
An Algorithm and Data Structure for 3D Object Synthesis
Using Surface Patch Intersections

Wayne E. Carlson

The Ohio State University
Computer Graphics Research Group

Columbus, Ohio

ABSTRACT

There are several successful systems that pro-
vide algorithms that allow for the intersection
of polygonal objects or other primitive shapes to
create more complex objects. Our intent is to
provide similar algorithms for intersecting sur-
face patches. There have been contributions to
this concept at the display algorithm level, that
is, computing the intersection at the time the
frame is generated. In an animation environment,
however, it becomes important to incorporate the
intersection in the data generation routines, in
order that those parts of the intersected object
that never contribute to an image are not pro-

cessed by the display algorithm. This only
increases the complexity of the object unneces-
sarily, and subsequently puts an additional bur-
den on the display algorithms.

An algorithm is described which uses a modified
Catmull recursive subdivision scheme to find the
space curve which is the intersection of two
bicubic patrhes. An associated data structure is
discussed which incorporates this curve of inter-
section in the patch description in a way suit-
able for efficient display of the intersected
object. Sample output of these intersections are
shown which serve to illustrate the capabilities
and limitations of the described p~cedures.

CR Categories and Subject Descriptors: 1.2.5 [Com-
puter Graphics]: Computational Geometry and Object
Modeling - Curve, sur.face, solid, and object

This research was supported in part by the
National Science Foundation, grant number MCS
7923670.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the A C M copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 A C M 0-89791-076-1/82/007/0255 $00.75

General Terms: combinatorial geometry, recursive
subdivision, surface patch

Additional Keywords and Phrases: quadtree

1. INTRODUCTION

One of the most important aspects of complex
image synthesis is the generation and description
of the data comprising an object to be rendered.
Many early techniques were developed to deal with
this task, which might be referred to as computa-
tional geometry [8] or computer-aided geometric
~esign. The most interesting general purpose data
generation techniques involve interactively
specifying and successively modifying certain
primitive structures in order to create an object
for computer display. These primitive structures
can be points, lines, polygons, or parametric
surfaces.

Some of the most complex three dimensional
objects have been created in an environment of
this type by using capabilities which lie in the
realm of combinatorial geometry. This involves
describing a three dimensional object by the com-
bination of simpler geometric shapes or primi-
tives. That is, certain operators (for example,
union and intersection) are applied to two
objects, resulting in a third object which is
defined by the original two and the operator.
Several systems have been developed [3,13,1,4]
which combine two polyhedral objects by inter-
secting their faces in order to define a third
object. Levin [12] described a similar combina-
torial technique for quadric surfaces.

This paper attempts to extend the concept of
combinatorial geometry to parametric (in particu-
lar, bicubic) surface patches by developing an
algorithm that finds the space curve which is the
intersection of two patches, and uses this infor-
mation to form a third object from two objects
comprised of surface patches. The algorithm
proceeds by using a Catmull patch subdivision
scheme to recursively subdivide two patches until
the intersection, if it exists, can be isolated.

255

2. CATMULL SUBDIVISION OF BICUBIC PATCHES

A bicubic parametric surface patch can be

defined in matrix notation as follows:

V(u,v) (u 3 u 2 B t v 2 t = u 1) * B * P * * (v 3 v I)

where P is a 4x4 matrix representing the sixteen
points comprising the defining polygonal network

for the patch. B is the 4x4 matrix comprising the

coefficients of the basis functions. In particu-

lar, if we choose to use the Bernstein polynomi-

als as our basis, these functions are

f(x) = (I - x) 3 = I - 3x + 3x 2 - x 3

g(x) = 3x(I - x) 2 = 3 x - 6 x 2 + 3 x 3

h (x) = 3 x 2 (1 - x) = 3 x 2 - 3 x 3

3
k(x) = x

and the corresponding matrix is

-I 3 -3 I --

3 -6 3 0

B =

-3 3 0 0

I

1 0 0 0

Using this formulation, Catmull[5] showed that
such a patch could be subdivided into four sub-

patches by finding the midpoint of the patch and

the midpoint of each of the four boundary curves.

By observing that the midpoint of a cubic curve

is the average of its two endpoints less a

correction term, he created a correction matrix C

for the patch which contains the endpoints of all

the boundary curves, or the corner points of the
patch, and the correction values. C can be

defined as

S =

where

C = S * B * P * B t * S t

0 0 0 1

0 1 0 0

1 1 1 1

3 I 0 I

is derived to obtain the correction terms for

each curve. The center of the patch can be

obtained by utilizing the values and the correc-

tion terms of the midpoints of the boundary

curves.

3. PATCH INTERSECTION

After two objects defined as a collection of

bicubic patches defined with the Bernstein basis

have been interactively positioned and oriented

in space, the algorithm proceeds on a patch by

patch basis. Each patch of the first object is

compared against every patch of the second

object, and the intersection is calculated.

The algorithm has three main subalgorithms.

First, the subdivision of the patches is per-

formed. Second, the intersection is calculated,

and finally the new object is described according

to the combinatorial operator in effect.

3.1. SUBDIVISION ALGORITHM

Since there are more (and more complex) steps

as the algorithm progresses, it is desirable to

determine if a patch might possibly participate

in the intersection as soon as possible, and

eliminate it from consideration if not. At the

highest level, the test relies on the fact that

the Bernstein basis possesses the convex hull

property; that is, all points on the surface of

the patch lie within the convex hull defined by

the sixteen points of the defining polygonal net-

work. Thus, it suffices to show that the convex

hulls of the two patches under consideration are

linearly separable to determine if the patches

intersect. As it was discovered, the separability

test for two convex hulls was more expensive than
performing the more complex tests on the patch

later in the algorithm, so a faster test was

desired.

After determining that a simple min-max enclos-

ing box test which used the defining polygon was

inconclusive for too many cases where the patches

were in fact separable, the following test was

implemented. An arbitrary planar equation

related to the defining polygonal network was

calculated. In particular, three of the corner

vertices of the network were used to obtain the

planar equation. The maximum distance of each of

the other network points from the plane, both

above and below, were determined. This segmented

the space into three parts, with the patch

guaranteed to be totally within the middle seg-

ment, since the convex hull is guaranteed to be

totally included in this segment. (See Figure I)

If any point in the network of the other patch
was found to lie within this center segment, no

determination of separability could be made. In

most cases that were tried, this test drastically

cut the number of patches that needed to be con-

sidered further. In many cases, there were over

fifty percent fewer patches than were considered

with the basic min-max enclosing box test, and

this segmentation test was only slightly more

expensive to perform.

The subdivision algorithm is a recursive algo-

rithm. If two patches failed the separability

test described above, then one is divided into

four subpatches. The actual bicubic patch is

divided according to the Catmull scheme presented

in section 2. Then a new defining polygonal] net-

work for each new subpatch is calculated. This

is done relatively simply by using the inverses

256

of some of the matrices that were used in the

subdivision.

If C is the matrix containing the subpatch

values and correction information for the four

corners, and S and B are the matrices defined in

the section 2, then the matrix SP of subpolygon

coordinates is given by

-I -I (st)-1 (Bt)-1
SP = B * S * C * *

The separability test is then made for the sub-

patch using this new subpolygon network and the

second of the two patches. The subdivision is

recursively performed on a subpatch until either

its subpatches pass the separability test, or the

faces of the defining polygonal networks for

these suhpatches are coplanar to within a given

epsilon. The planarity is measured by determining

the distance from each point in the defining

polygonal network to the plane containing three

of the corner points, and testing to see if this

distance is less than epsilon. When this happens,
it can be shown that the patch will approximate

very closely the quadrilateral containing the

four corners of the network. Hence, this quadri-

lateral is entered into the data structure to be

considered in the intersection part of the algo-

rithm. The second patch is then recursively sub-
divided, being tested against the first patch.

3.2. INTERSECTION ALGORITHM

When the subdivision algorithm completes, we
have two sets of (planar) polygons, one set from

each patch. The intersection algorithm is an

order n-squared algorithm that compares each

polygon of one set against every polygon of the

second set. Once again, an essential criterion

is that processing will be aborted as soon as

possible if no intersection between the two
polygons exists.

The following sequence of tests will guarantee

that this criterion is met to an acceptable

degree. First, a (min-max) enclosing box test is

performed on the two polygons under considera-

tion. If the test is successful, the two

polygons are linearly separable and need not be

considered any further. If it fails, then the

first polygon is compared edgewise against the

second. The planar equation of the second polygon

is evaluated at both endpoints of an edge. If

both evaluate to nonzero results of the same

sign, they lie on the same side of the plane con-

taining the quadrilateral, and hence can't inter-

sect. If not, the edge is compared against the

bounding box of the quadrilateral, and we only

continue if they can't be shown to be separable.

Next, the point of intersection between the
edge and the plane containing the face is calcu-

lated. Two tests are performed to determine if
this point lies within the quadrilateral or not.

The largest coefficient of the planar equation
will determine which 2D plane will result in the

2D projection of the face having the largest

area. Both the quadrilateral and the point of
intersection are projected onto this 2D plane.

A two dimensional min-max test is used on the

projected quadrilateral and the projected point.
If the point lies outside this 2D box, it cannot

be inside the three dimensional quadrilateral. If

it is inside the enclosing box, a vector emanat-
ing from the projected point, and extending to

infinity in some direction is considered. If it

intersects the projected edges of the face an odd

number of times, the point must be within the

quadrilateral. (See Figure 2) These tests are

done for each edge, and then the roles of the two

quadrilaterals are reversed. Upon completion of

this part of the algorithm, we have a collection

of line segments in our data structure which are

the intersections of the various quadrilaterals.

Now they are organized, by using information

about their relative orientation, into an ordered

set that can faithfully be used as a good approx-

imation to the intersection of the ~wo patches.

3.3. DATA STRUCTURE

The subdivision process described above can
logically be represented by a tree of degree

four, or quadtree [9]. In this structure, the

root of the tree represents an entire patch. The

four children are the subpatches into which the

patch is subdivided~ and the leaf nodes are those

subpatches that either are found not to partici-

pate in the intersection, or have satisfied the

planarity termination condition.

Each node of the tree is stored as a six field

record. Included are pointers to the parent node,

the four children, and a leaf pointer. If the
node is itself the root of a subtree, the leaf

pointer has the value NULL. Otherwise, it points

to a record containing the following information

relevant to the subdivision and subsequent inter-

section: a pointer to the defining polygonal net-

work for the subpat~h of the tree limb; the

orientation of this subpatch relative to the

other object; a pointer to a record containing

information relevant to the actual intersection;

links to records for subpatches 'outside' and

subpatches 'inside' the other object.

As the subdivision process progresses, it can

determine if a subpatch absolutely does not con-

tain the curve of intersection. If this is deter-

mined, the relative orientation of the subpatch

can also be easily calculated. In this case, the

orientation is entered into the proper field of
the record just described, and the intersection

pointer is NULL. If, on the other hand, it cannot

be determined without a doubt that the patch

doesn't contain the curve of intersection, a link

is established to the intersection information

record, and the orientation field must wait until
later to be filled in.

If the link field to the intersection informa-

tion record is not NULL, then the intersection

algorithm considers the defined subpatch in its

comparison to determine the space curve approxi-

mation. This record contains the following

fields: a count of the number of points of inter-

section calculated and which are relevant to this
particular subpatch (it is 0 if there are none);

pointers to the coordinates of the intersection

points; a pointer to the edge from which this

257

point came; an orientation flag which indicates

if the edge was 'entering' or 'leaving' the other

subpatch (this is used to correctly recreate the

new object in the combinatorial algorithm); the

slopes of the subpatches at this point of inter-

section.

A quadtree was chosen as the internal data

structure because it is relatively compact, it

retains the information relative to the topologi-

cal structures of the original patches and of the

subpatches, and it lends itself quite well to the

combinatorial operators available to the user.

The implementation represents an entire object as

an n-branch tree, where n is the number of

patches in the description, and each branch links

a quadtree, which is related to the corresponding

patch.

Figure 3 shows a patch subdivided until those

subpatches whose polygonal approximations possi-

bly participate in determining the curve of

intersection were determined. Figure 4 represents

the associated quadtree. A black leaf node

represents a non NULL node, with relevant infor-

mation provided by the appropriate algorithms.

3.4. COMBINATORIAL OPERATORS

The purpose of the combinatorial operators is

to provide a description to the system as to how

two patch defined objects are to be combined in

the creation of a third object. When the inter-

section subalgorithm completes, the tree is built

and contains all the information necessary in

order to apply these operators. That is, the

approximation to the curve of intersection has

been found and all subpatches have information

regarding their new definition. They also have

recorded the relative orientation with respect to

the other object. This orientation is necessary

to classify [14] the subpatches. For the purpose

of exposition, suppose that we want to combine

two objects A and B as shown in Figures 5 and 6.

Figure 7 shows the two objects in the desired

positions. The resulting shape is shown for each

of the available operators using these two

objects.

UNION(01,02) -- this operator results

in a third object 03 which contains the

entire 'outside' surfaces of objects 01

and 02. The two objects can be con-

sidered "welded" at the space curve(s)

of intersection, and if they are solid

objects, any surface area not relevant
to the display (e.g., if part of 02 is

inside of 01) need not be included in

the description of 03. See Figure 8.

INTERSECT(01,O2) -- this creates 03

from the space that is common to both

objects, or the 'inside' surfaces of

the two objects. See Figure 9.

CUT(O1,O2,S) -- this operator creates

03 by "cutting" 02 with the surface of

01. S is an option to determine which

part of 02 will be retained as 03. If S

= '+', that part of 02 outside of 01 is

used. If S = '-', the complementary

surfaces will be used. (See Figures 10-

13.)

It can be seen that the operation INTERSECT and

UNION can be derived directly from combinations

of the set difference, or CUT operations. They

were used as operators explicitly because they

are more commonly used.

Since the tree structure used to store the sub-

division retains an indication of the topological

relationship, it is very easy to determine the

resulting surfaces of the above operators. It

suffices to traverse the tree along the links

that go to the orientation records defined by the

operator.

4. SUMMARY

The concepts of patch subdivision have been

used several times before for computer display of

surfaces [5,2,15,10]. The idea of using planar-

ity as a termination condition for the subdivi-

sion process was used in a display algorithm by

Lane and Carpenter and one by Clark [10,6]. Lane

and Riesenfeld [11] used planar approximations to

the subpatches as a means to determine the inter-

section of Bezier and b-spline patches (see

also[7] for a thorough treatment of patch inter-
section issues). The primary difference between

the ideas in this paper and those in the above

references is that we do the intersection at

object generation time, and incorporate the

intersection information in the description of

the resulting object. This reduces the time spent

in rendering the object at each frame. If this

intersection information isn't retained as part

of the object description, it is necessary to

recalculate the intersection each time a frame is

generated. In an animation environment, where

many frames using a given object need to be

created for an animation sequence, the overhead

can be quite significant.

The concepts included in this paper are

currently incorporated in an integrated data gen-

eration system in use at the Computer Graphics

Research Group. This system currently runs on a

VAX 11/780. The objects generated by the subdi-

vision process are being converted to a polygonal
description before being displayed in solid

shaded format using a polygon tiler. They are
also displayed in vector format on a Megatek cal-

ligraphic display. Research is continuing to pro-

vide a patch display algorithm that can utilize

the object description directly to render the
object, rather than combining a patch display

with a polygonal display algorithm. Moreover, the

subdivision algorithm is being used to provide an

efficient method for providing a compact

polyhedral approximation to a patch defined

object. Since only areas of excessive curvature

need to be described as a collection of very

small polygons, those areas of little curvature

need not have more complexity than is necessary.

The slope values of the subpatches at the

points of intersection are recorded in the leaf

nodes as described in Section 6. We are

258

interested in utilizing these values together
with the curve of intersection to calculate "fil-
lets", or smooth transitions where the patches
intersect. We are particularly interested in
modeling the human body as a collection of sur-
face patches, and these fillets would provide the
smoothness at the joints (eg, elbow, wrist, knee)
that is desired for an accurate representation.

5. ACKNOWLEDGMENTS

The author would like to acknowledge the advice
and motivation of Dr. Frank Crow. Prof. Charles
Csuri provided the necessary support, and other
members of the Computer Graphics Research Group
added assistance, comments, and criticisms.
Julian Gomez deserves special recognition for the
effort he put forth to provide the electronic
documentation software.

References

I. Baumgart, B.G., "Geometric Modeling for Com-
puter Vision," AIM-249, STAN-CS-74-463, Stan-
ford U. Computer Sci. Dept. (October 1974).

2. Blinn, James F., "Computer Display of Curved
Surfaces," PhD Thesis , University of Utah
(December 1978).

3. Braid, Ian C., "The Synthesis of Solids
Bounded by Many Faces," Comm. ACM Vol.
18(4) pp. 209-216 (April 1975).

4. Brown, C. M., "PADL-2: A Technical Summary,"
IEEE Computer Graphics and Applications Vol.
2(2) pp. 69-84 (March 1982).

5. Catmull, Edwin E., "A Subdivision Algorithm
for Computer Display of Curved Surfaces,"
UTEC-CSc-74-133, Salt Lake City, Utah
(December 1974). University of Utah Dept of
Comp Science.

6. Clark, James H., "A Fast Scan-Line Algorithm
for Rendering Parametric Surfaces," Computer
Graphics (SIGGRAPH 79 supplement) Vol.
13(3)(August 1979).

7. Cohen, Elaine, Lyche, Tom, and Riesenfeld,
Richard F., "Discrete B-Splines and Subdivision
Techniques in Computer-Aided Geometric Design
and Computer Graphics," Com-
puter Graphics and Image Processing Vol.
14(2) pp. 87-111 (October 1980).

8. Forrest, A. R., "Computational Geometry -
Achievements and Problems," in Computer Aided
Geometric Design, ed. Richard F.
Riesenfeld,Academic Press, New York (1974).

9. Hunter, G.M., Efficient Computation and Data
Structures for Graphics, Princeton U., Dept. of
EE and CSc (1978). Ph.D. Dissertation.

10. Lane, Jeffrey M. and Carpenter, Loren C.,
"Scan Line Methods for Displaying Parametri-
cally Defined Surfaces," Comm. ACM vol.
23(I) pp. 23-34 (January 1980).

11. Lane, Jeffrey M. and Riesenfeld, Richard F.,
"A Theoretical Development for the Computer
Generation of Piecewise Polynomial Surfaces,"
IEEE Trans. Pattern Analysis and Machine Intel-
ligence vol. PAMI-2(1) pp. 35-46 (January
1980).

12. Levin, Joshua Z., "A Parametric Algorithm for
Drawing Pictures of Solid Objects Composed of
Quadric Surfaces," Comm. ACM Vol. 19(10) pp.
555-563 (October 1976).

13. Parent, Richard E., "A System for Sculpting
3-D Data," Computer Graphics Vol. 11(2) pp.
138-147 Proc. Siggraph '77, (Summer 1977).

14. Tilove, R. B., "Set Membership Classifica-
tion: A Unified Approach to Geometric Intersec-
tion Problems," IEEE Trans. Computers Vol. C-
29(10) pp. 874-883 (Oct. 1980).

15. Whitted, J. Turner, "A Scan Line Algorithm
for Computer Display of Curved Surfaces," Com-
puter Graphics (SIGGRAPH 78 supplement) Vol.
13(3)(August 1978).

259

Computer Graphics Volume 16, Number 3 July 1982

Figure I

The shaded area represents (a 2D cross section of)
the convex hull of the defining polygon. P is the

plane derived from three of the four corner

points, dl is the maximum distance in the + direc-

tion, and d2 is the maximum distance in the -

direction. The defining polygons containing the

points PI and P4 are separable, but no determina-

tion can be made with this test for those contain-

ing points P2 and P3.

P1

P2 "

Figure 2

The: solid box is the quadrilateral under con-

sideration after being projected onto the plane

that will result in the largest area. The points

PI, P2, and P3 have also been projected onto the

same plane. The dashed lines are the min-max

enclosing box, and this test obviously eliminates

PI from turther consideration. Point P2 is inside

the box, since the semiinfinite ray crosses the

projected edge an odd number of times, while the

ray associated with P3 crosses an even number of

times, eliminating it from consideration.

260

12

23

34

46

49

47

f

48

Figure 3

24

N~V N~

I

23

SW ~ SE

24

LI / I I \ [2

Li 35 36 38 $7 46 47 49 48 39 40 I[~% 4[

F i g u r e 4

261

Computer Graphics Volume 16, Number 3 July 1982

Figures 5 and 6

Ol and 02

Figure 8
03 = UNION(OI, O2);

Figure 9
03 = INTERSECTION(Of, 02);

O
Figure l0

0 3 = C U T (O 1 , O 2 , ' + =) ;

Figure 7

Figure ii
03 = CUT(OI,O2,'-');

Figure 12
03 = CUT(O2,OI,'+')

Figure 13
O3 = CUT(O2,OI,'-');

262

The raster images above show the original tubes,
their desired orientation, and the object result-
ing from the UNION operator. Transparency is used
to clarify the objects.

263

