, we prefer to split Wi into a
composition of two functions:

Wi (x , z , t) = w~ (fraction [O~ (x , z , t)])

The functions w i are called w a v e profiles, and are single-valued
periodic functions of one parameter with a value between 0 and 1.
This parameter value is the fractional part of the phase function,
0 i (x, z, t). The separation of W i into a wave profile and a phase
function makes it easier to describe and change the wave profile to
give different wave shapes. It also allows us to address phase-
related problems without concern for the final shape of the
waveform. We discuss the phase function in the next section, and
delay the discussion of wave profiles until section 3.3.
Each wave component can be completely characterized by giving
its period Ti, its amplitude Ai, its origin, and its direction. Since
each component may have a different origin and direction, the
phase functions 01 have a simpler form if expressed in a per-
component coordinate system in which the wave starts at the
coordinate system origin and propagates in the +X direction. A
simple 2D transformation may he used to convert the coordinates
of the point (x, z) into the corresponding coordinates (~/, ~/) in the
coordinate system of component i.

3.2 T h e P h a s e Function
The phase function has a very simple dependence on the time t.
Just as each wave component has the same constant period T~ at all
points in space, it is also true that the wave component has the
same constant rate of phase change at all points in space, namely
the frequency:

001 1
~t T~

(The negative sign of the derivative is necessary to make the waves
propagate in the direction of increasing phase values.) If we know
the phase at a particular time 0i (x, z, to) for all points (x, z), we can
compute the phase for any frame of an animation by using the rule:

t - - I 0
(5) 0 i (x, z, ,) = 01 (x, z, '0) -

We will ignore the time-dependence of 0i in the following
discussion, and describe the phase at a fixed time to, assuming that

the phase is 0 at the component origin point at time t o (which we
can arrange, if necessary, by moving the origin point).

Unfortunately, the dependence of the phase on (x, z) is not nearly
so tractable. It is necessary for our graphics model to include the
effects of depth on wavelength and speed, in order to produce
realistic wave refraction effects, such as the alignment of crests
parallel to the beach, and in order to accurately depict the motion
of the waves in shallow water. The implication of the dependence
of wavelength and speed on depth is that the phase function
depends on the cumulative effects of the depth of the water
between the wave origin and the point of interest. In general, there
is no simple expression for the phase function in water of varying
depth. If the depth of the water is constant, then according to the
Airy model (equation 3) the wavelength and speed are also
constant. In this case, the phase function (expressed in the per-
component coordinate system) is simply:

(6) 0 , (~ , ~) = L-j-

Since the wavelength L i is variable in water of varying depth, it
appears that the phase function must be evaluated as an integral of
a depth-dependent phase-change function over the distance from
the origin to the point of interest. In one-dimensional terms:

(7) 0R~) = S0/(u) du
0

In the constant-depth case, the derivative is:

_L =__L_
(8) 0~'(u)= Li CiTi

where C~ or Li may be computed from the Airy model of equation
3. Note that this equation may be obtained by differentiating
equation 6.

Without justification, we use the same derivative (phase-change
function) in water of varying depth. We must integrate this
function as suggested by equation 7 in order to obtain a phase
function will which give us the wave refraction effects we want
We numerically integrate from the origin of each component along
the direction of propagation in deep water to obtain a grid of phase
values. The grid for each component is stored in a file and is
loaded during rendering of the wave surface in order to look up
phase values for the component. Bilinear interpolation among grid
values is used to produce phase values between grid points. This
interpolation procedure does not seem to produce objectionable
artifacts in the final images, because the interpolated phase is not
rendered directly, but rather is used as the parameter of the wave
profile function. Of course, a time adjustment for the particular
frame being rendered must be subtracted from the phase (equation
5). It should be emphasized that the expensive numerical
integration of the phase function for each component is done only
once, not once for each frame.

3.3 W a v e Prof i les

The wave profile functions introduced in section 3.1 are single-
valued periodic functions of one parameter:

wi(u),O_<u < I

The values of w i are interpreted as vertical displacements of the
ocean surface from the rest position. In order for the wave
amplitude A i to have its desired effect, it is normally required that
the values of w~ range over the interval [-1, 1]. The crest of the
wave is conventionally located at u = 0, so w~ (0) = 1. In order that

67

,,*,~ S I G G R A P H '86
i

the wave surface be continuous, it is required that the function be
continuous on [0,1) and that:

lira w i (u) = w i (0) = 1 ,,--,1
The simplest method of handling wave profiles is to use a fixed
function for all wi in all situations. For example, the function
w i (u) = c o s (2 n u) meets all of the requirements for a wave profile
and will give a simple sinusoidal wave shape.

For greater realism, the wave profile function is changed according
to the wave steepness, S, and the ratio, 5, between the depth of the
water and the deep-water wavelength L~ u't'.

L~*~ = gTi 2
2~

d 5 =
Ly*

The steepness controls a linear blending between a sinusoidal
function (when the steepness is small) and a sharp-crested
quadratic function (when the steepness is large). The sharp-crested
function is:

wi(U) =S lU -- V212- l

This function superficially resembles a cycloid; we do not use an
actual cycloid because it has no convenient formulation as an
explicit function of the phase. The change of the wave profile as a
function of steepness produces a realistic change in appearance
from long smooth swell with rounded crests to short choppy waves
with sharp crests.

The depth ratio, fi, controls the asymmetry of the wave profile.
When fi is large, the wave profile is evaluated normally. When 8 is
smal l the parameter u is exponentiated to shift its values toward
the low end of the interval [0, 1). This has the effect of steepening
the front of the wave crest and stretching out the back of the crest.
Similar asymmetry in wave profiles is easily observed as waves
enter the shallow water near a beach and approach the breaking
point. Figure 2 illustrates the different wave profiles produced by
this model.

Since waves break and dissipate much of their energy as they enter
very shallow water, our wave model reduces the amplitude of each
wave component so that the vertical displacement of the ocean
surface never exceeds the depth of the water. This reduction only
takes effect when the depth of the water is comparable to the sum
of the various amplitudes Ai.

3.4 S p r a y

Spray from breaking waves and from the collision of waves with
partially submerged obstacles is an important aspect of modeling
waves and surf. Particle systems [17] are a natural mechanism to

sinusoid

quadratic ~ ~

P.a e I I I
0 1/2 1

use to simulate the behavior of the population of water droplets
which make up the spray.

As mentioned earlier, waves break when the speed of circular
motion of the water in the crest of the wave exceeds the speed of
the wave itself. Based on the assumption of uniform circular
motion, breaking would occur when Q~, > C. From equation 2,
Qavg = nSC, so the condition becomes n,S > 1 or S > 1/n. Clearly
the assumption of uniform circular motion is incorrect, since the
maximum steepness actually observed is much smaller, in the
neighborhood of 0.1. The water in a steep wave moves faster in the
crest than would be predicted by the uniform motion assumption.
A "corrected" particle speed Q is computed by multiplying Q ~
by the factor 1DtSma x where Smax is the desired maximum steepness
at the breaking point.

Generation of the particle system for a given breaking wave crest is
relatively straightforward. The initial position of each particle is at
the crest of the wave. The initial velocity of the particle is in
approximately the same direction as the wave motion, with a speed
of Q. A stochastic perturbation with a Gaussian distribution is
added to the particle velocity to avoid excessively uniform particle
behavior. An increasing number of particles is generated as the
speed differential between the wave speed and Q increases.

Notice that the criterion for the generation of spray due to breaking
is entirely dependent on wave steepness and not on the depth of the
water. Usually breaking will result from the reduction in
wavelength and consequent steepening when a wave enters shallow
water. In this case, the generation of spray will be accompanied by
an asymmetric wave profile as described in the previous section.
However, it is also possible for waves to break in deep water when
the amplitude becomes sufficiently large (storm conditions). In
this case, the wave profiles will be symmetrical and sharp-crested,
approximating a cycloid.

A similar particle system model is used to simulate the spray
resulting from waves striking obstacles (rocks, piers, etc.) along the
beach. Particles are generated when the crest of a wave is near the
seaward face of the obstacle. The crest is the relevant part of the
wave for spray generation because the water in the crest is moving
toward the beach with its maximum speed, and therefore generates
the most spectacular spray.

The rate of particle generation increases from zero at a time
slightly before the crest meets the obstacle, to a maximum v a l u e
when the crest is at the obstacle, and then falls back toward zero as
the crest passes the obstacle. The initial positions of the particles
lie approximately on the curve along which the wave surface
intersects the obstacle. The initial velocities of the particles are
chosen stochastically, with a magnitude that is a constant fraction
of the speed Q at which the water is striking the obstacle, and a
direction which is the reflection direction for an ideal elastic
collision, plus a Gaussian perturbation (Figure 3).

Reflected Particle ,t~,~,, Normal vector

O b ~ d e n t Particle

Figure 2: Wave profiles Figure 3: Obstacle impact

6 8

Dallas, August 18-22 Volume 20, Number 4, 1986

Once a particle has been generated as a result of wave breaking or
obstacle impact, its behavior is simulated according to gravitational
kinematics as described in section 4.3.

3.5 Des ign ing the Beach

Since so much of the wave and spray model depends on the depth
of the water at a given point, the final images are greatly affected
by the shape of the terrain which makes up the beach, and
especially by the submarine contours of the terrain. The images in
this paper are based on a hypothetical beach called "Babbage
Beach". Figure 4 is a topographic map of Babbage Beach with
yellow indicating high cliffs, green indicating low beach, white and
light blue indicating shallow water, and darker blue indicating deep
water. The water at the top of the map averages 10 meters deep.
Adjacent lines of the black grid are 100 meters apart. The red
bands indicate the crests of a wave component with a period of six
seconds. Wave refraction effects are clearly visible in the shape of
these bands. Figure 5 is a perspective view of the terrain without
water.

The Babbage Beach terrain was entered as a coarse grid of
manually generated elevations. This data was smoothed and
interpolated with some stochastic variation to produce a much finer
grid of elevations. At present, the resulting terrain is rendered as a
collection of triangles with the grid points as vertices. Bilinear
interpolation is used to determine the elevation at an arbitrary point
for use by the wave and spray model. Alternatively, an
interpolating spline surface could be passed through the grid points
for smoother interpolation and a more realistic appearance.

If a beach is to be designed without simply digitizing a contour
map of a real beach, some study of coastal geomorphology [15] is
useful in determining realistic landforms and submarine contours.
The slope of the beach depends on the type of sand particles or
rocks which make up the beach. Larger particles lead to steeper
beaches; a slope between 1:10 and 1:30 is typical for sandy
beaches, while beaches made of stones or slate-like "shingle" can
be as steep as 1:2 or 1:3. The nature of the beach also depends on
the steepness of the large waves which strike it. Steep winter storm
waves tend to erode the above-water part of the beach while
building up underwater sand bars. The lower waves of the summer
season move the sand landward and build up an above-water hill
called a "berrn".

4. R e n d e r i n g

The model described in section 3 has been implemented as part of
two image synthesis systems, a ray tracing system called
"Portray" [13] and an A-buffer-like system called "Pixie" . The
ray tracing implementation does not include the particle system
model of spray.

4.1 Ray T r a c i n g W a v e f o r m s

In the Portray ray tracing system, a modified regulafalsi iterative
root-finding technique was used to solve the ray-surface
intersection equation directly. The advantage of ray tracing as a
means of rendering the wave surface is that it easily and correctly
handles the images of the sky and of objects reflected in the water.
However, these reflections usually can be simulated by the use of
reflection environment maps in non-ray tracing systems. The
surface of the ocean is usually so rough that reflections cannot be
seen very clearly, and an approximation to the correct reflection
will suffice. The disadvantages of ray tracing are its immense cost
(nearly 30 CPU hours on a Pyramid 90x for some wave surfaces),
the difficulty of rendering complex procedural models such as
particle systems, and the tendency for aliasing to arise from point
sampling distant waves near the horizon. Stochastic sampling is a
possible, but expensive, solution to the latter problem.

Figure 4: Topographic map of Babbage Beach

Figure 5: Beach terrain without water

4.2 Scanline Rendering of Waveforms
Because ray tracing is expensive and inconvenient for rendering
complex ocean phenomena, we would like to develop a hidden
surface technique more suited to the task. The Z-buffer hidden
surface technique [3] seems to offer the greatest modeling freedom,
since any element o f a model may be rendered at any convenient
time. Unfortunately, the Z-buffer technique requires a great deal of
memory and is very prone to aliasing.

The A-buffer technique has been proposed [2] as an anti-aliased
alternative to the Z-buffer. Unfortunately, the A-buffer does not
really offer the same degree of rendering freedom as the Z-buffer.
A pixel of the A-buffer is equivalent to a pixel of the Z-buffer
when the pixel is entirely covered by an opaque surface. However,
when a pixel is only partially covered or the covering surface is not
opaque, the A-buffer stores the sub-pixel information as an
arbitrarily long linked list of "fragment" structures, each of which
is 28 bytes long in the original implementation. If the model being
rendered produces a large number of such complex pixels, the
memory consumption of the A-buffer may become prohibitive, and
the paging of virtual memory may severely impact performance.
To alleviate these problems, the A-buffer system pages the pixel
array in software and renders surfaces in "approximately scanline
order".

6 9

S I G G R A P H '86

Sincce it is necessary to render in approximately scanline order to
make practical use of the A-buffer, we decided to build an A-
buffer-like system, Pixie, in which rendering takes place in strictly
scanline order. Although the basic A-buffer techniques are still
used at each pixel, our approach has a number of advantages.
Instead of a buffer array with one entry per image pixel, we need
only a single row buffer with one entry per image column. The
vastly reduced storage requirements eliminate any need to page the
A-buffer in software, and free us to store more information per
pixel. In particular, there is no need to use the smaller 8-byte per
pixel Z-buffer-like data structure for completely covered pixels.
Even pixels which are covered by a single opaque surface are
represented as a fragment list. This simplifies the algorithms and
allows us to maintain 12 bits of color resolution and both minimum
and maximum Z values for all pixels. An 8x8 bit pixel mask is
used instead of the 4x8 mask originally proposed. The buffer itself
is simply an array of fragment list pointers, with a NULL pointer
indicating an empty pixel. When all rendering for the current
scanline has been completed, an output routine is called to pack the
fragment list (if any) at each pixel of the scaniine, write the final
color and coverage information out to the image files, and reclaim
the fragment storage, setting the buffer fragment list pointers back
to NULL.

Given the design of the Pixie rendering system, it was necessary to
develop a scanline display algorithm for rendering wave surfaces.
The algorithm is an adaptation of the general Lane/Carpenter
parametric surface subdivision algorithm [8]. Our wave model
may be viewed (in the appropriate coordinate system) as a function
y = f (x , z) at a particular time t. The form of this function is
described in section 3. A suitable parametric representation of the
surface in terms of parameters (u, v) is:

x (u , v)=u

y (u , v) = f (u , v)

z (u , v) = v

The algorithm maintains a set of polygons to be rendered and a set
of wave surface patches to be rendered. Each set consists of a
linked list for each scardine. The algorithm begins with thex and z
coordinates of the initial wave surface in the modeling coordinate
system. This initial wave patch is inserted in the linked list for the
scanline on which the patch is first visible. As each scanline is
reached, the algorithm checks each patch in the list for the scanline
to see whether it can be accurately represented by a single polygon.
If so, the patch is discarded and the appropriate polygon is inserted
in the polygon display list to be rendered by an anti-aliased
polygon scan conversion algorithm. If the patch is still too large to
render as a polygon, the patch is subdivided into four subpatches,
and each of these patches is inserted in the linked list for the
scanline on which it first appears. Subdivision of the patch is done
according to the perspective projection of the patch into screen
space, in such a way that each of the four subpatcbes covers an
approximately equal area on the screen. A patch is rendered as a
polygon only when the patch covers approximately one plxel or
less.

To implement the Lane/Carpenter scanline display algorithm
requires that we are able to determine a fairly tight lower bound on
the screen space Y coordinate of a given surface patch (assuming
the Y coordinates increase going down the screen beginning with
scanline 0 at the top). For any wave surface patch, a lower bound
on the screen Y coordinate (scanline number) of the visible part of
the patch may be found by transforming the modeling space
coordinates (x~, A, z~) into screen space for each patch comer (x~, zl).

This is true because the amplitude A gives an upper bound on the
height of the wave function. Assuming the camera (eyepoiut) is
located above the plane y = A in modeling space, the screen Y
coordinate of the point (xi,f(xi,zi),zi) c a n n o t be less than the
screen Y coordinate of (x i, A, z i).

Aliasing of distant waves is prevented by a form of "c lamping"
[12] which reduces the amplitude of waves which ate very short
relative to the pixel diameter. Waves shorter than two pixel
diameters are completely ignored (their amplitude is zero).

It is interesting to compare this wave rendering algorithm to the
"height field" algorithm used by Max [10] and originally proposed
by Fishman and Schachter [4]. The height field algorithm renders a
single-valued function of two variables by scanning columns of the
image from bottom to top. Thus the algorithm would not be
directly applicable to a scardine-oriented rendering system such as
Pixie. A more serious problem is that the permissible viewing
geometry is quite restricted with the height field algorithm. The
camera must be above the top of the waves (maximum height field
value), the viewing direction must lie in a horizontal (y = k) plane
(the camera cannot be pointed somewhat upward or downward),
and the camera must be upright (cannot be tilted from side to side).
Our algorithm, as an adaptation of the general Lane/Carpenter
technique, has no such viewing restrictions. However, a slightly
more complex scaniine bounding test must be used when the
camera lies below the y =A plane or is tilted very sharply to one
side.

4.3 R e n d e r i n g S p r a y

Our model of spray consists of the particle systems described in
section 3.4. It is very difficult to directly render particle systems in
scartline order. Instead, the particle systems are simulated by a
separate program which contains the same wave model as the main
Pixie rendering program. This program outputs a file of pixel
information in scanline order which is used by Pixie to combine
particles with the other elements of the scene and determine which
surfaces are visible in each pixel.

The particle program advances through time in steps of 1/z-frame
(1/48th second). At each step, new particles are generated
according to the rules for wave breaking and obstacle impact. A
data structure is allocated for each new particle to store its current
position, its previous position, and its velocity. Each old particle is
moved aecolding to its average velocity during the step, and the
velocity is updated so that the particle accelerates downward with
the correct acceleration of gravity. Particles are deleted if they
drop below the lower bound of the wave surface. No attempt is
made to determine the actual wave level in the vicinity of the
particle, since hidden surface removal will later be done by Pixie.

The particle population usually stabilizes after about 1A second, so
that the number of new particles being generated is roughly equal
to the number of particles being deleted. In older to ensure that all
particles that could appear in the image have been generated, it is
necessary to start the model far enough back in time that a particle
generated in the initial step with the maximum upward velocity
will have fallen below the lower bound of the wave surface by the
time of the image.

When the particle population at the time of the desired frame has
been generated, the particles are clipped to the viewing volume and
transformed into screen space using exactly the same perspective
projection used in Pixie to render the other elements of the scene.
Each particle is drawn as an anti-aliased line segment joining its
positions at the beginning and end of the V2-frame interval. This
effectively provides temporal anti-aliasing (motion blur) for the
particles, which are the fastest moving objects in each image. (The

7 0

Dallas, August 18-22 Volume 20, Number 4, 1986

waves move and change relatively slowly and smoothly so
temporal aliasing is not a serious problem.)

The particles are drawn into a "sparse Z-buffer" in the particles
program. The sparse Z-buffer consists of a linked list of pixel
structures for each scardine of the image. When some particle is
drawn in a given pixel, the appropriate scanline list is searched for
the pixel, mad a new pixel is added to the list if no other particle has
previously been drawn into that pixel. In practice, the particles
cover a relatively small portion of the entire image, so only about
10% of the total image pixels appear in the sparse Z-buffer.
Because space consumption is quite small, it is possible to keep the
color, coverage, and maximum and minimum screen Z value
(perspective depth) for each pixel. Pixel data which overlap in Z
value are stored in the same pixel structure; data with disjoint
depths are stored in separate structures even if they appear in the
same scanline and column of the image. Coverages of particles are
determined from the distance to the particle and its velocity. The
coverages of all particles in a pixel are added together subject to a
maximum value of 1. The colors of particles are combined using a
sum weighted by their coverages. Finally, the maximum and
minimum Z values are updated according to each new particle in
the pixel.

When all particles have been drawn into the sparse Z-buffer, the
contents of the buffer are written into a temporary file. This file is
read by Pixie during the rendering of the other elements of the
scene. Since the particle file is in scanline order, Pixie can easily
read the information (if any) which is relevant to the scanline
currently being rendered. Each pixel in the particle file is passed to
the A.buffer hidden surface routines, using the color, coverage
(opacity), and maximum and minimum Z values which were
determined by the particles program. Using this information, Pixie
can determine whether the particles obscure or are obscured by
other surfaces in the scene, such as the wave surface or the surface
of an obstacle.

In the original work on particle systems [17], the particles were
rendered by a separate program which produced color and coverage
information for each image pixel in the form of an RGBct image
[16]. This image was combined with other image elements using a
digital compositing scheme. For images of waves and surf, it
would be very difficult to determine clear depth relationships
between particles and the surfaces in the scene, so that compositing
of images could be used. The combination of particle information
with other surface information in the A-buffer at the time of
rendering solves this problem by automatically determining where
surfaces or particles are visible.

Our current illumination model for spray particles is quite
primitive. Particles are treated as small white spheres. Since it is
prohibitively expensive to determine which particles are in the
shadow of the waves or other particles, all of the particles are
shaded the same color. To achieve a more realistic appearance, a
random component is used to vary the shade a little. A slight
darkening of the particles based on the magnitude of their
downward velocity is used to simulate the shadowing of the
particles by other particles and objects. This trick has worked
fairly well, but clearly it would be easy to construct counter-
examples where the effect would be quite unrealistic.

5. E x a m p l e s

Figures 6 through 10 were produced using Pixie and the wave and
surf model described in section 3. Figure 6 shows a group of
moderately high waves approaching the beach. Figure 7 shows a
similar group of waves with a three times larger amplitude. The
increased amplitude makes these waves steep enough to break and

Figure 6: Waves on Babbage Beach

Figure 7: Breaking waves

generate spray when the wavelength is reduced in shallow water.
Figure 8 is the same as Figure 7, with the addition of an pyramid-
shaped rock as an obstacle. A small plume of spray is produced
from the impact of a wave with the obstacle. Figures 9 and 10
show a sunward view of the beach in the late afternoon and at
sunset.

These examples were produced using only three wave components,
the main waves with a period of 6 seconds and two secondary
components with periods of 2 and 2.5 seconds. Realism would be
enhanced by the addition of a time-dependent bump-mapped
texture pattern of small ripples.

Each of the examples was generated in approximately one hour of
CPU time on a Pyramid 90x computer (comparable to a VAX-
11/785 FPA). The implementation has not yet been carefully tuned
or optimized. The simulation and rendering of the particle systems
took approximately 10 CPU minutes with 2.5 megabytes of virtual

71

S ,¸ •23

S l G G R A P H '86
I

Figure 8: Breaking waves with obstacle

memory to simulate an acUve population of 56000 particles from a
total of 95000 particles that were generated. Pixie took about 40
CPU minutes and 3 megabytes of virtual memory to render the
wave surface and terrain, and to determine the visible surfaces at
each pixel, including the particle coverage and depth informafon
supplied by the particle program. The generation of the
numerically integrated phase function table for each wave
component consumed from 2 to 5 CPU minutes.

6. C o n c l u s i o n s a n d F u t u r e R e s e a r c h Di rec t ions

We have presented a graphical model of waves and surf which is
capable of rendering and animating realistic images of these ocean
phenomena. This is one of the first attempts to model breaking
waves and surf in the field of image synthesis. In our model the
shapes of waves change as they approach the shore, with the fronts
of the waves steepening markedly as the depth of the water
decreases. When the waves break, spray is simulated by a particle
system in order to give the appearance of "whitecaps". Particle
system spray is also used to model the impact of waves on
obstacles. Wave refraction effects and the change of speed and
wavelength in shallow water are simulated using a numerically
integrated phase function which need only he computed once for a
given wave component, even if many frames of animation are
generated.

The rendering of the wave model is done by an adaptation of the
Lane/Carpenter subdivision algorithm for parametric surfaces to
the particular case of single-valued functions of two variables.
This is a scanline algorithm, and does not suffer from the
restrictions on viewing geometry inherent in Max's height field
algorithm. The wave rendering algorithm is incorporated in a
novel implementation of the A-buffer, with performance and
simplicity advantages over the original A-buffer scheme. Panicle
systems are rendered by a separate program which produces a
scardine sorted file of pixel information suitable for the A-buffer.

This allows us to integrate particle systems with other surfaces at
low cost and with greater flexibility than can be achieved using
compositing techniques.

This work has concentrated on modeling the geometry and motion
of waves, surf, and spray. Further work on illumination models is
needed, especially to approximate shadowing of spray particles,
reffraetion of light from spray particles, and transmission of light
through steep wave crests. Texturing of wave surfaces might be
used to simulate foam, but care must be taken that such texture
maps behave sensibly from frame to frame of animation. The
effectiveness of particle systems in modeling spray suggests that
they might be used to model fountains, waterfalls, and perhaps
even rapids.

In our model each wave component is long-crested and has a fixed
amplitude. To more realistically model the ocean surface, it would
be desirable to add the concept of "wave groups" to the model. A
wave group would consist of a phase offset and an amplitude
function which would produce a moving " b u m p " of short-crested
waves which could be out of phase with other wave groups of the
same wave component. The wave group would move at one-half
the wave speed as predicted by theory, in the same general
direction as the waves themselves, Several wave groups could
share a single phase function.

A c k n o w l e d g e m e n t s

This research was supported by the Natural Sciences and
Engineering Research Council of Canada through infra-stmcture
grant no. A2527. The work could not have been done without 'the
support and facilities of the Department of Computational Science
and the University of Saskatchewan. The encouragement and
assistance of my wife, Judy, was vital to the completion of this
paper.

7 2

Dallas, August 18-22 Volume 20, Number 4, 1986

Figure 9: Sunset

Figure 10: Late afternoon

73

.- . ,

S I G G R A P H '86

References

[1] Bloomenthal, J. Modeling the mighty maple, Computer
Graphics 19, 3 (July 1985), 305-311.

[2] Carpenter, L. The A-buffer, an antialiased hidden surface
method, Computer Graphics 18, 3 (July 1984), 103-108.

[3] CatmuU, E. A Subdivision Algorithm for Computer Display
of Curved Surfaces, University of Utah, December 1974.

[4] Fishman, B. and Schachter, B. Computer display of height
fields, Computers and Graphics 5 (1980), 53-60.

[5] Foumier, A., Fussell, D., and Carpenter, L. Computer
rendering of stochastic models, Commun. ACM 25, 6 (June
1982), 371-384.

[6] Foumier, A. and Reeves, W. A simple model of ocean
waves, Computer Graphics 20, 3 (August 1986).

[7] Gardner, G. Visual simulation of clouds, Computer
Graphics 19, 3 (July 1985), 297-303.

[8] Lane, J. and Carpenter, L. A generalized scan line
algorithm for the computer display of parametrically
defined surfaces, Computer Graphics and Image Processing
11 (1979), 290-297.

[9] Kinsman, B. Wind Waves: their generation and
propagation on the ocean surface, Prentice-Hall,
Englewood Cliffs, N.J., 1965.

[10] Max, N. Vectorized procedural models for natural terrain:
waves and islands in the sunset, Computer Graphics 15, 3
(August 1981), 317-324.

[111 Milne-Thomson, L. Theoretical Hydrodynamics, 5th edn.,
Macmillan & Co., London, 1968.

[12] Norton, A., Rockwood, A., and Skolmoski, P. Clamping: a
method of antialiasing textured surfaces by bandwidth
limiting in object space, Computer Graphics 16, 3 (July
1982), 1-8.

[13] Peachey, D. PORTRAY-an image synthesis system, Proc.
Graphics Interface '86, Vancouver, May 1986.

[14] Perlin, K. An image synthesizer, Computer Graphics 19, 3
(July 1985), 287-296.

[15] Pethick, J. An Introduction to Coastal Geomorphology,
Edward Arnold Ltd, London, 1984.

[16] Porter, T. and Duff, T. Compositing digital images,
Computer Graphics 18, 3 (July 1984), 253-259.

[17] Reeves, W. Particle systems - a technique for modelling a
class of fuzzy objects, Computer Graphics 17, 3 (July
1983), 359-376.

[18] Reeves, W. and Blau, R. Approximate and probabilistic
algorithms for shading and rendering structured particle
systems, Computer Graphics 19, 3 (July 1985), 313-322.

[19] Smith, A. Plants, fractals, and formal languages, Computer
Graphics 18, 3 (July 1984), 1-10.

[20] Stoker, J. Water Waves: The Mathematical Theory with
Applications, Interscience Publishers, New York, 1957.

[21] Whitted, T. An improved illumination model for shaded
display, Commun. ACM 23, 6 (June 1980), 343-349.

[22] Whitted, T. The hacker's guide to making pretty pictures,
SIGGRAPH '85 Course Notes: Image Rendering Tricks,
July 1985.

74

