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ABSTRACT 

There are several successful systems that pro- 
vide algorithms that allow for the intersection 
of polygonal objects or other primitive shapes to 
create more complex objects. Our intent is to 
provide similar algorithms for intersecting sur- 
face patches. There have been contributions to 
this concept at the display algorithm level, that 
is, computing the intersection at the time the 
frame is generated. In an animation environment, 
however, it becomes important to incorporate the 
intersection in the data generation routines, in 
order that those parts of the intersected object 
that never contribute to an image are not pro- 

cessed by the display algorithm. This only 
increases the complexity of the object unneces- 
sarily, and subsequently puts an additional bur- 
den on the display algorithms. 

An algorithm is described which uses a modified 
Catmull recursive subdivision scheme to find the 
space curve which is the intersection of two 
bicubic patrhes. An associated data structure is 
discussed which incorporates this curve of inter- 
section in the patch description in a way suit- 
able for efficient display of the intersected 
object. Sample output of these intersections are 
shown which serve to illustrate the capabilities 
and limitations of the described p~cedures. 
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1. INTRODUCTION 

One of the most important aspects of complex 
image synthesis is the generation and description 
of the data comprising an object to be rendered. 
Many early techniques were developed to deal with 
this task, which might be referred to as computa- 
tional geometry [8] or computer-aided geometric 
~esign. The most interesting general purpose data 
generation techniques involve interactively 
specifying and successively modifying certain 
primitive structures in order to create an object 
for computer display. These primitive structures 
can be points, lines, polygons, or parametric 
surfaces. 

Some of the most complex three dimensional 
objects have been created in an environment of 
this type by using capabilities which lie in the 
realm of combinatorial geometry. This involves 
describing a three dimensional object by the com- 
bination of simpler geometric shapes or primi- 
tives. That is, certain operators (for example, 
union and intersection) are applied to two 
objects, resulting in a third object which is 
defined by the original two and the operator. 
Several systems have been developed [3,13,1,4] 
which combine two polyhedral objects by inter- 
secting their faces in order to define a third 
object. Levin [12] described a similar combina- 
torial technique for quadric surfaces. 

This paper attempts to extend the concept of 
combinatorial geometry to parametric (in particu- 
lar, bicubic) surface patches by developing an 
algorithm that finds the space curve which is the 
intersection of two patches, and uses this infor- 
mation to form a third object from two objects 
comprised of surface patches. The algorithm 
proceeds by using a Catmull patch subdivision 
scheme to recursively subdivide two patches until 
the intersection, if it exists, can be isolated. 
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2. CATMULL SUBDIVISION OF BICUBIC PATCHES 

A bicubic parametric surface patch can be 

defined in matrix notation as follows: 

V(u,v) (u 3 u 2 B t v 2 t = u 1) * B * P * * (v 3 v I) 

where P is a 4x4 matrix representing the sixteen 
points comprising the defining polygonal network 

for the patch. B is the 4x4 matrix comprising the 

coefficients of the basis functions. In particu- 

lar, if we choose to use the Bernstein polynomi- 

als as our basis, these functions are 

f(x) = (I - x) 3 = I - 3x + 3x 2 - x 3 

g(x) = 3x(I - x )  2 = 3 x  - 6 x  2 + 3 x  3 

h ( x )  = 3 x 2 ( 1  - x )  = 3 x  2 - 3 x  3 

3 
k(x) = x 

and the corresponding matrix is 

-I 3 -3 I -- 

3 -6 3 0 

B = 

-3 3 0 0 

I 

1 0 0 0 

Using this formulation, Catmull[5] showed that 
such a patch could be subdivided into four sub- 

patches by finding the midpoint of the patch and 

the midpoint of each of the four boundary curves. 

By observing that the midpoint of a cubic curve 

is the average of its two endpoints less a 

correction term, he created a correction matrix C 

for the patch which contains the endpoints of all 

the boundary curves, or the corner points of the 
patch, and the correction values. C can be 

defined as 

S = 

where 

C = S * B * P * B t * S t 

0 0 0 1 

0 1 0 0 

1 1 1 1 

3 I 0 I 

is derived to obtain the correction terms for 

each curve. The center of the patch can be 

obtained by utilizing the values and the correc- 

tion terms of the midpoints of the boundary 

curves. 

3. PATCH INTERSECTION 

After two objects defined as a collection of 

bicubic patches defined with the Bernstein basis 

have been interactively positioned and oriented 

in space, the algorithm proceeds on a patch by 

patch basis. Each patch of the first object is 

compared against every patch of the second 

object, and the intersection is calculated. 

The algorithm has three main subalgorithms. 

First, the subdivision of the patches is per- 

formed. Second, the intersection is calculated, 

and finally the new object is described according 

to the combinatorial operator in effect. 

3.1. SUBDIVISION ALGORITHM 

Since there are more (and more complex) steps 

as the algorithm progresses, it is desirable to 

determine if a patch might possibly participate 

in the intersection as soon as possible, and 

eliminate it from consideration if not. At the 

highest level, the test relies on the fact that 

the Bernstein basis possesses the convex hull 

property; that is, all points on the surface of 

the patch lie within the convex hull defined by 

the sixteen points of the defining polygonal net- 

work. Thus, it suffices to show that the convex 

hulls of the two patches under consideration are 

linearly separable to determine if the patches 

intersect. As it was discovered, the separability 

test for two convex hulls was more expensive than 
performing the more complex tests on the patch 

later in the algorithm, so a faster test was 

desired. 

After determining that a simple min-max enclos- 

ing box test which used the defining polygon was 

inconclusive for too many cases where the patches 

were in fact separable, the following test was 

implemented. An arbitrary planar equation 

related to the defining polygonal network was 

calculated. In particular, three of the corner 

vertices of the network were used to obtain the 

planar equation. The maximum distance of each of 

the other network points from the plane, both 

above and below, were determined. This segmented 

the space into three parts, with the patch 

guaranteed to be totally within the middle seg- 

ment, since the convex hull is guaranteed to be 

totally included in this segment. (See Figure I) 

If any point in the network of the other patch 
was found to lie within this center segment, no 

determination of separability could be made. In 

most cases that were tried, this test drastically 

cut the number of patches that needed to be con- 

sidered further. In many cases, there were over 

fifty percent fewer patches than were considered 

with the basic min-max enclosing box test, and 

this segmentation test was only slightly more 

expensive to perform. 

The subdivision algorithm is a recursive algo- 

rithm. If two patches failed the separability 

test described above, then one is divided into 

four subpatches. The actual bicubic patch is 

divided according to the Catmull scheme presented 

in section 2. Then a new defining polygonal] net- 

work for each new subpatch is calculated. This 

is done relatively simply by using the inverses 
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of some of the matrices that were used in the 

subdivision. 

If C is the matrix containing the subpatch 

values and correction information for the four 

corners, and S and B are the matrices defined in 

the section 2, then the matrix SP of subpolygon 

coordinates is given by 

-I -I (st)-1 (Bt)-1 
SP = B * S * C * * 

The separability test is then made for the sub- 

patch using this new subpolygon network and the 

second of the two patches. The subdivision is 

recursively performed on a subpatch until either 

its subpatches pass the separability test, or the 

faces of the defining polygonal networks for 

these suhpatches are coplanar to within a given 

epsilon. The planarity is measured by determining 

the distance from each point in the defining 

polygonal network to the plane containing three 

of the corner points, and testing to see if this 

distance is less than epsilon. When this happens, 
it can be shown that the patch will approximate 

very closely the quadrilateral containing the 

four corners of the network. Hence, this quadri- 

lateral is entered into the data structure to be 

considered in the intersection part of the algo- 

rithm. The second patch is then recursively sub- 
divided, being tested against the first patch. 

3.2. INTERSECTION ALGORITHM 

When the subdivision algorithm completes, we 
have two sets of (planar) polygons, one set from 

each patch. The intersection algorithm is an 

order n-squared algorithm that compares each 

polygon of one set against every polygon of the 

second set. Once again, an essential criterion 

is that processing will be aborted as soon as 

possible if no intersection between the two 
polygons exists. 

The following sequence of tests will guarantee 

that this criterion is met to an acceptable 

degree. First, a (min-max) enclosing box test is 

performed on the two polygons under considera- 

tion. If the test is successful, the two 

polygons are linearly separable and need not be 

considered any further. If it fails, then the 

first polygon is compared edgewise against the 

second. The planar equation of the second polygon 

is evaluated at both endpoints of an edge. If 

both evaluate to nonzero results of the same 

sign, they lie on the same side of the plane con- 

taining the quadrilateral, and hence can't inter- 

sect. If not, the edge is compared against the 

bounding box of the quadrilateral, and we only 

continue if they can't be shown to be separable. 

Next, the point of intersection between the 
edge and the plane containing the face is calcu- 

lated. Two tests are performed to determine if 
this point lies within the quadrilateral or not. 

The largest coefficient of the planar equation 
will determine which 2D plane will result in the 

2D projection of the face having the largest 

area. Both the quadrilateral and the point of 
intersection are projected onto this 2D plane. 

A two dimensional min-max test is used on the 

projected quadrilateral and the projected point. 
If the point lies outside this 2D box, it cannot 

be inside the three dimensional quadrilateral. If 

it is inside the enclosing box, a vector emanat- 
ing from the projected point, and extending to 

infinity in some direction is considered. If it 

intersects the projected edges of the face an odd 

number of times, the point must be within the 

quadrilateral. (See Figure 2) These tests are 

done for each edge, and then the roles of the two 

quadrilaterals are reversed. Upon completion of 

this part of the algorithm, we have a collection 

of line segments in our data structure which are 

the intersections of the various quadrilaterals. 

Now they are organized, by using information 

about their relative orientation, into an ordered 

set that can faithfully be used as a good approx- 

imation to the intersection of the ~wo patches. 

3.3. DATA STRUCTURE 

The subdivision process described above can 
logically be represented by a tree of degree 

four, or quadtree [9]. In this structure, the 

root of the tree represents an entire patch. The 

four children are the subpatches into which the 

patch is subdivided~ and the leaf nodes are those 

subpatches that either are found not to partici- 

pate in the intersection, or have satisfied the 

planarity termination condition. 

Each node of the tree is stored as a six field 

record. Included are pointers to the parent node, 

the four children, and a leaf pointer. If the 
node is itself the root of a subtree, the leaf 

pointer has the value NULL. Otherwise, it points 

to a record containing the following information 

relevant to the subdivision and subsequent inter- 

section: a pointer to the defining polygonal net- 

work for the subpat~h of the tree limb; the 

orientation of this subpatch relative to the 

other object; a pointer to a record containing 

information relevant to the actual intersection; 

links to records for subpatches 'outside' and 

subpatches 'inside' the other object. 

As the subdivision process progresses, it can 

determine if a subpatch absolutely does not con- 

tain the curve of intersection. If this is deter- 

mined, the relative orientation of the subpatch 

can also be easily calculated. In this case, the 

orientation is entered into the proper field of 
the record just described, and the intersection 

pointer is NULL. If, on the other hand, it cannot 

be determined without a doubt that the patch 

doesn't contain the curve of intersection, a link 

is established to the intersection information 

record, and the orientation field must wait until 
later to be filled in. 

If the link field to the intersection informa- 

tion record is not NULL, then the intersection 

algorithm considers the defined subpatch in its 

comparison to determine the space curve approxi- 

mation. This record contains the following 

fields: a count of the number of points of inter- 

section calculated and which are relevant to this 
particular subpatch (it is 0 if there are none); 

pointers to the coordinates of the intersection 

points; a pointer to the edge from which this 
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point came; an orientation flag which indicates 

if the edge was 'entering' or 'leaving' the other 

subpatch (this is used to correctly recreate the 

new object in the combinatorial algorithm); the 

slopes of the subpatches at this point of inter- 

section. 

A quadtree was chosen as the internal data 

structure because it is relatively compact, it 

retains the information relative to the topologi- 

cal structures of the original patches and of the 

subpatches, and it lends itself quite well to the 

combinatorial operators available to the user. 

The implementation represents an entire object as 

an n-branch tree, where n is the number of 

patches in the description, and each branch links 

a quadtree, which is related to the corresponding 

patch. 

Figure 3 shows a patch subdivided until those 

subpatches whose polygonal approximations possi- 

bly participate in determining the curve of 

intersection were determined. Figure 4 represents 

the associated quadtree. A black leaf node 

represents a non NULL node, with relevant infor- 

mation provided by the appropriate algorithms. 

3.4. COMBINATORIAL OPERATORS 

The purpose of the combinatorial operators is 

to provide a description to the system as to how 

two patch defined objects are to be combined in 

the creation of a third object. When the inter- 

section subalgorithm completes, the tree is built 

and contains all the information necessary in 

order to apply these operators. That is, the 

approximation to the curve of intersection has 

been found and all subpatches have information 

regarding their new definition. They also have 

recorded the relative orientation with respect to 

the other object. This orientation is necessary 

to classify [14] the subpatches. For the purpose 

of exposition, suppose that we want to combine 

two objects A and B as shown in Figures 5 and 6. 

Figure 7 shows the two objects in the desired 

positions. The resulting shape is shown for each 

of the available operators using these two 

objects. 

UNION(01,02) -- this operator results 

in a third object 03 which contains the 

entire 'outside' surfaces of objects 01 

and 02. The two objects can be con- 

sidered "welded" at the space curve(s) 

of intersection, and if they are solid 

objects, any surface area not relevant 
to the display (e.g., if part of 02 is 

inside of 01) need not be included in 

the description of 03. See Figure 8. 

INTERSECT(01,O2) -- this creates 03 

from the space that is common to both 

objects, or the 'inside' surfaces of 

the two objects. See Figure 9. 

CUT(O1,O2,S) -- this operator creates 

03 by "cutting" 02 with the surface of 

01. S is an option to determine which 

part of 02 will be retained as 03. If S 

= '+', that part of 02 outside of 01 is 

used. If S = '-', the complementary 

surfaces will be used. (See Figures 10- 

13.) 

It can be seen that the operation INTERSECT and 

UNION can be derived directly from combinations 

of the set difference, or CUT operations. They 

were used as operators explicitly because they 

are more commonly used. 

Since the tree structure used to store the sub- 

division retains an indication of the topological 

relationship, it is very easy to determine the 

resulting surfaces of the above operators. It 

suffices to traverse the tree along the links 

that go to the orientation records defined by the 

operator. 

4. SUMMARY 

The concepts of patch subdivision have been 

used several times before for computer display of 

surfaces [5,2,15,10]. The idea of using planar- 

ity as a termination condition for the subdivi- 

sion process was used in a display algorithm by 

Lane and Carpenter and one by Clark [10,6]. Lane 

and Riesenfeld [11] used planar approximations to 

the subpatches as a means to determine the inter- 

section of Bezier and b-spline patches (see 

also[7] for a thorough treatment of patch inter- 
section issues). The primary difference between 

the ideas in this paper and those in the above 

references is that we do the intersection at 

object generation time, and incorporate the 

intersection information in the description of 

the resulting object. This reduces the time spent 

in rendering the object at each frame. If this 

intersection information isn't retained as part 

of the object description, it is necessary to 

recalculate the intersection each time a frame is 

generated. In an animation environment, where 

many frames using a given object need to be 

created for an animation sequence, the overhead 

can be quite significant. 

The concepts included in this paper are 

currently incorporated in an integrated data gen- 

eration system in use at the Computer Graphics 

Research Group. This system currently runs on a 

VAX 11/780. The objects generated by the subdi- 

vision process are being converted to a polygonal 
description before being displayed in solid 

shaded format using a polygon tiler. They are 
also displayed in vector format on a Megatek cal- 

ligraphic display. Research is continuing to pro- 

vide a patch display algorithm that can utilize 

the object description directly to render the 
object, rather than combining a patch display 

with a polygonal display algorithm. Moreover, the 

subdivision algorithm is being used to provide an 

efficient method for providing a compact 

polyhedral approximation to a patch defined 

object. Since only areas of excessive curvature 

need to be described as a collection of very 

small polygons, those areas of little curvature 

need not have more complexity than is necessary. 

The slope values of the subpatches at the 

points of intersection are recorded in the leaf 

nodes as described in Section 6. We are 
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interested in utilizing these values together 
with the curve of intersection to calculate "fil- 
lets", or smooth transitions where the patches 
intersect. We are particularly interested in 
modeling the human body as a collection of sur- 
face patches, and these fillets would provide the 
smoothness at the joints (eg, elbow, wrist, knee) 
that is desired for an accurate representation. 
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Figure I 

The shaded area represents (a 2D cross section of) 
the convex hull of the defining polygon. P is the 

plane derived from three of the four corner 

points, dl is the maximum distance in the + direc- 

tion, and d2 is the maximum distance in the - 

direction. The defining polygons containing the 

points PI and P4 are separable, but no determina- 

tion can be made with this test for those contain- 

ing points P2 and P3. 

P1 

P2 " 

Figure 2 

The: solid box is the quadrilateral under con- 

sideration after being projected onto the plane 

that will result in the largest area. The points 

PI, P2, and P3 have also been projected onto the 

same plane. The dashed lines are the min-max 

enclosing box, and this test obviously eliminates 

PI from turther consideration. Point P2 is inside 

the box, since the semiinfinite ray crosses the 

projected edge an odd number of times, while the 

ray associated with P3 crosses an even number of 

times, eliminating it from consideration. 
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Figures 5 and 6 

Ol and 02 

Figure 8 
03 = UNION(OI, O2); 

Figure 9 
03 = INTERSECTION(Of, 02); 

O 
Figure l0 

0 3  = C U T ( O 1 , O 2 , ' + = ) ;  

Figure 7 

Figure ii 
03 = CUT(OI,O2,'-'); 

Figure 12 
03 = CUT(O2,OI,'+') 

Figure 13 
O3 = CUT(O2,OI,'-'); 
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The raster images above show the original tubes, 
their desired orientation, and the object result- 
ing from the UNION operator. Transparency is used 
to clarify the objects. 
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